Evaluación de la variación en la composición y diversidad funcional del bosque seco en Colombia a lo largo de un gradiente de dureza ambiental
dc.contributor.advisor | González Martínez, Roy Oswaldo | |
dc.contributor.author | Salinas Vargas, Laura Viviana | |
dc.date.accessioned | 2025-05-14T16:23:05Z | |
dc.date.available | 2025-05-14T16:23:05Z | |
dc.date.created | 2025-02-28 | |
dc.description | La sequía, las limitaciones de nutrientes en el suelo y la transformación de la cobertura del suelo son factores clave de dureza ambiental que moldean la diversidad y los procesos ecológicos de los ecosistemas tropicales. Sin embargo, su influencia sobre la composición y la diversidad funcional de los bosques secos tropicales (BST) sigue siendo poco comprendida. Este estudio evalúa cómo el aumento de la dureza ambiental afecta el promedio ponderado por abundancia comunitaria de los rasgos funcionales (CWM, por sus siglas en inglés), que representa la composición funcional, y la riqueza funcional (FRich), que representa la diversidad funcional, en BST de Colombia. Analizamos datos de 98 parcelas permanentes (de 0.1 ha cada una) distribuidas a lo largo de un amplio rango de condiciones climáticas, edáficas y de transformación de la cobertura del suelo, incluyendo rasgos funcionales foliares y de madera de 338 especies de árboles (22,568 individuos). Nuestros hallazgos revelan que: (1) la dureza ambiental en los BST de Colombia está definida por combinaciones distintivas de factores climáticos, edáficos y de transformación de la cobertura del suelo, con una compensación entre las limitaciones hídricas y las restricciones de nutrientes del suelo; (2) las comunidades de árboles exhiben una compensación entre seguridad y eficiencia hidráulica, con la diversidad funcional (FRich) variando de forma independiente entre bosques; y (3) las variables climáticas, del suelo y de transformación de la cobertura del suelo filtran conjuntamente la composición de rasgos (CWM) y la FRich, reforzando el papel de la dureza ambiental en la estructuración de las comunidades de BST. Estos resultados subrayan la importancia del enfoque basado en rasgos funcionales para dilucidar los procesos ecológicos e informar estrategias de conservación en los BST bajo condiciones ambientales cambiantes. | |
dc.description.abstract | Drought, soil nutrient limitations, and land-cover transformation are key environmental harshness factors shaping the diversity and ecological processes of tropical ecosystems. However, their influence on the composition and functional diversity of tropical dry forests (TDF) remains poorly understood. This study assesses how increasing environmental harshness affects the community-weighted mean trait (CWM) – representing functional composition – and functional richness (FRich) – representing functional diversity – in Colombian TDF. We analyzed data from 98 permanent plots (0.1 ha each) distributed across a wide range of climatic, soil, and land-cover transformation conditions, including functional leaf and wood traits from 338 tree species (22,568 trees). Our findings reveal that: (1) environmental harshness in Colombian TDF is defined by distinct combinations of climatic, soil, and land-cover transformation factors, with a trade-off between water limitations and soil nutrient constraints; (2) tree communities exhibit a hydraulic safety–efficiency trade-off, with functional diversity (FRich) varying independently across forests; and (3) climate, soil, and land-cover transformation variables collectively filter trait composition (CWM) and FRich, reinforcing the role of environmental harshness in structuring TDF communities. These results underscore the importance of functional trait approaches for elucidating ecological processes and informing conservation strategies in TDF under changing environmental conditions. | |
dc.format.mimetype | ||
dc.identifier.uri | http://hdl.handle.net/11349/95478 | |
dc.relation.references | Aguirre-Gutiérrez, J., Malhi, Y., Lewis, S. L., Fauset, S., Adu-Bredu, S., Affum-Baffoe, K., Baker, T. R., Gvozdevaite, A., Hubau, W., Moore, S., Peprah, T., Ziemińska, K., Phillips, O. L., & Oliveras, I. (2020). Long-term droughts may drive drier tropical forests towards increased functional, taxonomic and phylogenetic homogeneity. Nature Communications, 11(1), 1–10. https://doi.org/10.1038/s41467-020-16973-4 | |
dc.relation.references | Alarcón Montaña, A. D., & Rozo Arango, M. Á. (2020). Análisis multitemporal de la transformación del bosque seco tropical que influye en la desertificación del municipio de Agua de Dios. | |
dc.relation.references | Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., Kitzberger, T., Rigling, A., Breshears, D. D., Hogg, E. H. (Ted), Gonzalez, P., Fensham, R., Zhang, Z., Castro, J., Demidova, N., Lim, J. H., Allard, G., Running, S. W., Semerci, A., & Cobb, N. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259(4), 660–684. https://doi.org/10.1016/j.foreco.2009.09.001 | |
dc.relation.references | Allen, K., Dupuy, J. M., Gei, M. G., Hulshof, C., Medvigy, D., Pizano, C., Salgado-Negret, B., Smith, C. M., Trierweiler, A., van Bloem, S. J., Waring, B. G., Xu, X., & Powers, J. S. (2017). Will seasonally dry tropical forests be sensitive or resistant to future changes in rainfall regimes? Environmental Research Letters, 12(2), 023001. https://doi.org/10.1088/1748-9326/aa5968 | |
dc.relation.references | Bivand, R., Nowosad, J., & Lovelace, R. (2023). spdep: Spatial Dependence: Weighting Schemes, Statistics and Models (R package version 1.2-9). https://CRAN.R-project.org/package=spdep | |
dc.relation.references | Bivand, R., & Wong, D. W. S. (2018). Comparing implementations of global and local indicators of spatial association. TEST, 27(3), 716-748. https://doi.org/10.1007/s11749-018-0599-x | |
dc.relation.references | Bond, W. J., & Midgley, J. J. (2003). The evolutionary ecology of sprouting in woody plants. International Journal of Plant Sciences, 164(S3), S103-S114. | |
dc.relation.references | Bouyoucos, G. J. (1962). Hydrometer method improved for making particle size analyses of soils. Agronomy Journal, 54, 464–465. https ://doi. org/10.2134/agron j1962.00021 96200 54000 50028x | |
dc.relation.references | Bray, R. H., & Kurtz, L. T. (1945). Determination of total, organic and available forms of phosphorus in soils. Soil Science, 59(1), 39–46. https :// doi.org/10.1097/00010 694-19450 1000-00006 | |
dc.relation.references | Brodribb, T.J., Feild, T.S. & Sack, L. (2010). Viewing leaf structure and evolution from a hydraulic perspective. Funct. Plant Biol., 37, 488–498. | |
dc.relation.references | Bivand, R. S., Pebesma, E. J., & Gomez-Rubio, V. (2023). spdep: Spatial dependence: Weighting schemes, statistics and models. R package version 1.1-8. https://cran.r-project.org/package=spdep | |
dc.relation.references | Bivand, R. S., & Wong, D. W. S. (2018). spatialreg: Spatial regression models. R package version 1.1-3. https://CRAN.R-project.org/package=spatialreg | |
dc.relation.references | Brodribb, T. J., Feild, T. S., & Jordan, G. J. (2010). Vascular plant life forms and hydraulic function. The New Phytologist, 185(2), 227-243. https://doi.org/10.1111/j.1469-8137.2009.03008.x | |
dc.relation.references | Bruun, H. H., Möller, F. K., & Kristensen, K. (2001). Land use changes and vegetation succession in the dry coastal habitats of Denmark. Biological Conservation, 101(2), 191-202. https://doi.org/10.1016/S0006-3207(01)00031-7 | |
dc.relation.references | Bu, W., Huang, J., Xu, H., Zang, R., Ding, Y., Li, Y., Lin, M., Wang, J., & Zhang, C. (2019). Plant functional traits are the mediators in regulating effects of abiotic site conditions on aboveground carbon stock-evidence from a 30 ha tropical forest plot. Frontiers in Plant Science, 9(January), 1–10. https://doi.org/10.3389/fpls.2018.01958 | |
dc.relation.references | Burt, R. (Ed.). (2014). Kellogg soil survey laboratory methods manual (Version 5.0). Lincoln, NE: Department of Agriculture, Natural Resources Conservation Service | |
dc.relation.references | Caleño-Ruiz, B. L., Garzón, F., López-Camacho, R., Pizano, C., Salinas, V., & Gonzalez-M, R. (2023). Soil resources and functional trait trade-offs determine species biomass stocks and productivity in a tropical dry forest. Frontiers in Forests and Global Change, 6. | |
dc.relation.references | Carlquist, S. (1977). Ecological Factors in Wood Evolution: A Floristic Approach. American Journal of Botany, 64(7), 887. http://doi.org/10.2307/2442382 | |
dc.relation.references | Carmona, C.P., de Bello, F., Mason, N.W.H. & Lepˇs, J. (2016). Traits without borders: integrating functional diversity across scales. Trends Ecol. Evol., 31, 382–394. | |
dc.relation.references | Cianciaruso, M. V., Batalha, M. A., & Silva, J. M. C. (2009). Functional traits and environmental filtering in a tropical forest community. Ecology, 90(3), 615-623. https://doi.org/10.1890/08-0260.1 | |
dc.relation.references | Chave, J., Coomes, D., Jansen, S., Lewis, S.L., Swenson, N.G. & Zanne, A.E. (2009). Towards a worldwide wood economics spectrum. Ecol. Lett., 12, 351–366. | |
dc.relation.references | Chapin, F. S., Autumn, K., & Pugnaire, F. (1993). Evolution of suites of traits in response to environmental stress. The American Naturalist, 142(S1), S78-S92 | |
dc.relation.references | Chaturvedi, R., Singh, R., & Sankaran, M. (2011). Plant functional trait variation in tropical dry forests: Implications for ecosystem functioning. Functional Ecology, 25(4), 843-852. https://doi.org/10.1111/j.1365-2435.2011.01874.x | |
dc.relation.references | Chazdon, R. L., Anderson, M. J., & Burslem, D. F. (2010). Increased light availability correlates with greater functional richness, indicating successional processes in tropical forests. Functional Ecology, 24(5), 1027-1036. https://doi.org/10.1111/j.1365-2435.2010.01713 | |
dc.relation.references | Cruz, M. G., Alexander, M. E., & Wakimoto, R. H. (2017). The influence of environmental and biophysical factors on wildland fire behavior. International Journal of Wildland Fire, 26(3), 1-14. https://doi.org/10.1071/WF17001 | |
dc.relation.references | De Oliveira, A. C., Nunes, A., Oliveira, M. A., Rodrigues, R. G., & Branquinho, C. (2022). How do taxonomic and functional diversity metrics change along an aridity gradient in a tropical dry forest? Frontiers in Plant Science. https://doi.org/10.3389/fpls.2022.923219​ | |
dc.relation.references | Dexter, K. G., Pennington, R. T., Oliveira-Filho, A. T., Bueno, M. L., Silva de Miranda, P. L., & Neves, D. M. (2018). Inserting Tropical Dry Forests Into the Discussion on Biome Transitions in the Tropics. Frontiers in Ecology and Evolution, 6(July), 1–7. https://doi.org/10.3389/fevo.2018.00104 | |
dc.relation.references | Díaz, S., Kattge, J., Cornelissen, J.H.C., Wright, I.J., Lavorel, S., Dray, S. et al. (2016). The global spectrum of plant form and function. Nature, 529, 167–171. | |
dc.relation.references | Ennos, A. R. (1997). The mechanical properties of plants. Plant Ecology, 133(1), 1-11. https://doi.org/10.1007/BF02196427 | |
dc.relation.references | Esri. (2020). ArcGIS 10.8: Desktop and Server. Environmental Systems Research Institute. https://www.esri.com/en-us/arcgis/about-arcgis | |
dc.relation.references | Fadrique, B., Baraloto, C., Bravo-Avila, C. H., Feeley, K. J., & Dávalos, L. M. (2018). Bamboo climatic tolerances are decoupled from leaf functional traits across an Andean elevation gradient. OIKOS, 2022(11), 10.1111/oik.09229. https://doi.org/10.1111/oik.09229​ | |
dc.relation.references | Fraterrigo, J. M., Turner, M. G., & Pearson, S. M. (2006). Interactions between past land use, life-history traits and understory spatial heterogeneity. Landscape Ecology, 21, 777-790. | |
dc.relation.references | Garnier, E., Navas, M. L., & Grigulis, K. (2016). Plant functional diversity: organism traits, community structure, and ecosystem properties. Oxford University Press. | |
dc.relation.references | Gei, M. G., & Powers, J. S. (2014). Nutrient cycling in tropical dry forests. In A. Sánchez-Azofeifa, J. S. Powers, G. W. Fernandes, & M. Quesada (Eds.), Tropical dry forests in the Americas: Ecology, conservation and management (pp. 141–155). Boca Raton, FL: CRC Press. | |
dc.relation.references | Givnish, T. J. (1995). Plant stems: Biomechanical adaptation for energy capture and influence on species distributions. In B. L. Gartner (Ed.), Plant stems physiology and functional morphology (pp. 3–49). San Diego, CA: Academic Press. | |
dc.relation.references | González-M., R., García, H., Isaacs, P., Cuadros, H., López-Camacho, R.,Rodríguez, N., … Pizano, C. (2018). Disentangling the environmental heterogeneity, floristic distinctiveness and current threats of tropical dry forests in Colombia. Environmental Research Letters, 13, 045007. https ://doi.org/10.1088/1748-9326/aaad74 | |
dc.relation.references | González-M., R., Norden, N., Posada, J. M., Pizano, C., García, H., Idárraga- Piedrahita, Á., Salgado-Negret, B. (2019). Climate severity and land-cover transformation determine plant community attributes in Colombian dry forests. Dryad Digital Repository. https ://doi.org/10.5061/dryad.138fd23 | |
dc.relation.references | González‐M, R., Posada, J. M., Carmona, C. P., Garzón, F., Salinas, V., Idárraga‐Piedrahita, Á., & Salgado‐Negret, B. (2021). Diverging functional strategies but high sensitivity to an extreme drought in tropical dry forests. Ecology Letters, 24(3), 451-463. | |
dc.relation.references | Grime, J. P. (2001). Plant strategies, vegetation processes, and ecosystem properties (2nd ed.). Wiley. | |
dc.relation.references | Hajek, P., Kurjak, D., Von Wühlisch, G., Delzon, S., & Schuldt, B. (2016). Intraspecific variation in wood anatomical, hydraulic, and foliar traits in ten European beech provenances differing in growth yield. Frontiers in Plant Science, 7(JUNE2016), 1–14. https://doi.org/10.3389/fpls.2016.00791 | |
dc.relation.references | Halpern, B. S., & Floeter, S. R. (2008). Functional diversity of reef fish communities in the central and eastern tropical Pacific. Journal of Marine Biology, 99(1), 75-85. https://doi.org/10.1093/jmb/99.1.75 | |
dc.relation.references | Hooper, D. U., Chapin III, F. S., Ewel, J. J., Hector, A., Inchausti, P., Lavorel, S., ... & Wardle, D. A. (2005). Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological monographs, 75(1), 3-35 | |
dc.relation.references | IDEAM, PNUD, MADS, DNP, CANCILLERÍA. (2015). Nuevos Escenarios de Cambio Climático para Colombia 2011- 2100 Herramientas Científicas para la Toma de Decisiones – Enfoque Nacional – Departamental: Tercera Comunicación Nacional de Cambio Climático | |
dc.relation.references | Lavorel, S., & Garnier, É. (2002). Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Functional ecology, 16(5), 545-556. | |
dc.relation.references | Lavorel, S., Grigulis, K., McIntyre, S., Williams, N. S., Garden, D., Dorrough, J., ... & Bonis, A. (2008). Assessing functional diversity in the field–methodology matters!. Functional Ecology, 22(1), 134-147. | |
dc.relation.references | Lavorel, S., Grigulis, K., Lamarque, P., Colace, M. P., Garden, D., Girel, J., & Douzet, R. (2011). Using plant functional traits to understand the landscape distribution of multiple ecosystem services. Journal of Ecology, 99(1), 135–147. https://doi.org/10.1111/j.1365-2745.2010.01753.x | |
dc.relation.references | Longui, E. L., Lima, I. L., Lombardi, D. R., Garcia, J. N., & Alves, E. S. (2014). Woods with physical, mechanical and acoustic properties similar to those of Caesalpinia echinata have high potential as alternative woods for bow makers. Cerne, 20(3), 369-376. https://doi.org/10.1590/01047760201420031345​ | |
dc.relation.references | Luchi, A. E. (2011). Quantitative features of Cedrela odorata L. wood (Meliaceae). Revista Brasileira de Botânica, 34(3), 403–410. http://doi.org/10.1590/S0100- 84042011000300013 | |
dc.relation.references | Madsen, B. & Gamstedt, E.K. (2013). Wood versus plant fibers: Similarities and differences in composite applications. Advances in Materials Science and Engineering, 2013, 1–14. | |
dc.relation.references | Martínez-Villa, L., et al. (2023). Climate factors, particularly temperature and water vapor pressure, significantly influence trait composition in Colombian tropical dry forests. PLOS ONE, 18, e0283654. https://doi.org/10.1371/journal.pone.0283654. | |
dc.relation.references | Marks, C. O., Muller-Landau, H. C., & Tilman, D. (2016). Tree diversity, tree height and environmental harshness in eastern and western North America. Ecology Letters, 19, 743–751. https ://doi.org/10.1111/ele.12608 | |
dc.relation.references | Markesteijn, L., Poorter, L., Bongers, F., Paz, H. & Sack, L. (2011a). Hydraulics and life history of tropical dry forest tree species: Coordination of species’ drought and shade tolerance. New Phytol.,191, 480–495. | |
dc.relation.references | Mayfield, M. M., et al. (2013). "Landscape-scale deforestation and functional trait shifts in plant communities." Ecology Letters, 16(12), 1429-1438. | |
dc.relation.references | McGarial, K., & Marks, B. J. (1995). FRAGSTAT: Spatial pattern analysis program for quantifying landscape structure. Portland, OR: Department of Agriculture, Forest Service, Pacific Northwest Research Station. https ://doi.org/10.2737/PNW-GTR-351 | |
dc.relation.references | Meinzer, F. C. (2002). Coordinated changes in xylem efficiency and safety during seasonal transitions in water availability in tropical trees. Tree Physiology, 22(12), 811–818. https://doi.org/10.1093/treephys/22.12.811 | |
dc.relation.references | Menage, P. M. A., & Pridmore, B. (1973). Automated determination of phosphate using Bray No. 1 extractant. Black Mountain: CSIRO-Division of Soils. | |
dc.relation.references | Méndez-Alonzo, R., Paz, H., Zuluaga, R.C., Rosell, J.A. & Olson, M.E. (2012). Coordinated evolution of leaf and stem economics in tropical dry forest trees. Ecology, 93, 2397–2406. | |
dc.relation.references | Moglia, G., & Gimenez, A. M. (1998). Rasgos anatómicos característicos del hidrosistema de las principales especies arboreas de la región Chaqueña Argentina. Investigaciones Agrarias:Sistemas Recursos Forestales, 7, 41–53 | |
dc.relation.references | Mouquet, N., Moore, J. L., & Loreau, M. (2002). Plant species richness and community productivity: why the mechanism that promotes coexistence matters. Ecology letters, 5(1), 56-65. | |
dc.relation.references | Muscarella, R., & Uriarte, M. (2016). Do community-weighted mean functional traits reflect optimal strategies?. Proceedings of the Royal Society B: Biological Sciences, 283(1827), 20152434 | |
dc.relation.references | Niklas, K. J. (1992). Plant biomechanics: An engineering approach to plant form and function. University of Chicago Press. | |
dc.relation.references | Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., ... & Wagner, H. (2022). vegan: Community ecology package. R package version 2.6-4. https://cran.r-project.org/package=vegan | |
dc.relation.references | Pennington, R. T., Lavin, M., & Oliveira-Filho, A. (2009). Woody plant diversity, evolution, and ecology in the Tropics: Perspectives from seasonally dry tropical forests. Annual Review of Ecology, Evolution, and Systematics, 40, 437–457.https://doi.org/10.1146/annur ev.ecolsys.110308.120327 | |
dc.relation.references | Pérez-Harguindeguy, N., Díaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P. et al. (2013). New handbook for standardized measurement of plant functional traits worldwide. Aust. J. Bot., 61,167–234. | |
dc.relation.references | Pérez-Harguindeguy, Díaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., Cornwell, W. K., Craine, J. M., Gurvich, D. E., Urcelay, C., Veneklaas, E. J., Reich, P. B., Poorter, L., Wright, I. J., Ray, P., Enrico, L., Pausas, J. G., Vos, A. C. De, Buchmann, N., … Cornelissen, J. H. C. (2016). Corrigendum: New handbook for standardised measurement of plant functional traits worldwide (Australian Journal of Botany (2013) 61:3 (167-234) DOI: 10.1071/BT12225). Australian Journal of Botany, 64(8), 715–716. | |
dc.relation.references | Perroni-Ventura, Y., Montaña, C., & García-Oliva, F. (2006). Relationship between soil nutrient availability and plant species richness in a tropical semi-arid environment. Journal of Vegetation Science, 17, 719–728. https ://doi.org/10.1111/j.1654-1103.2006.tb024 95.x | |
dc.relation.references | Peña-Claros, M., Poorter, L., Alarcon, A., Blate, G., Choque, U., Fredericksen, T. S., … Toledo, M. (2012). Soil effects on forest structure and diversity in a moist and a dry tropical forest. Biotropica, 44, 276–283. https://doi.org/10.1111/j.1744-7429.2011.00813.x | |
dc.relation.references | Petchey, O. L., & Gaston, K. J. (2002). Functional diversity (FD), species richness and community composition. Ecology Letters, 5(3), 502-511. https://doi.org/10.1046/j.1461-0248.2002.00339. | |
dc.relation.references | Pizano, C., & Garcia, H. (2014). El Bosque Seco Tropical En Colombia. Bogota, D.C. Colombia: Instituto de Investigación de recursos biológicos Alexander von Humboldt. | |
dc.relation.references | Poggio, L., De Sousa, L. M., Batjes, N. H., Heuvelink, G., Kempen, B., Ribeiro, E., & Rossiter, D. (2021). SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty. Soil, 7(1), 217-240. | |
dc.relation.references | Poorter, L., McDonald, I., Alarc´on, A., Fichtler, E., Licona, J.C., Peña-Claros, M. et al. (2010). The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species. New Phytol., 185, 481–492. | |
dc.relation.references | Poorter, L., van der Sande, M. T., & van Bodegom, P. M. (2012). Biomass allocation and leaf area of plants grown under different environmental conditions. Frontiers in Plant Science, 3, Article 259. https://doi.org/10.3389/fpls.2012.00259 | |
dc.relation.references | Powers, J. S., Becknell, J. M., Irving, J., & Pérez-Aviles, D. (2009). Diversity and structure of regenerating tropical dry forests in Costa Rica: Geographic patterns and environmental drivers. Forest ecology and Management, 258, 959–970. https ://doi.org/10.1016/j. foreco.2008.10.036 | |
dc.relation.references | Reeuwijk, L. P. (Eds.) (2002). Procedures for soil analysis, 6th ed. Wageningen, The Netherlands: International Soil Reference and Information Centre. | |
dc.relation.references | Ricotta, C., Szeidl, L., Moretti, M., & Blasi, C. (2011). A partial ordering approach for functional diversity. Theoretical Population Biology, 80(2), 114-120. | |
dc.relation.references | Roa-Fuentes, L. L., Templer, P. H., & Campo, J. (2015). Effects of precipitation regime and soil nitrogen on leaf traits in seasonally dry tropical forests of the Yucatan Peninsula, Mexico. Oecologia, 179, 585-597. | |
dc.relation.references | Rojas-Sandoval, J., Varela, E., Gutiérrez, J. R., & Zambrano, A. (2020). Impacts of landscape transformation on plant functional traits and diversity in fragmented forests. PLOS ONE, 15(7), e0235210. https://doi.org/10.1371/journal.pone.0235210 | |
dc.relation.references | Rowland, J. A., Bland, L. M., Keith, D. A., Juffe‐Bignoli, D., Burgman, M. A., Etter, A., ... & Nicholson, E. (2020). Ecosystem indices to support global biodiversity conservation. Conservation letters, 13(1), e12680. | |
dc.relation.references | Rozendaal, D. M. A., Chazdon, R. L., & Poorter, L. (2019). Forest structure and functional diversity across secondary forests in the Neotropics. Science Advances, 5(3), eaau3114. | |
dc.relation.references | Ryan, M. G., & Yoder, B. J. (1997). Hydraulic limits to tree height and tree growth. BioScience, 47, 235–242. https://doi.org/10.2307/1313077 | |
dc.relation.references | Salgado-Negret, B. (ed). 2015. La ecología funcional como aproximación al estudio, manejo y conservación de la biodiversidad: protocolos y aplicaciones. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. Bogotá, D. C. Colombia. 236 pp. | |
dc.relation.references | Sanaphre-Villanueva, R. E., Esquivel-Muelbert, A., & Romero-Nájera, A. (2016). Functional diversity of small and large trees across secondary succession in a tropical dry forest. Forests, 7(8), 163. https://doi.org/10.3390/f7080163 | |
dc.relation.references | Sandel, B., Araya, Y. N., & Kattge, J. (2010). The influence of functional traits on the distribution of plant communities. Journal of Vegetation Science, 21(5), 791-800. https://www.jstor.org/stable/26527292 | |
dc.relation.references | Schindler, D., Bauhus, J., & Mayer, H. (2011). Wind effects on trees. European Journal of Forest Research, 131, 159–163. https ://doi.org/10.1007/s10342-011-0582-5 | |
dc.relation.references | Scholz, A., Klepsch, M., Karimi, Z. & Jansen, S. (2013). How to quantify conduits in wood? Front. Plant Sci.,4,1–11. | |
dc.relation.references | Smith, D. M., & Sperry, J. S. (2014). The influence of wind on the functional diversity of plant communities. Functional Ecology, 28(2), 1125-1134. https://doi.org/10.1111/1365-2435.12345 | |
dc.relation.references | Sorieul, M., Dickson, A., Hill, S.J. & Pearson, H. (2016). Plant fibre: Molecular structure and biomechanical properties, of a complex living material, influencing its deconstruction towards a biobased composite. Materials (Basel),9,1–36. | |
dc.relation.references | Sperry, J. (1995). Limitations on stem water transport and their consequences. In B. L. Gartner (Ed.), Plant stems: Physiology and functional morphology (pp. 105–124). Herausgeber: Academic Press. https://doi.org/10.1016/B978-01227 6460-8/50007-2 | |
dc.relation.references | Sterck, F. J., Poorter, L., & Schieving, F. (2011). Functional traits determine trade-offs and community assembly in a species-rich tropical forest. Functional Ecology, 25(3), 526-539. https://doi.org/10.1111/j.1365-2435.2010.01830.x | |
dc.relation.references | Stekhoven, D.J. & B¨uhlmann, P. (2012). MissForest–Non-parametric missing value imputation for mixed-type data. Bioinformatics, 28, 112–118. | |
dc.relation.references | Tao, S., Guo, Q., Li, C., Wang, Z., & Fang, J. (2016). Global patterns and determinants of forest canopy height. Ecology, 97, 3265–3270. https://doi.org/10.1002/ecy.1580 | |
dc.relation.references | Valladares, F., Vilagrosa, A., Peñuelas, J., Ogaya, R., Camarero, J. J., Corcuera, L., ... & Gil-Pelegrín, E. (2004). Estrés hídrico: ecofisiología y escalas de la sequía. Ecología del bosque mediterráneo en un mundo cambiante, 2, 165-192. | |
dc.relation.references | Venables, W. N., & Ripley, B. D. (2002). MASS: Modern applied statistics with S. Fourth edition. Springer. https://doi.org/10.1007/978-0-387-21706-2 | |
dc.relation.references | Venturas, M. D., Sperry, J. S., & Hacke, U. G. (2017). Plant xylem hydraulics: What we understand, current research, and future challenges. Journal of Integrative Plant Biology, 59(6), 356–389. https://doi.org/10.1111/jipb.12534 | |
dc.relation.references | Violle, C., Navas, M. L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., & Garnier, E. (2007). Let the concept of trait be functional! Oikos, 116(5), 882–892. https://doi.org/10.1111/j.0030-1299.2007.15559. | |
dc.relation.references | Werden, L. K., Becknell, J. M., & Powers, J. S. (2018). Edaphic factors, successional status and functional traits drive habitat associations of trees in naturally regenerating tropical dry forests. Functional Ecology, 32(12), 2766-2776. | |
dc.relation.references | Wright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z., Bongers, F. et al. (2004). The worldwide leaf economics spectrum. Nature, 428, 821–827 | |
dc.relation.references | Zhang, Y. J., Scoffoni, C., & Sack, L. (2016). The vulnerability and stomatal control of leaf xylem: A spatial perspective on hydraulic failure. New Phytologist, 212(3), 453–459. https://doi.org/10.1111/nph.14054 | |
dc.rights.acceso | Abierto (Texto Completo) | |
dc.rights.accessrights | OpenAccess | |
dc.subject | Bosque seco tropical | |
dc.subject | Dureza ambiental | |
dc.subject | Diversidad funcional | |
dc.subject | Ecologia funcional | |
dc.subject.keyword | Tropical dry forest | |
dc.subject.keyword | Environmental harshness | |
dc.subject.keyword | Functional diversity | |
dc.subject.keyword | Functional ecology | |
dc.subject.lemb | Maestría en Manejo, Uso y Conservación del Bosque -- Tesis y disertaciones académicas | |
dc.subject.lemb | Bosques secos -- Investigaciones -- Colombia | |
dc.subject.lemb | Propiedades del suelo -- Colombia | |
dc.subject.lemb | Factores edáficos | |
dc.subject.lemb | Diversidad biológica -- Colombia | |
dc.title | Evaluación de la variación en la composición y diversidad funcional del bosque seco en Colombia a lo largo de un gradiente de dureza ambiental | |
dc.title.titleenglish | Evaluation of the variation in composition and functional diversity of colombian dry forest along an environmental hardness gradient | |
dc.type | masterThesis | |
dc.type.degree | Investigación-Innovación |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 7 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: