Predicción de esperanza de vida considerando el covid-19, bajo algoritmos de machine learning basados en datos epidemiológicos y patológicos.

dc.contributor.advisorSalcedo Parra , Octavio José
dc.contributor.authorRodríguez López, Jorge Leonardo
dc.contributor.orcidSalcedo Parra, Octavio José [0000-0002-0767-8522]
dc.date.accessioned2025-05-15T16:23:55Z
dc.date.available2025-05-15T16:23:55Z
dc.date.created2025-03-25
dc.descriptionEste estudio analizó la predicción de la esperanza de vida de las personas a partir de sus historias clínicas, considerando determinantes como el COVID-19 mediante algoritmos de machine learning. Se desarrolló una metodología basada en modelos de aprendizaje automático, utilizando información patológica y epidemiológica, con el objetivo de identificar patrones significativos en los datos. Además, se emplearon datos de acceso público recopilados durante el brote de COVID-19 para estimar la esperanza de vida, proporcionando así una herramienta predictiva para el análisis del impacto de la pandemia en la longevidad.
dc.description.abstractThis study analyzed the prediction of people's life expectancy from their medical records, considering determinants such as COVID-19 using machine learning algorithms. A methodology based on machine learning models was developed, using pathological and epidemiological information, with the aim of identifying significant patterns in the data. In addition, publicly available data collected during the COVID-19 outbreak were used to estimate life expectancy, thus providing a predictive tool for the analysis of the impact of the pandemic on longevity.
dc.format.mimetypepdf
dc.identifier.urihttp://hdl.handle.net/11349/95507
dc.language.isospa
dc.relation.referencesAlazab, M., Awajan, A., Mesleh, A., & Alhyari, S. (2020). COVID-19 prediction and detection using deep learning. International Journal of Computer Information Systems and Industrial Management Applications , 14-14.
dc.relation.referencesAmores, J., Sebe, N., & Radeva, P. (2006). Boosting the distance estimation: Application to the k-nearest neighbor classifier. Pattern Recognition Letters , 201-209.
dc.relation.referencesBertsimas, D., & Tsitsiklis, J. (1993). Simulated annealing. Statistical science , 10-15.
dc.relation.referencesBishop, C., & Nasrabadi, N. (2006). Pattern recognition and machine learning. New York: Springer.
dc.relation.referencesBlum, C. (2005). Ant colony optimization: Introduction and recent trends. Physics of Life reviews , 353-373.
dc.relation.referencesCalabrese, F., Diao, M., Di Lorenzo, G., Ferreira Jr, J., & Ratti, C. (2013). Understanding individual mobility patterns from urban sensing data: A mobile phone trace example. Transportation research part C: emerging technologies , 301-313.
dc.relation.referencesCanales, A. (2021). La desigualdad social frente al COVID-19 en el Área Metropolitana de Santiago. Santiago: Cepal.
dc.relation.referencesCase, A., & Deaton, A. (2017). Mortality and morbidity in the 21st century. Brookings papers on economic activity , 397.
dc.relation.referencesChapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C., y otros. (2000). CRISP-DM 1.0: Step-by-step data mining guide. SPSS inc , 1-73.
dc.relation.referencesChen, P., & Zhang, C. (2014). Data-intensive applications, challengues, techniques and technologies: A survey on Big data. Information sciences , 314-347.
dc.relation.referencesDaugherty, P., & James, W. (2018). Human+ machine: Reimagining work in the age of AI. Harvard Business Press.
dc.relation.referencesFawcett, T. (2006). An introduction to ROC analysis. Pattern recognition letters , 861-874.
dc.relation.referencesFogel, R. (2004). The escape from hunger and premature death, 1700-2100: Europe, America, and the Third World. Cambridge University Press.
dc.relation.referencesForrest, S. (1996). Genetic algorithms. ACM computing surveys (CSUR) , 77-80.
dc.relation.referencesGarcia, F. (2022). Exceso de mortalidad, esperanza de vida y años de vida perdidos por COVID en España. Rapisalud .
dc.relation.referencesGoodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.
dc.relation.referencesHastie, T., Tibshirani, R., Friedman, J., & Franklin, J. (2005). The elements of statistical learning: data mining, inference and prediction. The Mathematical Intelligencer , 83-85.
dc.relation.referencesHinde, A. (2014). Demographic methods. Routledge.
dc.relation.referencesJaniesch, C., Zschech, P., & Heinrich, K. (2021). Machine learning and deep learning. Electronic Markets , 685-695.
dc.relation.referencesKorb, K., & Nicholson, A. (2010). Bayesian artificial intelligence. CRC press .
dc.relation.referencesKuhn, M. (2013). Applied predictive modeling. Springer.
dc.relation.referencesKumar, R., Khan, F., Din, S., Band, S., Mosavi, A., & Ibeke, E. (2021). Recurrent neural network and reinforcement learning model for COVID-19 prediction. Frontiers in public health .
dc.relation.referencesLiaw, A., & Wiener, M. (2002). Classification and regression by randomForest. R news , 18-22.
dc.relation.referencesMaimon, O., & Rokach, L. (2014). Data mining with decision trees: theory and applications. World scientific.
dc.relation.referencesMayer-Schönberger, V., & Cukier, K. (2013). Big data: la revolución de los datos masivos. Turner.
dc.relation.referencesMontgomery, D., & Peck, E. V. (2021). Introduction to linear regression analysis. Wiley.
dc.relation.referencesPou, S., & González, L. (2021). Estimación del exceso de mortalidad por COVID-19 mediante los años de vida perdidos: impacto potencial en la Argentina en 2020. Cepal .
dc.relation.referencesPreston, S., Heuveline, P., & Guillot, M. (2001). Demography, measuring and modeling population processes. Population and Development Review , 365-367.
dc.relation.referencesRouyet, J. (2023). Estupidez artificial. Cómo usar la inteligencia artificial sin que ella te utilice a ti. Editorial Libros .
dc.relation.referencesSingh, V., Poonia, R., Kumar, S., Dass, P., Agarwal, P., Bhatnagar, V., y otros. (2020). Prediction of COVID-19 corona virus pandemic based on time series data using support vector machine. Journal of Discrete Mathematical Sciences and Cryptography , 1583-1597.
dc.relation.referencesTuring, A. (1948). Intelligent machinery. Jack Copeland .
dc.relation.referencesturing, A. (2001). machinery. Springer , 12-13.
dc.relation.referencesVázquez, J., & Backhoff, M. (2017). Datos masivos geoespaciales aplicados al transporte. Sanfandila: Qro.
dc.relation.referencesVillavicencio, C., Macrohon, J., Inbaraj, X., Jeng, J., & Hsieh, J. (2021). Covid-19 prediction applying supervised machine learning algorithms with comparative analysis using weka. Algorithms , 201.
dc.relation.referencesWang, S.-C. (2003). Artificial neural network. Interdisciplinary computing in java programming , 81-100.
dc.rights.accesoAbierto (Texto Completo)
dc.rights.accessrightsOpenAccess
dc.subjectCovid-19
dc.subjectModelos predictivos
dc.subjectAprendizaje automático
dc.subjectEsperanza de vida
dc.subject.keywordCovid-19
dc.subject.keywordPredictive models
dc.subject.keywordMachine learning
dc.subject.keywordLife expectancy
dc.subject.lembMaestría en Ciencias de la Información y las Comunicaciones -- Tesis y disertaciones académicas
dc.subject.lembLongevidad
dc.subject.lembEpidemia -- Covid 19
dc.subject.lembInteligencia artificial
dc.subject.lembInformación de salud
dc.titlePredicción de esperanza de vida considerando el covid-19, bajo algoritmos de machine learning basados en datos epidemiológicos y patológicos.
dc.title.titleenglishLife expectancy prediction considering covid-19, under machine learning algorithms based on epidemiological and pathological data
dc.typemasterThesis
dc.type.degreeMonografía
dc.type.driverinfo:eu-repo/semantics/masterThesis

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
RodriguezLopezJorgeLeonardo2025.pdf
Tamaño:
1.54 MB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
Licencia de uso y publicacion.pdf
Tamaño:
281.43 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
7 KB
Formato:
Item-specific license agreed upon to submission
Descripción: