Influencia de la energı́a del bombardeo del etching fı́sico en el módulo de young y la apariencia superficial de las fibras de bambú
| dc.contributor.advisor | Mena Serna, Milton | |
| dc.contributor.author | Mosquera Gómez, Sergio | |
| dc.date.accessioned | 2025-11-06T16:42:53Z | |
| dc.date.available | 2025-11-06T16:42:53Z | |
| dc.date.created | 2025-10-03 | |
| dc.description | Analizamos el efecto del tratamiento de Etching físico en el módulo de Young y la apariencia superficial de fibras de Guadua angustifolia. Las fibras fueron bombardeadas con iones de argón a diferentes niveles de energía y tiempos de exposición mediante un método de grabado en seco. El análisis por microscopía electrónica de barrido (MEB) reveló que el bombardeo iónico modificó la morfología superficial de la fibra, aumentando su rugosidad. El uso de una mayor energía de plasma con tiempos de exposición más cortos produjo efectos similares a los obtenidos con una energía menor y tiempos de exposición más largos. El aumento del módulo de Young estuvo directamente relacionado con cambios en la estructura superficial de la fibra. Estos hallazgos confirman la influencia del tratamiento con plasma en las propiedades mecánicas de las fibras y abren nuevas posibilidades para su aplicación como refuerzo en materiales compuestos. | |
| dc.description.abstract | We analyzed the effect of dry etching plasma treatment on the Young’s modulus and surface appearance of Guadua angustifolia fibres. The fibres were bombarded with argon ions at different energy levels and exposure times through a dry etching method. Scanning electron microscopy (SEM) analysis revealed that ion bombardment modified the fibre surface morphology, increasing roughness. Using higher plasma energy with shorter exposure times produced similar effects to those obtained with lower energy and longer exposure times. The increase in Young’s modulus was directly related to changes in the fibre’s surface structure. These findings confirm the influence of plasma treatment on the mechanical properties of the fibres and open new possibilities for their application as a reinforcement in composite materials. | |
| dc.description.sponsorship | Universidad Nacional de Colombia | |
| dc.format.mimetype | ||
| dc.identifier.uri | http://hdl.handle.net/11349/99769 | |
| dc.language.iso | spa | |
| dc.publisher | Universidad Distrital Francisco José de Caldas | |
| dc.relation.references | Acosta, R., Trujillo, G.C., Arévalo, J.L.M., 2021. Synthesis and mechanical behavior of composite material reinforced with guadua fiber and with a polyurethane or polyester matrix. BioResources 16, 8049–8059. | |
| dc.relation.references | Alsubari, S., Zuhri, M.Y., Sapuan, S.M., Ishak, M.R., Ilyas, R.A., Asyraf, M.R., 2021. Potential of natural fiber reinforced polymer composites in sandwich structures: a review on its mechanical properties. Polymers 13, 423. | |
| dc.relation.references | ASTM International. (2020). ASTM C1557-20: Standard test method for tensile strength and Young’s modulus of fibers. https://www.astm.org/c1557-20.html. | |
| dc.relation.references | Elseify, L., Midani, M., El-Badawy, A., Jawaid, M., 2021. Manufacturing Automotive Components from Sustainable Natural fiber Composites. Springer Nature, Singapore. | |
| dc.relation.references | Faruk, O., Bledzki, A.K., Fink, H.P., Sain, M., 2012. Biocomposites reinforced with natural fibers: 2000–2010. Prog. Polym. Sci. 37, 1552–1596. | |
| dc.relation.references | Fernandes-P, P.H., De-Freitas, M., Hilário-Cioffi, M.O., Coelho-De-Carvalho, K., Milanese, A.C., Voorwald, H.J.C., Mulinari, D.R., 2015. Vegetal fibers in polymeric composites: a review. Pol. ı́meros 25, 9–22. | |
| dc.relation.references | Galan-Marin, C., Rivera-Gomez, C., Garcia-Martinez, A., 2016. Use of natural-fiber bio- composites in construction versus traditional solutions: operational and embodied energy assessment. Materials 9, e465. | |
| dc.relation.references | Halip, J.A., Hua, L.S., Ashaari, Z., Tahir, P.M., Chen, L.W., Uyup, M.K.A., 2019. Effect of Treatment on Water Absorption Behavior of Natural Fiber–reinforced Polymer Composites, in: Jawaid, M., Thariq, M., Saba, N.. (Eds.), Mechanical and Physical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites. Elsevier, Amsterdam, pp. 141–156. | |
| dc.relation.references | Hashim, M.Y., Amin, A.M., Marwah, O.M.F., Othman, M.H., Yunus, M.R.M., Huat, N.C., 2017. The effect of alkali treatment under various conditions on physical properties of kenaf fiber. J. Phys. Conf. Ser. 914, e012030. | |
| dc.relation.references | Hosseini, S.B., Gaff, M., Li, H., Hui, D., 2023. Effect of fiber treatment on physical and mechanical properties of natural fiber-reinforced composites: a review. Rev. Adv. Mater. Sci. 62, e20230131. | |
| dc.relation.references | Image-J, 2020. Digit. Image Process. Program. | |
| dc.relation.references | Islam, M.R., Beg, M.D., Mina, M.F., 2013. Fibre surface modifications through different treatments with the help of design expert software for natural fibre-based biocomposites. J. Compos. Mater. 48 (15), 1887–1899. https://doi.org/10.1177/ 0021998313491515. | |
| dc.relation.references | Kuram, E., 2022. Advances in development of green composites based on natural fibers: a review. Emerg. Mater. 5, 811–831. | |
| dc.relation.references | Luna, P., Lizarazo-Marriaga, J., Mariño, A., 2016. Guadua angustifolia bamboo fibers as reinforcement of polymeric matrices: an exploratory study. Constr. Build. Mater. 116, 93–97. | |
| dc.relation.references | Luna, P., Lizarazo-Marriaga, J., Mariño, A., 2018. Dry Etching Plasma Applied to Guadua angustifolia Bamboo Fibers: influence on their mechanical properties and surface appearance. Materials Research Proceedings 7,332–340. | |
| dc.relation.references | Luna, P., Lizarazo-Marriaga, J., Mariño, A., 2024. Alkali and plasma-treated Guadua angustifolia bamboo fibers: a study on reinforcement potential for polymeric matrices. J. Renew. Mater. 12, 1399–1416. | |
| dc.relation.references | Mosquera, S., 2023. Master’s thesis in physics, National University of Colombia, Bogotá. Etch. Plasma Nat. Synth. Fibers. | |
| dc.relation.references | Mosquera, S., Mariño, A., Luna, P., 2022. Effects of dry etching plasma treatments on natural and synthetics fibers: a comparative study. Mater. Circ. Econ. 4, e11. | |
| dc.relation.references | Mousavi, S.R., Zamani, M.H., Estaji, S., Tayouri, M.I., Arjmand, M., Jafari, S.H., Nouranian, S., Khonakdar, H.A., 2022. Mechanical properties of bamboo fiber- reinforced polymer composites: a review of recent case studies. J. Mater. Sci. 57, 3143–3167. | |
| dc.relation.references | Mulenga, T.K., Ude, A.U., Vivekanandhan, C., 2021. Techniques for modelling and optimizing the mechanical properties of natural fiber composites: a review. Fibers 9, e6. | |
| dc.relation.references | Peças, P., Carvalho, H., Salman, H., Leite, M., 2018. Natural fibre composites and their applications: a review. J. Compos. Sci. 2 (4), e66. | |
| dc.relation.references | Pickering, K.L., Efendy, M.G., Le, T.M., 2016. A review of recent developments in natural fibre composites and their mechanical performance. Compos. Part A Appl. Sci. Manuf. 83, 98–112. | |
| dc.relation.references | Pramudi, G., Raharjo, W.W., Ariawan, D., Ubaidillah, Arifin, Z., 2021. Utilization of bamboo fiber in the development of environmentally friendly composite – a review. IOP Conference Series Materials Science Engineering 1096, e012038. | |
| dc.relation.references | Rohit, K., Dixit, S., 2016. A review - future aspect of natural fiber reinforced composite. Polym. Renew. Resour. 7, 43–60. | |
| dc.relation.references | Sanjay, M.R., Siengchin, S., Parameswaranpillai, J., Jawaid, M., Pruncu, C.I., Khan, A., 2019. A comprehensive review of techniques for natural fibers as reinforcement in composites: preparation, processing and characterization. Carbohydr. Polym. 207, 108–121. | |
| dc.relation.references | Zhan, J., Li, J., Wang, G., Guan, Y., Zhao, G., Lin, J., Naceur, H., Coutellier, D., 2021. Review on the performances, foaming and injection molding simulation of natural fiber composites. Polym. Compos. 42, 1305–1324. | |
| dc.rights.acceso | Abierto (Texto Completo) | |
| dc.rights.accessrights | OpenAccess | |
| dc.subject | Etching físico | |
| dc.subject | Bombardeo de iones | |
| dc.subject | Módulo de Young | |
| dc.subject | Modificación superficial | |
| dc.subject | Economía circular | |
| dc.subject | Fibras de guadua angustifolia | |
| dc.subject.keyword | Dry etching plasma | |
| dc.subject.keyword | Ion bombardment | |
| dc.subject.keyword | Young’s Modulus | |
| dc.subject.keyword | Surface modification | |
| dc.subject.keyword | Circular economy | |
| dc.subject.keyword | Guadua angustifolia fibres | |
| dc.subject.lemb | Ingeniería Civil -- Tesis y disertaciones académicas | |
| dc.title | Influencia de la energı́a del bombardeo del etching fı́sico en el módulo de young y la apariencia superficial de las fibras de bambú | |
| dc.title.titleenglish | Influence of dry etching plasma treatment energy on the Young’s modulus and surface appearance of bamboo fibres | |
| dc.type | bachelorThesis | |
| dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
| dc.type.degree | Producción Académica | |
| dc.type.driver | info:eu-repo/semantics/bachelorThesis |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 7 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:
