Vibration signals stochastic analysis of induction motors for fault detection using empirical mode decomposition

Fecha

Autor corporativo

Título de la revista

ISSN de la revista

Título del volumen

Editor

Universidad Distrital Francisco José de Caldas. Colombia

Compartir

Director

Altmetric

Resumen

Descripción

This paper presents a vibration analysis on induction motors using Hidden Markov Models (HMM) applied to features obtained from the Empirical Mode Decomposition (EMD) and Hilbert-Huang transform to vibration signals obtained in the coordinates x and y, in order to detect malfunctions in bearings and bars. Additionally, a comparative analysis of the ability of the vibration signals in the x and y directions to provide information for failures detection is presented. Thus, an ergodic HMM initialized and trained by expectation maximization algorithm with convergence at 10e-7  and maximum iterations of 100 was applied to the feature space and its performance was determined by cross-validation with 80-20 with 30 fold for obtaining high performance fault detection in terms of accuracy.
En este artículo se presenta un análisis de vibraciones en motores de inducción por medio de Modelos Ocultos de Markov (Hidden Markov Model - HMM) aplicado a características obtenidas de la Descomposición de Modo Empírico (Empirical Mode Decomposition - EMD) y transformada de Hilbert-Huang de señales de vibración obtenidas en las coordenadas x y y, con el fin de detectar fallas de funcionamiento en rodamientos y barras.  Además se presenta un análisis comparativo de la capacidad de las señales de vibración en dirección x y en dirección y, para aportar información en la detección de fallas. Así, un HMM ergódico inicializado y entrenado por medio del algoritmo de máxima esperanza, con convergencia en 10e-7 y un máximo de iteraciones de 100, se aplicó sobre el espacio de características y su desempeño fue determinado mediante validación cruzada 80-20 con 30 fold, obteniendo un alto desempeño para la detección de fallas en términos de exactitud.

Palabras clave

Citación

Colecciones