Efecto de la frecuencia de fuego sobre las redes de dispersión de semillas mediadas por murciélagos en un bosque seco tropical

dc.contributor.advisorParrado Rosselli, Ángela
dc.contributor.advisorRodríguez-Bolaños, Abelardo
dc.contributor.authorCorredor Ospina, Juan Nicolás
dc.contributor.orcidParrado Rosselli, Ángela [0000-0002-2480-4009]
dc.contributor.orcidRodríguez Bolaños, Abelardo [0000-0002-2761-1712]
dc.contributor.orcidCorredor Ospina, Juan Nicolás [0009-0006-8845-7356]
dc.date.accessioned2025-11-04T13:04:11Z
dc.date.available2025-11-04T13:04:11Z
dc.date.created2025-06-09
dc.descriptionEl fuego es uno de los factores con mayor impacto sobre la biodiversidad, presentando efectos positivos y negativos sobre la composición, estructura y función de esta. El entendimiento de cómo el aumento en la frecuencia de este disturbio afecta las interacciones dentro de ecosistemas altamente perturbados, como el bosque seco tropical colombiano, permitiría entender las consecuencias y efectos sobre la biodiversidad. Este estudio buscó determinar el efecto del aumento en la frecuencia del fuego sobre las redes de dispersión de semillas mediadas por murciélagos en un bosque seco tropical. Encontramos que un aumento en la frecuencia de fuego genera modificaciones en la estructura de las redes de interacción mediadas por murciélagos. Así pues, se observó una disminución de la modularidad y la especialización de las redes a mayor frecuencia de fuego. Adicionalmente, se observó un aumento en la conectancia y el anidamiento a mayor frecuencia de fuego. Estas modificaciones estructurales de las redes parecen estar asociadas a el aumento en la abundancia de especies super generalistas, como Carollia perspicillata y Piper marginatum, que, tras la pérdida de conexiones por la ausencia de otras especies de murciélagos y plantas, asumen roles centrales dentro de la red manteniendo las interacciones y funciones asociadas a la dispersión de semillas. Este es el primer estudio que evalúa los efectos del cambio en el régimen del fuego sobre las redes de dispersión de semillas mediadas por murciélagos, y los resultados aquí presentados permiten entender que existe una resiliencia por parte de este grupo, lo que plantea perspectivas de manejo para la regeneración de ecosistemas altamente transformados como el bosque seco tropical.
dc.description.abstractFire is a major driver of biodiversity change, exerting both positive and negative effects on ecosystem composition, structure, and function. Although Colombian tropical dry forests have a long history of fire disturbance, its ecological consequences remain poorly understood. Here, we evaluated the effects of fire frequency changes over the structure (connectance, degree of specialization, modularity, and nestedness). Our results show that higher fire frequencies reduced modularity and specialization, while increasing connectance and nestedness. These structural shifts appear to be driven by the proliferation of super-generalist species, particularly Carollia perspicillata and Piper marginatum, which assumed central roles in mutualistic networks as connections from other species declined. Such dynamics are relevant because they contribute to the maintenance of key ecosystem services, even under conditions of recurrent disturbance, and provide insights into the formulation of restoration strategies. To our knowledge, this is the first study to examine the effects of fire frequency on bat-mediated seed dispersal networks, offering novel perspectives on species resilience and the functioning of highly disturbed ecosystems such as the Colombian tropical dry forest.
dc.format.mimetypepdf
dc.identifier.urihttp://hdl.handle.net/11349/99663
dc.publisherUniversidad Distrital Francisco José de Caldas
dc.relation.referencesAguilar-Cano J., Mendoza, H., Medina, S., Correa, D., Nieto, J., Quintana, A., & Gonzalez-M., R. (2016). Caracterización florística del bosque seco tropical de Honda Méndez (Tolima). En J. Aguilar-Cano, S. Rodríguez-Buritica, D. Córdoba, et al. (Eds.), Expediciones Humboldt (pp. 17-25).
dc.relation.referencesAguirre‐Gutiérrez, J., Berenguer, E., Oliveras Menor, I. et al. (2021). Functional susceptibility of tropical forests to climate change. Nature Ecology & Evolution 6: 878–889. https://doi.org/10.1038/s41559-022-01747-6
dc.relation.referencesAlonso, M.F. & Montealegre, M.F. (2021). Influencia de la topografía en la severidad de un incendio forestal de bosque seco tropical en la cuenca alta del rio Magdalena. Tesis de pregrado, Universidad Distrital Francisco José de Caldas. Repositorio Institucional de la universidad: ht
dc.relation.referencesAraújo, M.S., Martins, E.G., Cruz, L.D., Fernandes, FR., Linhares, A.X., dos Reis, S.F., Guimaraes Jr., P.R. (2010). Nested diets: a novel pattern of individual-level resource use. Oikos 119: 81-88. https://doi.org/10.1111(j.1600-0706.2009.17624.x
dc.relation.referencesArmenteras-Pascual, D., Retana-Alumbreros, J., Molowny-Horas, R., Roman-Cuesta, R.M., Gonzalez-Alonso, F. y Morales-Rivas, M. (2011). Characterising fire spatial páttern interactions with climate and vegetation in Colombia. Agricultural and Forest Meteorology 151(3): 279-289. https://doi.org/10.1016/j.agrformet.2010.11.002
dc.relation.referencesBascompte, J. & Jordano, P. (2006). The structure of plant-animal mutualistic networks. In Pascual, M. & Dunne, J.A. (eds.). Ecological networks linking structure to dynamics in Food webs. Pp: 143-159. https://doi.org/10.1093/oso/9780195188165.003.0005
dc.relation.referencesBeal-Neves, M., Ely, C. V., Esteves, M. W., Blochtein, B., Lahm, R. A., Quadros, E. L. L., & Ferreira, P. M. A. (2020). The influence of urbanization and fire disturbance on plant floral visitor mutualistic networks. Diversity, 12 (4), 141. https://doi.org/10.3390/d12040141
dc.relation.referencesBraun de Torrez, E.C., Ober, H.K., McCleery, R.A. (2018). Restoring historical fire regimes increases activity of endangered bats. Fire Ecology 14:9. https://doi.org/10.1186/s42408-018-0006-8
dc.relation.referencesBrowning, E., Freeman, R., Boughey, K.L., Isaac, N.J.B. y Jones, J.E. (2022). Accounting for spatial autocorrelation and environment are important to derive robust bat population trends from citizen science data. Ecological indicators 136: 108719. https://doi.org/10.1016/j.ecolind.2022.108719
dc.relation.referencesBlüthgen, N., Menzel, F., Hovestadt, T.., Fiala, B., Blüghgen, N. (2007). Specialization, constraints, and conflicting interests in mutualistic networks. Current Biology 17(4): 341- 346. https://doi.org/10.1016/j.cub.2006.12.039
dc.relation.referencesCarrillo-Villamizar, J.Z., Jímenez-Ramírez, J.S., López-Arévalo, H.G. (2022). Análisis de la dieta y variación temporal de las redes de interacción mutualista de murciélagos frugívoros del nororiente de la amazonía de Colombia. Caldasia 44(2): https://doi.org/10.15446/caldasia.v44n2.84870
dc.relation.referencesCasallas-Pabón, D., Calvo-Roa, N., Rojas-Robles, R. (2017). Murciélagos dispersores de semillas en gradientes sucesivos de la Orinoquia (San Martín, Meta, Colombia). Acta Biológica Colombiana 0120-548X. https://doi.org/10.15446/abc.v22n3.63561
dc.relation.referencesCastillo-Figueroa, D. (2020 ). Why bats matters: A critical assessment of bat-mediated ecological processes in the neotropics. European Journal of Ecology 6(1): 77-101. https://doi.org/10.17161/eurojecol.v6i1.13824
dc.relation.referencesCastaño, J.H., Carranza-Quiceno, J.A., Pérez-Torres, J. (2020). Bat-fruit networks structure resist habitat modification but species roles change in the most transformed habitats. Acta Oecologica 105: 103550. https://doi.org/10.1016/j.actao.2020.103550
dc.relation.referencesChiang, F., Mazdiyasni, O, AghaKouchak, A. (2021). Evidence of anthropogenic impacts on global drought frequency, duration, and intensity. Nature communications 12: 2754 (2021). https://doi.org/10.1038/s41467-021-22314-w
dc.relation.referencesCorro,E.J., Villalobos, F., Lira-Noriega, A., Guevara, R., Guimaraes, P., Dáttilo, W. (2021). Annual precipitation predicts the phylogenetic signal in bat-fruit interaction networks across the Neotropics. Biology Letters 17: 20210478. https://doi.org/10.1098/rsbl.2021.0478
dc.relation.referencesda Silva, Z.D., Cajueiro, E.S., Correia, L.L. Vieira, T.B. (2024). Seed dispersla by bats (Chiroptera: Phyllostomidae) and mutualistic networks in a landscape dominated by cocoa in the Brazilian amazon. Global Ecology and Conservation 55: e03252. https://doi.org/10.1016/j.gecco.2024.e03252
dc.relation.referencesDel Claro, K. & Dirzo, R. (2021). Impacts of Anthropocene defaunation on plant-animal interactions. Plant-Animal Interactions. En: D el-Claro, K., Torezan-Silingardi, H.M. (eds) Plant-Animal Interactions. Springer, Cham. https://doi.org/10.1007/978-3-030-66877- 8_13
dc.relation.referencesDexter, K. G., Pennington, R. T., Oliveira-Filho, A. T., Bueno, M. L., Silva de Miranda, P. L., & Neves, D. M. (2018). Inserting tropical dry forests into the discussion on biome transitions in the tropics. Frontiers in Ecology and Evolution, 6, 104.
dc.relation.referencesDíaz-Pulido, A. (2016). Vertebrados terrestres del bosque seco tropical de Honda Méndez (Tolima). En: García, H., Barriga, J., González-M, R. y Pizano, C. (eds.). Expediciones Humboldt Honda Méndez, Tolima. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (IAvH). Bogotá, D.C., Colombia.
dc.relation.referencesDíaz-Timoté, J.J. (2019). Descripción del régimen de incendios del Bosque seco tropical de la cuenca alta del Río Magdalena y su relación con la variación climática. Tesis de maestría, Universidad Distrital Francisco José de Caldas. Repositorio Institucional de la Universidad: https://repository.udistrital.edu.co/server/api/core/bitstreams/f76ecb0e 4ab5-4a25-a4f0-7aedc11a68b4/content
dc.relation.referencesDiaz, M.M., Solari, S., Gregorin, R., Aguirre, L.F., Barquez, R.M. (2021). Clave de identificación de los murciélagos Neotropicales. Programa de Conservación de los Murciélagos de Argentina. 2021.
dc.relation.referencesDormann, C.F., Fründ, J., Blüthgen, N. y Gruber, B. (2009). Indices, graphs and null models: analyzing bipartite ecological networks. The Open Ecology Journal 2:7–24. https://doi.org/10.2174/1874213000902010007
dc.relation.referencesDormann, C.F. y Strauss, R. (2014). A method for detecting modules in quantitative bipartite networks. Methods in Ecology and Evolution 5:90–98. https://doi.org/10.1111/2041-210X.12139
dc.relation.referencesEnríquez-Acevedo, T., Pérez-Torres, J., Ruiz-Agudelo., Suárez, A. (2020). Seed dispersal by fruit bats in Colombia generates ecosystem services. Agronomy for Sustainable Development 40:45. https://doi.org/10.1007/s13593-020-00645-0
dc.relation.referencesEsquivel, D. A., Aya-Cuero, C. A., Peña, S., Velásquez-Guarín, D., y Ramírez-Chaves, H. E. (2020). Murciélagos (Chiroptera) del departamento del Tolima, Colombia: diversidad en un bosque húmedo tropical y actualización de la lista de especies del departamento. Boletín Científico Centro de Museos Museo de Historia Natural, 24(2), 71–99. https://doi.org/10.17151/bccm.2020.24.2.6
dc.relation.referencesEtter, A., Andrade, A., Saavedra, K., Amaya, P. y Arévalo, P. (2017). Estado de los ecosistemas colombianos: una aplicación d ela metodología de la lista roja de ecosistemas (Vers2.0). Informe final. Pintifica Universidad Javeriana y Conservación internacional-Colombia. Bogotá. 138 pp.
dc.relation.referencesFalcao, F.C., Mira-Mendes, C.V. y Herrera-Lopera, J.M. (2024). Between wires and wings: What are the impacts of power transmission lines on the diversity of insectivorous bats? Sustainability 16(13): 5639. https://doi.org/10.3390/su16135639
dc.relation.referencesGaray-Narváez, Flores, J.D., Arim, M., Ramos-Jiliberto, R.R. (2013). Food web modularity and biodiversity promote species persistence in polluted environments. Oikos 123(5): 583-588. https://doi.org/10.1111/j.1600-0706.2013.00764.x
dc.relation.referencesGarcía-Herrera, L.V., Ramírez-Fráncel, K.A., Reinoso, G. (2015). Mamíferos en relictos de bosque seco tropical del Tolima, Colombia. Mastozoología Neotropical 22(1).
dc.relation.referencesGarcía-Herrera, Ramírez-Fráncel, L.A., Reinoso-Flórez, G. (2019). Mamíferos del departamento del Tolima: Distribución y estado de conservación. Revista U.D.C.A Actualidad & Divulgación Científica 22(2): e1100. https://doi.org/10.31910/rudca.v22.n2.2019.1100
dc.relation.referencesGarcía-Herrera, LV., Ramírez-Fráncel, L.A., Reinoso-Flórez, G. (2019). Consumo de plantas pioneras por murciélagos frugívoros en un fragmento de bosque seco tropical (Colombia). Ciencia en Desarrollo 10(2). https://doi.org/10.19053/01217488.v10.n2.2019.8240
dc.relation.referencesGonzález-M., R., García, H., Isaacs, P., Cuadros, H., López-Camacho, R., Rodríguez, N., Pérez, K., Mijares, F., Castaño-Naranjo, A., & Jurado, R. (2018). Disentangling the environmental heterogeneity, floristic distinctiveness and current threats of tropical dry forests in Colombia. Environmental Research Letters, 13 (4): 045007. https://doi.org/10.1088/1748-9326/aab5f9
dc.relation.referencesHartung, M., Carreño-Rocabado, G., Peña-Claros, M., & van der Sande, M. T. (2021). Tropical dry forest resilience to fire depends on fire frequency and climate. Frontiers in Forests and Global Change, 4, 755104.
dc.relation.referencesHe, T., Lamon, B.B., Pausas, J.G. (2019). Fire as a key driver of Earth’s biodiversity. Biological Reviews 94(6): 1983-2010. https://doi.org/10.111/brv.1254428.
dc.relation.referencesHeleno, R., Devoto, M.m, Pocock, M. (2012). Connectance of species interaction networks and conservation value: Is it any good to be well connected? . Ecological Indicators 14(1): 7-10. https://doi.org/10.1016/j.ecolind.2011.06.032
dc.relation.referencesJolly, C.J., Dickman, C.R., Doherty, T.S., van Eeden, L.M., Geary, W.L., Legge, S.M., Woinarski, J.C.Z., Nimmo, D.G. (2022). Animal mortality during fire. Global Change Biology 28(6): 2053-2065. https://doi.org/10.1111/gcb.16044
dc.relation.referencesKim, M., Lee, S., Lee, S., Yi, K., Kim, H.-S., Chung, S., Chung, J., Kim, H. S., y Yoon, T. K. (2022). Seed Dispersal Models for Natural Regeneration: A Review and Prospects. Forests, 13(5), 659. https://doi.org/10.3390/f13050659
dc.relation.referencesKurten, E. L. (2013). Cascading effects of contemporaneous defaunation on tropical forest communities. Biological Conservation 163: 22-32. https://doi.org/10.1016/j.biocon.2013.04.025
dc.relation.referencesKwon, T.S., Park. Y.K., Lim, J.H., Ryoy, S.H., Lee, C.M. (2013). Change of arthropod abundance in burned forests : Different patterns according to functional guilds. Journal of Asia-Pacific Entomology. 16(3): 321-328. https://doi.org/10.1016/j.aspen.2013.04.008
dc.relation.referencesLaurindo , R.S., Vizentin-Bugoni, J, Tavares, D.C., Mancini, M.C.S., Mello, M.R., Gregorin, R. (2020). Drivers of bat roles in Neotropical seed dispersal networks: abundance is more important than functional traits. Oecologia 2020. https://doi.org/10.1007/s00442-020-04662-4
dc.relation.referencesLoeb, S.C. & Blakey, R.V. (2021). Bats and fire: a global review. Fire Ecology 17:29. https://doi.org/10.1186/s42408-021-00109-0
dc.relation.referencesLopez-Baucells, A., Rocha, R., Bobrowiec, P., Bernard, E., Palmerin, J., Meyer, C.F.J. (2016). Field Guide to Amazonian Bats. INPA. https://doi.org/10.13140/RG.2.2.23486.84003
dc.relation.referencesMaciel, E.A., Martins, V.F., de Paula, M.D., Huth, A., Guilherme, F.A.G., Fischer, R., Giles, A., Barbosa, R.I., Cavassan, O., Martins, F.R. (2021). Defaunation and changes in climated and fire frequency have synergistic effects on aboveground biomass loss in the Brazilian savanna. Ecological Modelling 454: 109628. https://doi.org/10.1016/j.ecolmodel.2021.109628
dc.relation.referencesMedellín, R., Equihua, E., Amin, M.A. (2000). Bat diversity and abundance as indicators of disturbance in Neotropical rainforests. Conservation Biology 14: 1666-1675. https://doi.org/10.1111/j.1523-1739.2000.99068.x
dc.relation.referencesMedellin, R. & Gaona, O. (2006). Seed dispersal by bats and bird in forest and disturbed habitats of Chiapas, Mexico. Biotropica 31(3): 478-485. https://doi.org/10.1111/j.1744-7429.1999.tb00390.x
dc.relation.referencesMello, M.A.R., Schittini, M.G., Selig, P., Bergallo, H.d. (2004). A test of the effects of climate and fruiting of Piper species (Piperaceae) on reproductive patterns of the bat Carollia perspicillata (Phyllostomidae). Acta Chiropterologica 6 (2): 309-318. https://doi.org/10.3161/1508110042955469
dc.relation.referencesMello, M. A. R., Marquitti, F. M. D., Guimarães, P. R., Kalko, E. K. V., Jordano, P., & Aguiar, M. A. M. (2011). The modularity of seed dispersal: Differences in structure and robustness between bat– and bird–fruit networks. Oecologia, 167(1): 131–140. Https://doi.org/10.1007/s00442-011-1984-2
dc.relation.referencesMendes-Oliveira, A.C., Pinheiro dos Santos, P.G., Carvalho-Júnior, O., Montag, L.F.A., Soares de Lima, R.C., Silva de Maria, S.L., Rossi, R. (2012). Edge effects and the impact of wildfires on populations of small non-volant mammals in the forest-savanna transition zone in Southern Amazonia. Biota Neotropical 12(3). https://doi.org/10.1590/S1676-06032012000300004
dc.relation.referencesMeza, M.C., Espelta, J.M., González, T.M., Armenteras, D. (2023). Fire reduces taxonomic and functional diversity in Neotropical moist seasonally flooded forests. Perspective in Ecology and Conservation 21(2): 101-111. https://doi.org/10.1016/j.pecon.2023.04.003
dc.relation.referencesMiyanishi, K. & Kellman, M. (1986). The role of fire in recruitment of two Neotropical savanna shrubs, Miconia albicans and Cldemia sericea. Biotropica 18(3): 224-240. https://doi.org/10.2307/2388489
dc.relation.referencesMoore, C.M. & Van der Wall, S.B. (2015). Scatter-hoarding rodents disperse seeds to safe sited in a fire-prone ecosystem. Plant Ecologyy 216: 1137-1153. https://doi.org/10.1007/s11258-015-0497-1
dc.relation.referencesMoreno, M.V., Conedera, M., Chuvieco, E. y Pezzatti, G.B. (2014). Fire regime changes and major driving forces in Spain from 1968 to 2010. Environmental Science & Policy 37:11–22. https://doi.org/10.1016/j.envsci.2013. 08.005
dc.relation.referencesMoura, M.R., Oliveira, G.A., Paglia, A.P., Pires, M.M., Santos, B.A. (2023). Climate change should drive mammal defaunation in tropical dry forests Global Change Biology 29(24): 6931-6944. https://doi.org/10.1111/gcb.16979
dc.relation.referencesMuscarella, R. y Fleming, T.H. (2007). The role of frugivorous bats in tropical forest succession. Biological Reviews 82(4): 773-590. https://doi.org/10.1111/j.1469-185x.2007.00026.x
dc.relation.referencesMuylaert, R & Dodonov, P. (2016). How to estimate p-values of network metrics and compare pairs of networks using Monte Carlo Procedures.
dc.relation.referencesPalacio, R.D., Valderrama-Ardila, C., Kattan. G.H. (2015). Generalist species have a central role in a highly diverse plant-frugivore network. Biotropica 48(3): 349-355. https://doi.org/10.1111/btp.12290
dc.relation.referencesPausas, J.G. (2015) Evolutionary fire ecology: lessons learned from pines. Trends in Plant Science. 20 (5): 318-324. https://doi.org/j.tplants.2015.03.001
dc.relation.referencesPausas, J. G., & Ribeiro, E. (2017). Fire and plant diversity at the global scale. Global Ecology and Biogeography, 26(8), 889–897. https://doi.org/10.1111/geb.12596
dc.relation.referencesPeralta, G., Stevani, E.K., Chacoff, N.P., Dorado, J., Vásquez, D.P. (2017). Fire influences the structure of plant-bee networks. Journal of Animal Ecology 86(6): 1372- 1379.
dc.relation.referencesPeterson, N.B., & Parker, V.T. (2016). Dispersal by rodent caching increases seed survival in multiple ways in canopy-fire ecosystems. Ecology and Evolution 6(13): 4298- 4306. https://doi.org/10.1002/ece3.2156
dc.relation.referencesPizano, C., González-M., R., González, M. F., Castro-Lima, F., López, R., Rodríguez, N., Idárraga-Piedrahíta, Á., Vargas, W., Vergara-Varela, H., Castaño-Naranjo, A., Devia, W., Rojas, A., Cuadros, H., & Toro, J. L. (2014). Las plantas de los bosques secos de Colombia (Capítulo 2, pp. 48–94). En C. Pizano & H. García (Eds.), El bosque seco tropical en Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (IAvH). Bogotá, D.C., Colombia.
dc.relation.referencesR Development Core Team. (2008). R: A language and environment for statistical computing. (Version 2024.09.0+375) [Software]. R Foundation for Statistical Computing. https://www.R-project.org
dc.relation.referencesRamírez-Burbano, Stiles, G.F., González, C., Amorim, F.W., Dalsgaard, B., Maruyama, P.K. (2017). The role of the endemic and critically endangered Colorful Puffleg Eriocnemis mirabilis in plant-hummingbird networks of the Colombian Andes. Biotropica 49(4). https://doi.org/10.1111/btp.12442
dc.relation.referencesRamírez-Chaves, H.E., Morales-Martínez, D.M., Rodríguez-Posada, M.E., Suárez Castro, A- (2022). Checklist of the mammals (Mammalia) of Colombia: Taxonomic changes in a highly diverse country. Mammalogy notes 8(2): 253. https://doi.org/10.47603/mano.v7n2.253
dc.relation.referencesRamos-Robles, M., Andresen, E., Díaz-Castelazo, C. (2018). Modularity and robustness of a plant-frugivore interaction network in a disturbed tropical forest. Écoscience 25(3): 209-222. https://doi.org/10.1080/11956860.2018.1446284
dc.relation.referencesRegolin, A.L., Muylaert, R.L., Crestani, A.C., Dáttilo, W. y Riberio, M.C. (2020). Seed dispersal by Neotropical bats in human-disturbed landscapes. Wildlife Research 48: 1-6. https://doi.org/10.1071/WR19138
dc.relation.referencesRoca, J., Jaureguiberry, P., Gurvich, D.E. (2021). Are wildfires affecting seed germination in cactus? An experimental assessment. Austral Ecology 46 (5): 818-832. https://doi.org/10.1111/aec.13027
dc.relation.referencesRuiz, J., Vargas, O., Rodríguez, N. (2023). Restoration priorities: Integrating successional states and landscape resilience in tropical dry forest compensation projects in Colombia. Applied Geography 157: 103021. https://doi.org/10.1016/j.apgeog.2023.103021
dc.relation.referencesSaldaña-Vázquez, R.A., Castaño, J.H., Baldwin, J., Pérez-Torres, J. (2019). Does seed ingestión by bats enhance germination? A new meta-analysis 15 years later. Mammal Review 49(3): 201-209. Https://doi.org./10.111/mam.12153
dc.relation.referencesSchröder, W., Olivia, P., Giglio, L. y Csiszar, I.A. (2014). The new VIIRS 375m active fire detection data product: Algorithm description and initial assessment. Remote Sensing of Environment 143: 85-96. https://dx.doi.org/10.1016/j.rse.2013.12.008
dc.relation.referencesSchröder, J.M., Ávila-Rodriguez, L.P., Günter, S. (2021). Research trends: tropical dry forests: The neglected research agenda. Forest Policy and Economics 122: 102333. https://doi.org/10.1111/1365-2656.12731https://doi.org/10.1016/j.forpol.2020.102333
dc.relation.referencesSil, S., Visconti, F., Chaverri, G., Santana, S.E. (2024). Effects of habitat and fruit scent on the interactions between short-tailed fruit bats and Piper plants. Integrative Organismal Biology. Obase 028. https://doi.org/10.1093/iob/obae028
dc.relation.referencesSpennemann, D.H.R. (2020). Frugivory and seed dispersal revisited: codifying the plant-centred net benefit of animal-mediated interactions. Flora 263: 151534. https://doi.org/10.1016/j.flora.2019.151534 0
dc.relation.referencesSolari, S., Muñoz-Saba, Y., Rodríguez-Mahecha, J.V., Defler, T.R., Ramírez-Chaves. H.E., Trujillo, F. (2013). Riqueza, endemismo y conservación de los mamíferos de Colombia. Mastozoología Neotropical 20(2): 301-3
dc.relation.referencesTirado, P. (2024). Efecto de la frecuencia del fuego en la diversidad funcional asociada a la inflamabilidad de un bosque seco tropical de la Cuenca Alta del Río Magdalena. Tesis de maestría, Universidad Distrital Francisco José de Caldas. Repositorio institucional de la universidad: https://repository.udistrital.edu.co/items/897fe12a-55a3-48be-8893- 7caefad6f362
dc.relation.referencesThies, W. & Kalko, K.V. (2004). Phenology of neotropical pepper plants (Piperaceae) and their association with their main dispersers, two short-tailed fruit bats, Carollia perspicillata and C. castanea (Phyllostomidae). Oikos 104: 362-376.
dc.relation.referencesValdovinos, F.S. (2019). Mutualistic networks: moving closer to a predictive theory.Ecology Letters 22: 1517.1534. https://.doi.org/10.1111/ele.13279
dc.relation.referencesValle, D., Griffith, D.M., Jara-Guerrero, A., Armijos-Ojeda, D., Espinosa, C.I. (2021). A multifaceted approach to understanding bat community response to disturbance in a seasonally dry tropical forest. Scientific Reports 11, 5667. https://doi.org/10.1038/s41598- 021-85066-z
dc.relation.referencesVelásquez-Roa, T., Calvache-Sánchez, C.C., Bernal, A., Medina, S.S., Carvajal, P. (2023). Interacción entre murciélagos frugívoros y plantas en el Bosque seco Tropical del Valle del Cauca, Colombia. Biota Colombiana 24(1): e1078. https://doi.org/10.21068/2539200X.1078
dc.relation.referencesVicente-Serrano, S.M., Pea-Angulo, D., Beguería, et al., Kenawy, A. (2022). Global drought trends and future projections. Philosophical Transactions A. 380: 2238. https://doi.org/10.1098/rsta.2021.0285
dc.relation.referencesWunderle Jr. J.M. (1997). The role of animal seed dispersal in accelerating native forest regeneration on degraded tropical lands. Forest Ecology and Management 99(1-2): 223-235. https://doi.org/10.1016/S0378-1127(97)00208-9
dc.relation.referencesYork, H., & Billings, S.A. (2009). Stable-isotope analysis of diets of short-tailed fruit bats (Chiroptera: Phyllostomidae: Carollia). Journal of Mammalogy 90(6): 1469-1477. https://doi.org/10.1644/08-MAMM-A-382R.1
dc.rights.accesoAbierto (Texto Completo)
dc.rights.accessrightsOpenAccess
dc.subjectRedes mutualistas
dc.subjectRegimen de fuego
dc.subjectDispersión de semillas
dc.subjectPirodiversidad
dc.subject.keywordMutualistic networks
dc.subject.keywordFire Regime
dc.subject.keywordSeed Dispersal
dc.subject.keywordPirodiversity
dc.subject.lembMaestría en Manejo, Uso y Conservación del Bosque -- Tesis y disertaciones académicas
dc.subject.lembMurciélagos -- Ecología
dc.subject.lembDispersión de semillas
dc.subject.lembBosques tropicales
dc.subject.lembSucesión ecológica
dc.titleEfecto de la frecuencia de fuego sobre las redes de dispersión de semillas mediadas por murciélagos en un bosque seco tropical
dc.title.titleenglishFire frequency changes effects on seed disspersal networks mediated by bats in a Tropical Dry Forest
dc.typemasterThesis
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.degreeMonografía

Archivos

Bloque original

Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
CorredorOspinaJuanNicolas2025.pdf
Tamaño:
843.79 KB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
Licencia de uso y publicación.pdf
Tamaño:
263.48 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
7 KB
Formato:
Item-specific license agreed upon to submission
Descripción: