Desarrollo de un modelo de inteligencia artificial para ayudar en la toma de decisiones en política pública aplicado a la vocación agrícola desde la perspectiva sociodemográfica en el territorio colombiano

dc.contributor.advisorEspitia Cuchango, Helbert Eduardo
dc.contributor.advisorRodríguez Miranda, Juan Pablo
dc.contributor.authorSánchez Céspedes, , Juan Manuel
dc.contributor.orcidSánchez Céspedes, Juan Manuel [0000-0001-9101-2936]
dc.contributor.orcidEspitia Cuchango, Helbert Eduardo [0000-0002-0742-6069]
dc.date.accessioned2025-04-01T17:40:15Z
dc.date.available2025-04-01T17:40:15Z
dc.date.created2024-11-20
dc.descriptionLa presente tesis doctoral tuvo como objetivo desarrollar un modelo de inteligencia artificial como herramienta para los formuladores de políticas públicas, orientado a mejorar la toma de decisiones en relación con la vocación agrícola en Colombia, considerando variables sociodemográficas. Para lograr este propósito, se establecieron tres objetivos específicos: primero, desarrollar el modelo conceptual de la vocación agrícola; segundo, diseñar e implementar el modelo computacional; y tercero, evaluar dicho modelo. Para alcanzar estos objetivos, se realizó inicialmente una revisión conceptual sobre políticas públicas e inteligencia artificial, complementada con una revisión del estado del arte. Por un lado, se revisaron y analizaron las políticas públicas relacionadas con el sector agrícola y el empleo en Colombia entre 2006 y 2022; por otro, se llevó a cabo una revisión sistemática de investigaciones que han aplicado inteligencia artificial en la formulación de políticas agrarias. En el análisis de las políticas agrarias en Colombia se observó una evolución: su enfoque inicial estuvo en la productividad del sector, para luego priorizar el desarrollo sostenible. Por otro lado, se ha hecho uso de la inteligencia artificial en procesos de evaluación y previsión en el uso eficiente de recursos naturales como la tierra y el agua, además de procesos agrícolas, con el fin de anticipar su impacto económico y ambiental y promover un desarrollo sostenible. Tras la revisión conceptual y del estado del arte, se procedió a desarrollar el modelo conceptual de la vocación agrícola. Para ello, se llevó a cabo una revisión sistemática de publicaciones científicas relevantes, seguida de un análisis cualitativo y cuantitativo de las mismas. El desarrollo del modelo conceptual reveló que la vocación agrícola tiene tres perspectivas que constituyen los pilares del desarrollo sostenible: sociodemográfica, económica y ambiental. En consecuencia, el modelo integra estos tres componentes, además de variables tecnológicas y de políticas públicas, con el fin de apoyar el proceso de formulación de políticas públicas agrarias. Durante el diseño, uno de los hallazgos más relevantes muestra que las políticas públicas agrarias deben ser integrales e incluir los temas de salud, educación, seguridad e infraestructura en las zonas rurales para garantizar una producción agrícola eficiente y sostenible. Una vez finalizado el desarrollo del modelo conceptual, se procedió al diseño del modelo computacional. El primer paso fue la creación de la base de datos, para lo cual se recopilaron datos relacionados con las variables sociodemográficas del modelo conceptual, generándose diferentes índices. Las fuentes de información utilizadas fueron gubernamentales, y se llevó a cabo un proceso de imputación para completar los datos faltantes. Con la base de datos y el modelo conceptual como referencia, se realizó un análisis de correspondencia para identificar las relaciones entre variables a partir de los datos de Colombia, estableciendo así el diseño computacional más adecuado para las condiciones establecidas. A partir de este diseño, se implementaron las mejores técnicas y configuraciones para realizar tanto predicciones como análisis del fenómeno. Las técnicas empleadas incluyeron redes neuronales artificiales, máquinas de soporte vectorial y sistemas de inferencia neuro-difusa. La implementación del modelo reveló varios hallazgos importantes, siendo uno de los principales que las políticas públicas destinadas a fomentar el empleo agrícola en zonas rurales deben basarse en la promoción de la educación secundaria o superior para la población rural, y en la formalización del empleo agrícola mediante contratos a término indefinido con salarios dignos. Durante la evaluación del modelo computacional, se concluyó que la técnica más eficaz para realizar predicciones es la de redes neuronales artificiales, seguida del sistema de inferencia neuro-difusa. Sin embargo, para comprender mejor el fenómeno y proporcionar una herramienta útil para formular lineamientos de políticas públicas enfocadas en la vocación agrícola, el sistema de inferencia neuro-difusa es la técnica más adecuada.
dc.description.abstractThe main purpose of this doctoral thesis is to develop an artificial intelligence model as a mechanism for public policymakers to improve decision-making processes and enhance the agricultural vocation in Colombia, considering sociodemographic variables. Therefore, three main objectives were defined: first, the development of a conceptual model of the agricultural vocation; second, the design and implementation of the model; and third, the evaluation of the model. The first step included a conceptual revision of public policies and artificial intelligence, and a state-of-the-art revision. On the one hand, public policies related to the agricultural sector and employment in Colombia between 2006 and 2022 were analyzed; on the other hand, a systematic revision of artificial intelligence applied to research on agricultural policies was also carried out. An evolution was observed in the agricultural policies: the focus was rooted in the productivity of the sector, to later prioritize sustainable development. In addition to agricultural processes, the use of artificial intelligence has reached evaluation and prevision processes for efficient use of natural resources like water and land, aiming to anticipate economic and environmental impacts and promotion of sustainable development. After the conceptual review, which included a systematic revision of relevant scientific publications followed by a qualitative-quantitative analysis, a conceptual model and a state-of-the-art for the agricultural vocation was developed. The development of the mode revealed that the agricultural vocation embodies three essential perspectives for sustainable development: sociodemographic, economic, and environmental. Consequently, the model integrates such perspectives as well as technological and public policy variables to support public agrarian policy processes. During the design, the most significant findings show agrarian public policies must be comprehensive and include healthcare issues, education, security, and infrastructure in rural zones to guarantee efficient and sustainable production. The next step was developing the computational model, which included creating the database. The first step involved generating various indexes using the sociodemographic variables taken from the conceptual model. The sources of information were mainly governmental and an imputation process was carried out to complete the missing data. A correspondence analysis was completed using the database and the conceptual model as references to identify relationships between variables starting from the Colombian data. Thus, a more suitable computational design for the conditions set was established. From this design, more suitable techniques and configurations were implemented for both predictions and phenomenon analysis. The techniques employed included artificial neural networks, support vector machines, and neuro-fuzzy inference systems. One of the main findings taken from the model implementation revealed that public policies intended to promote agricultural employment must be based on promoting secondary school or higher education for the rural population; besides, agricultural employment must be formalized with open-ended contracts and decent wages. During the evaluation of the computational model, it was concluded that artificial neural networks are one of the most efficient techniques for making predictions, followed by neuro-fuzzy inference. Nevertheless, the neuro-fuzzy inference system proved to be the most suitable technique useful for understanding the phenomenon, and thus providing public policy guidelines focused on agricultural vocation.
dc.format.mimetypepdf
dc.identifier.urihttp://hdl.handle.net/11349/94447
dc.language.isospa
dc.publisherUniversidad Distrital Francisco José de Caldas
dc.relation.referencesAbarca, F. J., Campos, F. S., & Reinoso, R. (2017). Methodology of Decision Support through GIS and Artificial Intelligence: Implementation for Demographic Characterization of Andalusia based on Dwelling. Estoa, 6(11), 33-51. https://doi.org/10.18537/est.v006.n011.a03
dc.relation.referencesAghasafari, H., Karbasi, A., Mohammadi, H., & Calisti, R. (2020). Determination of the best strategies for development of organic farming: A SWOT – Fuzzy Analytic Network Process approach. Journal of Cleaner Production, 277. https://doi.org/10.1016/j.jclepro.2020.124039
dc.relation.referencesAghmashhadi, A. H., Cirella, G. T., Zahedi, S., & Kazemi, A. (2019). Water resource policy support sys- tem of the Caspian Basin. AIMS Environmental Science, 6(4), 242-261. https://doi.org/10.3934/ environsci.2019.4.242
dc.relation.referencesAhmad, I., Saeed, U., Fahad, M., Ullah, A., Habib ur Rahman, M., Ahmad, A., & Judge, J. (2018). Yield Forecasting of Spring Maize Using Remote Sensing and Crop Modeling in Faisalabad-Punjab Pa- kistan. Journal of the Indian Society of Remote Sensing, 46(10), 1701-1711. https://doi.org/10.1007/ s12524-018-0825-8
dc.relation.referencesAir, P., & Pokhariya, H. S. (2023). Detecting Changes in Land Use and Land Cover using GIS and Re- mote Sensing Methods in Pauri District of Uttarakhand State, India. En S. J., S. P., C. Y., A. K.U., A. P.K., M. N., 4. U. K. M. Universiti Kebangsaan Malaysia Bangi Selangor, T. G. & S. S. (Eds.), 14th International Conference on Advances in Computing, Control, and Telecommuni- cation Technologies, ACT 2023 (pp. 811-817, Vol. 2023-June). Grenze Scientific Society. https : / / www . scopus . com / inward / record . uri ? eid = 2 - s2 . 0 - 85174244240 & partnerID = 40 & md5 = 54daf606899561835e7212f72f888739
dc.relation.referencesAl-Amin, S., Berglund, E. Z., & Larson, K. (2014). Complex Adaptive System Framework to Simulate Adaptations of Human-Environmental Systems to Climate Change and Urbanization: The Verde River Basin. World Environmental and Water Resources Congress 2014: Water Without Borders - Proceedings of the 2014 World Environmental and Water Resources Congress
dc.relation.referencesAlbornoz, M., Albornoz Barriga, M. B., Machado, M. A., & Albornoz, M. (2016). Transformaciones en la pol´ıtica de tierras y redistribuci´on agraria del Ecuador. Una visi´on desde las redes de pol´ıtica p´ublica. Mundo Agrario: Revista de estudios rurales, 17(36), 036
dc.relation.referencesAlfonso, O. A., & Malaver, C. E. (2012). Estudio sobre los efectos de la variabilidad clim´atica sobre la dimensi´on de la disponibilidad de alimentos en la seguridad alimentaria en Colombia e iniciativas de pol´ıtica
dc.relation.referencesAli, M., Deo, R. C., Downs, N. J., & Maraseni, T. (2018). Cotton yield prediction with Markov Chain Monte Carlo-based simulation model integrated with genetic programing algorithm: A new hybrid copula- driven approach. Agricultural and Forest Meteorology, 263(January), 428-448. https://doi.org/10. 1016/j.agrformet.2018.09.002
dc.relation.referencesAlvarado-Quiroa, H. O., & Araya-Rodr´ıguez, F. (2014). Cambios de uso del suelo y crecimiento urbano. Es- tudio de caso en los municipios conurbados de la Mancomunidad Metr´opoli de Los Altos, Quetzalte- nango, Guatemala. Tecnolog´ıa en Marcha, 27(1), 104-113. https://doi.org/10.18845/tm.v27i1.1701
dc.relation.referencesAmani, M., Kakooei, M., Moghimi, A., Ghorbanian, A., Ranjgar, B., Mahdavi, S., Davidson, A., Fisette, T., Rollin, P., Brisco, B., & Mohammadzadeh, A. (2020). Application of google earth engine cloud computing platform, sentinel imagery, and neural networks for crop mapping in Canada. Remote Sensing, 12(21), 1-18. https://doi.org/10.3390/rs12213561
dc.relation.referencesAmayri, M., Ngo, Q. D., Safadi, E. A. E., & Ploix, S. (2017). Bayesian network and Hidden Markov Model for estimating occupancy from measurements and knowledge. Proceedings of the 2017 IEEE 9th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Tech- nology and Applications, IDAACS 2017, 2(October), 690-695. https://doi.org/10.1109/IDAACS. 2017.8095179
dc.relation.referencesAmini, A., & Nikraz, N. (2016). Proposing two defuzzification methods based on output fuzzy set weights. International Journal of Intelligent Systems and Applications, 8(2), 1-12. https://doi.org/10.5815/ ijisa.2016.02.01
dc.relation.referencesAmorós López, J., Izquierdo Verdiguier, E., Gómez Chova, L., Muñoz Marí, J., Rodríguez Barreiro, J. Z., Camps Valls, G., & Calpe Maravilla, J. (2011). Land cover classification of VHR airborne images for citrus grove identification. ISPRS Journal of Photogrammetry and Remote Sensing, 66(1), 115-123. https://doi.org/10.1016/j.isprsjprs.2010.09.008
dc.relation.referencesArasteh, R., Ali Abbaspour, R., & Salmanmahiny, A. (2019). A modeling approach to path dependent and non-path dependent urban allocation in a rapidly growing region. Sustainable Cities and Society, 44(October 2018), 378-394. https://doi.org/10.1016/j.scs.2018.10.029
dc.relation.referencesAvella, A. P., Sosa, M. D., Avella O., A. P., & Sosa R., M. D. (2015). Family agriculture in colombia: a case study of the trinidad county, casanare department/agricultura familiar en colombia: analisis de caso del municipio de trinidad, departamento de casanare. Direito da Cidade, 7(1), 30-40. https : //doi.org/10.12957/rdc.2015.15198
dc.relation.referencesAwad, M. (2016). New mathematical models to estimate wheat Leaf Chlorophyll Content based on Artificial Neural Network and remote sensing data. 2016 IEEE International Multidisciplinary Conference on Engineering Technology, IMCET 2016, 86-91. https://doi.org/10.1109/IMCET.2016.7777432
dc.relation.referencesBabaee, M., Maroufpoor, S., Jalali, M., Zarei, M., & Elbeltagi, A. (2021). Artificial intelligence approach to estimating rice yield*. Irrigation and Drainage, 70(4), 732-742. https://doi.org/10.1002/ird.2566
dc.relation.referencesBabar, Z., Ewers, M., & Khattab, N. (2019). Im/mobile highly skilled migrants in Qatar*. Journal of Ethnic and Migration Studies, 45(9), 1553-1570. https://doi.org/10.1080/1369183X.2018.1492372
dc.relation.referencesBadiani, B., Barontini, S., Bettoni, B., Bonati, S., Peli, M., Pietta, A., Scala, B., Tononi, M., Vitale, N., Barbara, B. B., Stefano, B., Barbara, B. B., Sara, B., Marco, P., Antonella, P., Barbara, S., Marco, T., & Nicola, V. (2017). Lake Garda lemon houses (Italy): Opportunities of a sensitive, marginal area in urban planning. Change and Adaptation in Socio-Ecological Systems, 3(1), 111-118. https: //doi.org/10.1515/cass-2017-0010
dc.relation.referencesBagaria, P., Nandy, S., Mitra, D., & Sivakumar, K. (2021). Monitoring and predicting regional land use and land cover changes in an estuarine landscape of India. Environmental Monitoring and Assessment, 193(3). https://doi.org/10.1007/s10661-021-08915-4
dc.relation.referencesBahar, D., Ibáñez, A. M., & Rozo, S. V. (2021). Give me your tired and your poor: Impact of a large- scale amnesty program for undocumented refugees. Journal of Development Economics, 151. https: //doi.org/10.1016/j.jdeveco.2021.102652
dc.relation.referencesBaker, J. (2012). Migration and mobility in a rapidly changing small town in northeastern Ethiopia. Environ- ment and Urbanization, 24(1), 345-367. https://doi.org/10.1177/0956247811435890
dc.relation.referencesBali, N., & Singla, A. (2021). Deep Learning Based Wheat Crop Yield Prediction Model in Punjab Region of North India. Applied Artificial Intelligence, 35(15), 1304-1328. https://doi.org/10.1080/08839514. 2021.1976091
dc.relation.referencesBanik, S., & Huq, M. R. (2020). Geolocation based decision making for appropriate land use using machine learning model. International Journal of Scientific and Technology Research, 9(2), 3084-3090. https://www.scopus.com/inward/record.uri?eid=2- s2.0- 85079484091&partnerID=40&md5= fac27a7e3887ff46566bef80993d823e
dc.relation.referencesBaudasse, T. T., Calderón, C., & Calderón V., C. (2009). Integración comercial del sector agrícola y desigualdad económica en los países en vías de desarrollo. Investigacion Economica, 68(269), 37-72
dc.relation.referencesBaysan, C., Dar, M. H., Emerick, K., Li, Z., & Sadoulet, E. (2024). The agricultural wage gap within rural villages. Journal of Development Economics, 168. https://doi.org/10.1016/j.jdeveco.2024.10327
dc.relation.referencesBeilin, R., Lindborg, R., Stenseke, M., Pereira, H. M., Llaus`as, A., Sl¨atmo, E., Cerqueira, Y., Navarro, L., Rodrigues, P., Reichelt, N., Munro, N., & Queiroz, C. (2014). Analysing how drivers of agricultural land abandonment affect biodiversity and cultural landscapes using case studies from Scandinavia, Iberia and Oceania. Land Use Policy, 36, 60-72. https://doi.org/https://doi.org/10.1016/j.landusepol. 2013.07.003
dc.relation.referencesBeltrán, J. A., & Piñeros, A. (2013). Sector agropecuario colombiano: realidad y perspectiva [Tesis doctoral, UNIVERSIDAD EAN FACULTAD]. http://repository.ean.edu.co/bitstream/handle/10882/4629/ BeltranJorge2013.pdf?sequence=1
dc.relation.referencesBenites, G. V. (2023). Natures of concern: The criminalization of artisanal and small-scale mining in Colom- bia and Peru. Extractive Industries and Society, 13. https://doi.org/10.1016/j.exis.2022.101105
dc.relation.referencesBerger, T., Schilling, C., Troost, C., & Latynskiy, E. (2010). Knowledge-brokering with agent-based models: Some experiences from irrigation-related research in Chile. Modelling for Environment’s Sake: Pro- ceedings of the 5th Biennial Conference of the International Environmental Modelling and Software Society, iEMSs 2010, 1(December 2015), 791-800
dc.relation.referencesBernal Villamarin, S. C., Morales, D. A. C., Reyes, C. A. A., & Sanchez, C. A. (2016). Application design sign language colombian for mobile devices: VLSCApp (Voice Colombian sign language app) 1.0. Proceedings of 2016 Technologies Applied to Electronics Teaching, TAEE 2016. https://doi.org/10. 1109/TAEE.2016.7528378
dc.relation.referencesBessière, J. (2013). Quand le patrimoine alimentaire innove Analyse sociologique des processus d'innovation patrimoniale alimentaire au service des territoires. Mondes du Tourisme, (7), 37-51. https: //doi.org/10.4000/tourisme.182
dc.relation.referencesBetancur, F. R., Espinosa, H. R., & Sierra, M. M. (2016). Dynamics of agricultural area cultivated in Colom- bia , 1960- 2010. UGCiencia 22, (22), 85-98
dc.relation.referencesBhatt, A., & Bhatt, V. T. (2023). Dcrff-Lhrf: an improvised methodology for efficient land-cover classifica- tion on eurosat dataset. Multimedia Tools and Applications. https://doi.org/10.1007/s11042-023- 17612-y
dc.relation.referencesBhatt, V., Chandrasekhar, S., & Sharma, A. (2020). Regional Patterns and Determinants of Commuting Between Rural and Urban India. Indian Journal of Labour Economics, 63(4), 1041-1063. https : //doi.org/10.1007/s41027-020-00276-9
dc.relation.referencesBhavsar, P., Safro, I., Bouaynaya, N., Polikar, R., & Dera, D. (2017). Machine Learning in Transportation Data Analytics (1st Editio). Elsevier. https://doi.org/10.1016/B978-0-12-809715-1.00012-2
dc.relation.referencesBinsar, F., & Mauritsius, T. (2020). Mining of Social Media on Covid-19 Big Data Infodemic in Indonesia. Journal of Computer Science, 16(11), 1598-1609. https://doi.org/10.3844/JCSSP.2020.1598.1609
dc.relation.referencesBizimana, C., Nieuwoudt, W. L., & Ferrer, S. R. D. (2004). Farm size, land fragmentation and economic efficiency in southern rwanda. Agrekon, 43(2), 244-262. https://doi.org/10.1080/03031853.2004. 9523648
dc.relation.referencesBjarnason, T., & Edvardsson, I. R. (2017). University pathways of urban and rural migration in Iceland. Journal of Rural Studies, 54, 244-254. https://doi.org/10.1016/j.jrurstud.2017.07.001
dc.relation.referencesBoateng, E. N. K., & Mensah, C. A. (2021). Land use/land cover dynamics and urban agriculture in tarkwa- nsuaem municipality, Ghana. Theoretical and Empirical Researches in Urban Management, 16(2), 5-20. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85115622602&partnerID=40&md5= f4193ca9d620750c2767579b2dd43104
dc.relation.referencesBostian, M. B., Barnhart, B. L., Kurkalova, L. A., Jha, M. K., & Whittaker, G. W. (2021). Bilevel optimi- zation of conservation practices for agricultural production. Journal of Cleaner Production, 300. https://doi.org/10.1016/j.jclepro.2021.126874
dc.relation.referencesBourceret, A., Amblard, L., & Mathias, J.-D. (2023). How do farmers’ environmental preferences influence the efficiency of information instruments for water quality management? Evidence from a social-ecological agent-based model. Ecological Modelling, 478. https://doi.org/10.1016/j.ecolmodel. 2023.110300
dc.relation.referencesBouwens, L., van Zon, S. K. R., Peijen, R., & Vooijs, M. (2024). Vulnerability profiles of workers and the relation with burnout symptoms: results from the Netherlands working conditions survey. Interna- tional Archives of Occupational and Environmental Health, 97(6), 651-660. https://doi.org/10.1007/ s00420-024-02071-1
dc.relation.referencesBoza, S. (2013). Evolución del sector agrícola-ecológico : el caso de Andalucía , España *. Cuadernos de Desarrollo Rural, 10(72), 291-310. http://web.a.ebscohost.com/ehost/pdfviewer/pdfviewer?vid=1& sid=a8d4348e-3680-428d-a77d-48de2a8405ce%40sessionmgr4010
dc.relation.referencesCadavid, H., Garz´on, W., Pérez, A., López, G., Mendivelso, C., & Ramírez, C. (2018). Towards a smart farming platform: From IoT-based crop sensing to data analytics. En S. C. J.E. & M.-S. J.C. (Eds.), Advances in Computing. CCC 2018. Communications in Computer and Information Science, vol 885 (pp. 237-251, Vol. 885). Springer Verlag. https://doi.org/10.1007/978-3-319-98998-3 19
dc.relation.referencesCampos, L. V. (2018). Análisis De Política Pública Desde El Enfoque De Corrientes Múltiples: El Posicionamiento De La Discapacidad En La Agenda Política Del Municipio De Mercaderes, Cauca [Tesis doctoral, Universidad del Valle]. https://medium.com/@arifwicaksanaa/pengertian-use-case- a7e576e1b6bf
dc.relation.referencesCano, L. P., & Contreras, J. H. (2006). La Economía Colombiana en el Contexto Mundial. Principales Ele- mentos de la Apertura Económica y la Globalizacion. Revista Mundo Economico Y Empresarial, (4), 83-88
dc.relation.referencesCao, J., Wang, H., Li, J., Tian, Q., & Niyogi, D. (2022). Improving the Forecasting of Winter Wheat Yields in Northern China with Machine Learning–Dynamical Hybrid Subseasonal-to-Seasonal Ensemble Prediction. Remote Sensing, 14(7). https://doi.org/10.3390/rs14071707
dc.relation.referencesCárdenas, J. I., & Vallejo, L. E. (2016). Agricultura y desarrollo rural en Colombia 2011-2013: una aproximación. Apuntes Del Cenes, 35(62), 87-123
dc.relation.referencesCardozo, O. (2011). Incidencia de poderes exógenos en las políticas públicas y en el sector rural en Colombia. Apuntes del CENES, 30, 103-116. http://virtual.uptc.edu.co/revistas2013f/index.php/cenes/article/ view/27
dc.relation.referencesCarmona, E. (2016). Tutorial sobre M´aquinas de Vectores Soporte (SVM). (November), 1-27. https://www. researchgate.net/publication/263817587 Tutorial sobre Maquinas de Vectores Soporte SVM
dc.relation.referencesCarrillo, M. M. (2015). Efectos de la capacidad de uso en la calidad de los suelos en la denominaci´on de origen montilla-moriles [Tesis doctoral]
dc.relation.referencesCastañeda, A., Doan, D., Newhouse, D., Nguyen, M. C., Uematsu, H., & Azevedo, J. P. (2018). A New Profile of the Global Poor. World Development, 101, 250-267. https://doi.org/10.1016/j.worlddev. 2017.08.002
dc.relation.referencesCervantes-Astorga, E., Aguilar-Juárez, O., Carrillo-Nieves, D., & Gradilla-Hernández, M. S. (2021). A gis methodology to determine the critical regions for mitigating eutrophication in large territories: The case of jalisco, mexico. Sustainability (Switzerland), 13(14). https://doi.org/10.3390/su13148029
dc.relation.referencesChang, X., & Liu, L. (2018). Characterizing Rural Household Differentiation from the Perspective of Farm- land Transfer in Eastern China Using an Agent Based Model. Human Ecology, 46(6), 875-886. https://doi.org/10.1007/s10745-018-0035-6
dc.relation.referencesCohen, M. D., March, J. G., & Olsen, J. P. (1972). A Garbage Can Model of Organizational Choice. Admi- nistrative Science Quarterly, 17(1), 1-25
dc.relation.referencesContraloria General de la Rep´ublica. (2020). Observatorio de control y vigilancia de las finanzas y las pol´ıti- cas p´ublicas. Consultado el 31 de octubre de 2022, desde https://observatoriofiscal.contraloria.gov. co/Pages/Glosario.aspx?FilterField1=FL&FilterValue1=C%20https://observatoriofiscal.contraloria. gov.co/PaginasReportes/Dependencia%20Fiscal.asp
dc.relation.referencesCoraggio, J. L. (2019). Education policy and human development in the Latin American City. https://doi. org/10.4324/9780429037054-3
dc.relation.referencesCortez, L. A. (2014). El Sector Agr´ıcola En Colombia: Un Marginado Del Comercio Internacional
dc.relation.referencesCozman, F. G. (2013). Independence for full conditional probabilities: Structure, factorization, non-uniqueness, and Bayesian networks. International Journal of Approximate Reasoning, 54(9), 1261-1278. https: //doi.org/10.1016/j.ijar.2013.08.001
dc.relation.referencesCraviotti, C. (2014). Agricultura familiar-Agronegocios: disputas, interrelaciones y proyectos. Territorios, 16(30), 17-38. https://doi.org/10.12804/territ30.2014.01
dc.relation.referencesCreswell, J. W. (2014, junio). Research design; qualitative, quantitative, and mixed methods approaches, 4th ed (Vol. 28). Ringgold, Inc. https://doi.org/10.1192/bjp.112.483.211-a
dc.relation.referencesCuchumbé Holgu´ın, N. J., & Giraldo Chavarriaga, J. A. (2013). Aproximación a la democracia deliberativa de Habermas. Discusiones Filosóficas, 14, 141-159
dc.relation.referencesDANE. (2023a). Empleo y desempleo. Consultado el 30 de octubre de 2023, desde https://www.dane.gov.co/ index.php/estadisticas-por-tema/mercado-laboral/empleo-y-desempleo%20https://www.dane.gov. co/index.php/estadisticas-por-tema/mercado-laboral/empleo-y-desempleo#empleo-y-desocupacion
dc.relation.referencesDANE. (2023b). Inseguridad Alimentaria en Colombia (inf. t´ec.). https://doi.org/10.25062/9786287602588. 06
dc.relation.referencesDANE. (2023c). Pobreza Multidimensional. Consultado el 19 de febrero de 2024, desde https://www.dane. gov.co/index.php/estadisticas-por-tema/pobreza-y-condiciones-de-vida/pobreza-multidimensional
dc.relation.referencesDauby, J. P., & Upholzer, S. (2011). Exploring behavioral dynamics in systems of systems. Procedia Com- puter Science, 6, 34-39. https://doi.org/10.1016/j.procs.2011.08.009
dc.relation.referencesDawoe, E. K., Quashie-Sam, J., Isaac, M. E., & Oppong, S. K. (2012). Exploring farmers’ local knowledge and perceptions of soil fertility and management in the Ashanti Region of Ghana. Geoderma, 179- 180, 96-103. https://doi.org/https://doi.org/10.1016/j.geoderma.2012.02.015
dc.relation.referencesDe Breij, S., Qvist, J. Y., Holman, D., M¨acken, J., Seitsamo, J., Huisman, M., & Deeg, D. J. H. (2019). Educational inequalities in health after work exit: The role of work characteristics. BMC Public Health, 19(1). https://doi.org/10.1186/s12889-019-7872-0
dc.relation.referencesde Brites Figueiredo, A. G., & Gremaud, A. P. (2022). Agrarism and industrialism in the Constituent As- sembly of 1823: a debate about the future of Brazil. Topoi (Brazil), 23(51), 847-869. https://doi.org/ 10.1590/2237-101X02305109
dc.relation.referencesde Oliveira, M., & Pena, I. A. D. (2021). Rural’s Reinvention in Rio de Janeiro: Cafe na Roca Experien- ce in Campo Grande Neighborhood. ROSA DOS VENTOS-TURISMO E HOSPITALIDADE, 13(2), 389-408. https://doi.org/10.18226/21789061.v13i2p389
dc.relation.referencesDeep, S., & Saklani, A. (2014). Urban sprawl modeling using cellular automata. Egyptian Journal of Remote Sensing and Space Science, 17(2), 179-187. https://doi.org/10.1016/j.ejrs.2014.07.001
dc.relation.referencesdel Castillo, A. F., Garibay, M. V., D´ıaz-V´azquez, D., Yebra-Montes, C., Brown, L. E., Johnson, A., Garcia- Gonzalez, A., & Gradilla-Hern´andez, M. S. (2024). Improving river water quality prediction with hybrid machine learning and temporal analysis. Ecological Informatics, 82(June). https://doi.org/ 10.1016/j.ecoinf.2024.102655
dc.relation.referencesDenrell, J., & March, J. G. (2001). Adaptation as Information Restriction: The Hot Stove Effect. Organiza- tion Science, 12(5), 523-538. http://www.jstor.org/stable/3085997
dc.relation.referencesDhanya, C. T., & Kumar, D. N. (2009). Data mining for evolution of association rules for droughts and floods in India using climate inputs. Journal of Geophysical Research Atmospheres, 114(2), 1-15. https://doi.org/10.1029/2008JD010485
dc.relation.referencesDiack, M., Loum, M., Diop, C. T., & Holloway, A. (2017). Quantitative risk analysis using vulnerability in- dicators to assess food insecurity in the Niayes agricultural region of West Senegal. J`amb´a : Journal of Disaster Risk Studies, 9(1), 1-8. https://doi.org/10.4102/jamba.v9i1.379
dc.relation.referencesDing, T., & Achten, W. M. J. (2022). Coupling agent-based modeling with territorial LCA to support agri- cultural land-use planning. Journal of Cleaner Production, 380. https://doi.org/10.1016/j.jclepro. 2022.134914
dc.relation.referencesDinler, D. S¸ . (2016). New forms of wage labour and struggle in the informal sector: the case of waste pickers in Turkey. Third World Quarterly, 37(10), 1834-1854. https://doi.org/10.1080/01436597.2016. 1175934
dc.relation.referencesDix-Carneiro, R., & Kovak, B. K. (2019). Margins of labor market adjustment to trade. Journal of Interna- tional Economics, 117, 125-142. https://doi.org/10.1016/j.jinteco.2019.01.005
dc.relation.referencesDNP. (2007a). Plan Nacional de Desarrollo 2006-2010 (Tomo II). https://colaboracion.dnp.gov.co/CDT/ PND/PND Tomo 2.pdf
dc.relation.referencesDNP. (2007b). Plan Nacional de Desarrollo 2006-2010. Estado Comunitario (Tomo I). https://colaboracion. dnp.gov.co/CDT/PND/PND Tomo 1.pdf
dc.relation.referencesDNP. (2007c). Política de estado para el pacífico colombiano. https://colaboracion.dnp.gov.co/CDT/Conpes/ Econ%7B%5C’%7Bo%7D%7Dmicos/3491.pdf
dc.relation.referencesDNP. (2007d). Política para el mejoramiento de la gestión vial departamental a través de la implementación del ”Plan vial regional”
dc.relation.referencesDNP. (2008a). Lineamientos de política para promover la producción sostenible de biocombustibles en Colombia. http://hdl.handle.net/20.500.12324/13036
dc.relation.referencesDNP. (2008b). Política de Promoción Social y Económica Para El Departamento De Chocó
dc.relation.referencesDNP. (2008c). Politica Nacional de Seguridad Alimentaria y Nutricional. https://www.minagricultura.gov. co/Normatividad/Conpes/Conpes%20113%20de%202008.pdf
dc.relation.referencesDNP. (2008d). Pol´ıtica Nacional Fitosanitaria y de Inocuidad para las Cadenas de Frutas y de otros Vegetales
dc.relation.referencesDNP. (2009). Política Nacional para la Racionalización del Componente de Costos de Producción Asociado a los Fertilizantes en el Sector Agropecuario
dc.relation.referencesDNP. (2010a). Política Nacional de Erradicación Manual de Cultivos Ilícitos y Desarrollo Alternativo para la Consolidación Territorial. https://colaboracion.dnp.gov.co/CDT/Conpes/Econ%7B%5C’%7Bo% 7D%7Dmicos/3669.pdf
dc.relation.referencesDNP. (2010b). Política Nacional para el Fortalecimiento de los Organismos de Acción Comuna
dc.relation.referencesDNP. (2011a). Plan Nacional de Desarrollo 2010-2014 (Tomo I)
dc.relation.referencesDNP. (2011b). Plan Nacional de Desarrollo 2010-2014 (Tomo II). https://colaboracion.dnp.gov.co/CDT/ PND/PND2010-2014%20Tomo%20II%20CD.pdf
dc.relation.referencesDNP. (2011c). Política para el desarrollo comercial de la biotecnología a partir del uso sostenible de la biodiversidad. https://minciencias.gov.co/sites/default/files/conpes 3697 de 2011 politia desarrollo comercial de la biotecnologia a partir uso biodiversidad.pdf
dc.relation.referencesDNP. (2013). Estrategia de Desarrollo Integral de la Región del Catatumbo
dc.relation.referencesDNP. (2014a). Plan Nacional de Desarrollo 2014 - 2018 (Tomo 1)
dc.relation.referencesDNP. (2014b). Plan Nacional de Desarrollo 2014-2018 (Tomo 2). https://doi.org/10.1787/9789264190375- 13-es
dc.relation.referencesDNP. (2014c). Política para el desarrollo integral de la Orinoquia
dc.relation.referencesDNP. (2014d). Política para el Suministro de Agua Potable y Saneamiento Básico en la Zona Rural
dc.relation.referencesDNP. (2014e). Política para la preservación del paisaje cultural cafetero de Colombia
dc.relation.referencesDNP. (2014f). Política y estrategias para el desarrollo agropecuario del departamento de Nariño
dc.relation.referencesDNP. (2015a). Importancia Estratégica del Programa Vías para la Equidad
dc.relation.referencesDNP. (2015b). Importancia estrategica del proyecto Corredor Santa Fe de Antioquia- Cañas gordas: Tunel del Toyo y vias de acceso ( Autopista de la Prosperidad). Documento Conpes 3836
dc.relation.referencesDNP. (2016). Política nacional de desarrollo productivo. http://hdl.handle.net/20.500.12324/12021
dc.relation.referencesDNP. (2017a). Declaración de importancia estratégica del proyecto vías para el Chocó: Transversal Quibdó - Medellín y Transversal Central del Pacífico
dc.relation.referencesDNP. (2017b). Declaratoria importancia estratégica del proyecto Mejoramiento y mantenimiento de vías para la conectividad regional. Nación - para la ejecución del proyecto de infraestructura vial con impacto regional financiado con recursos de la enajenación de Isagén
dc.relation.referencesDNP. (2018a). Declaración de importancia estratégica de la continuación de las obras de la Autopista Ruta de Sol, sector II a través de los siguientes proyectos: Construcción, mejoramiento y mantenimiento. Documento Conpes 3924. %7C
dc.relation.referencesDNP. (2018b). Declaraci´on de importancia estratégica del proyecto Mejoramiento y mantenimiento carretera Santafé de Bogotá-Chiquinquirá-Bucaramanga-San Alberto de la Troncal Central. Cundinamarca- Santander-Norte de Santander - Construcción variante San Gil
dc.relation.referencesDNP. (2018c). Estrategias de actuación y coordinaci´on para reducir las afectaciones ante la eventual ocurrencia de un fenómeno de variabilidad climática el niño 2018 - 2019
dc.relation.referencesDNP. (2018d). Lineamientos de política y estrategías para el desarrollo regional sostenible del Macizo Colombiano. https://colaboracion.dnp.gov.co/CDT/Conpes/Econ%7B%5C’%7Bo%7D%7Dmicos/ 3915.pdf
dc.relation.referencesDNP. (2018e). Plan Nacional de Desarrollo 2018-2022. https://colaboracion.dnp.gov.co/CDT/Prensa/PND- 2018-2022.pdf
dc.relation.referencesDNP. (2019). Declaración de importancia estratégica del proyecto de desarrollo, masificación y acceso a internet nacional, a través de la fase II de la iniciativa de incentivos a la demanda de acceso a Internet
dc.relation.referencesDNP. (2020a). Declaración de importancia estratégica del compromiso por Colombia: programa vías para la legalidad y la reactivación, visión 2030. https://colaboracion.dnp.gov.co/CDT/Conpes/Econ%7B% 5C’%7Bo%7D%7Dmicos/3836.pdf
dc.relation.referencesDNP. (2020b). Declaración de importancia estratégica del Proyecto nacional acceso universal a las tecnologías de la información y las comunicaciones en zonas rurales o apartadas. Documento Conpes 4001
dc.relation.referencesDNP. (2021a). Declaración de importancia estratégica del proyecto apoyo al desarrollo de proyectos a través del fondo regional para los contratos plan, ahora fondo regional para los pactos territoriales
dc.relation.referencesDNP. (2021b). Declaración de importancia estratégica del proyecto del Programa Vías para conectar territorios, el crecimiento sostenible y la reactivación 2.0
dc.relation.referencesDNP. (2021c). Pol´ıtica nacional de ciencia, tecnolog´ıa e innovaci´on 2022-2031. https://colaboracion.dnp. gov.co/CDT/Conpes/Econ%7B%5C’%7Bo%7D%7Dmicos/3582.pdf
dc.relation.referencesDNP. (2021d). Política para el Desarrollo de Proyectos de Infraestructura de Transporte Sostenible: Quinta Generación de Concesiones Bajo el Esquema de Asociación Público Privada – Concesiones del Bicentenario
dc.relation.referencesDNP. (2021e). Política para la reactivación, la repotenciación y el crecimiento sostenible e incluyente: nuevo compromiso por el futuro de Colombia. https://colaboracion.dnp.gov.co/CDT/Conpes/Econ%7B% 5C’%7Bo%7D%7Dmicos/3582.pdf
dc.relation.referencesDNP. (2021f). Política para la Sostenibilidad de la Caficultura Colombiana
dc.relation.referencesDNP. (2021g). Política P´ublica para el Desarrollo de la Economía Solidaria
dc.relation.referencesDNP. (2022). Documentos CONPES. Revista Juridica, (1), 1-14. https://colaboracion.dnp.gov.co/CDT/ DNP/SIG/M-CA-
dc.relation.referencesdos Reis, J. C., Rodrigues, G. S., de Barros, I., de Arag˜ao Ribeiro Rodrigues, R., Garrett, R. D., Valen- tim, J. F., Kamoi, M. Y. T., Michetti, M., Wruck, F. J., & Rodrigues-Filho, S. (2023). Fuzzy logic indicators for the assessment of farming sustainability strategies in a tropical agricultural frontier. Agronomy for Sustainable Development, 43(1). https://doi.org/10.1007/s13593-022-00858-5
dc.relation.referencesdos Santos, D. A., & Marta, J. M. C. (2014). The Kandir Law and the development of Mato Grosso: Analysis of the period 1990-2009. Revista Brasileira de Gestao e Desenvolvimento Regional, 10(1), 206-228. https://www.scopus.com/inward/record.uri?eid=2- s2.0- 84893608777&partnerID=40&md5= 0e3101bee352426dcf97c412635b3949
dc.relation.referencesDu, E., Cai, X., Wu, F., Foster, T., & Zheng, C. (2021). Exploring the impacts of the inequality of water permit allocation and farmers’ behaviors on the performance of an agricultural water market. Journal of Hydrology, 599. https://doi.org/10.1016/j.jhydrol.2021.126303
dc.relation.referencesDuan, Y., Zhou, S., He, J., & Bai, M. (2022). Effects of Permanent and Temporary Water-Right Payments on Balancing Agricultural and Ecological Interests: A Case Study of Hami Prefecture in Northwestern China. Journal of Water Resources Planning and Management, 148(11). https://doi.org/10.1061/ (ASCE)WR.1943-5452.0001620
dc.relation.referencesEdeme, R. K., Nkalu, N. C., Idenyi, J. C., & Arazu, W. O. (2020). Infrastructural Development, Sustaina- ble Agricultural Output and Employment in ECOWAS Countries. Sustainable Futures, 2(January), 100010. https://doi.org/10.1016/j.sftr.2020.100010
dc.relation.referencesEl Benni, N., Grovermann, C., & Finger, R. (2023). Towards more evidence-based agricultural and food policies. Q Open, 3(3). https://doi.org/10.1093/qopen/qoad003
dc.relation.referencesEmadi, A., Sobhani, R., Ahmadi, H., Boroomandnia, A., Zamanzad-Ghavidel, S., & Mohammad Azamathu- lla, H. (2022). Multivariate modeling of river water withdrawal using a hybrid evolutionary data- driven method. Water Supply, 22(1), 957-980. https://doi.org/10.2166/ws.2021.224
dc.relation.referencesEmami, M., Ahmadi, A., Daccache, A., Nazif, S., Mousavi, S.-F., & Karami, H. (2022). County-Level Irriga- tion Water Demand Estimation Using Machine Learning: Case Study of California. Water (Switzer- land), 14(12). https://doi.org/10.3390/w14121937
dc.relation.referencesEmami, S., Dehghanisanij, H., & Hajimirzajan, A. (2024). Agent-based simulation model to evaluate govern- ment policies for farmers’ adoption and synergy in improving irrigation systems: A case study of La- ke Urmia basin. Agricultural Water Management, 294. https://doi.org/10.1016/j.agwat.2024.108730
dc.relation.referencesEscalante, R., Catal´an, H., & Basurto, S. (2013). Determinantes del cr´edito en el sector agropecuario mexi- cano : un an´alisis mediante un modelo Probit. Cuadernos de Desarrollo Rural, 10(71), 101-124
dc.relation.referencesEsteve Selma, M.'A.'A., del Riquelme, M., Martínez Gallur, C., Lloréns, M., del Riquelme, P., & Martínez Gallur, C. (2003). Los recursos naturales de la región de Murcia : un análisis interdisciplinar. Universidad de Murcia
dc.relation.referencesEtienne, M., Bourgeois, M., & Souch`ereb, V. (2008). Participatory modelling of fire prevention and urbani- sation in southern France: From coconstructing to playing with the model. Proc. iEMSs 4th Biennial Meeting - Int. Congress on Environmental Modelling and Software: Integrating Sciences and Infor- mation Technology for Environmental Assessment and Decision Making, iEMSs 2008, 2, 972-979
dc.relation.referencesFang, J., & Tang, L. (2023). Developing policy-making for maximizing the water productivity in agricultural lands. Water Supply, 23(5), 2188-2196. https://doi.org/10.2166/ws.2023.091
dc.relation.referencesFei, S.-W., Miao, Y.-B., & Liu, C.-L. (2009). Chinese Grain Production Forecasting Method Based on Parti- cle Swarm Optimization-based Support Vector Machine. Recent Patents on Engineering, 3(1), 8-12. https://doi.org/10.2174/187221209787259947
dc.relation.referencesFeng, Y. J., Liu, Y., & Han, Z. (2011). Land use simulation and landscape assessment by using genetic algorithm based on cellular automata under different sampling schemes. Chinese Journal of Applied Ecology, 22(4), 957-963
dc.relation.referencesFerrans, C. E. (1990). Development of a quality of life index for patients with cancer. Oncology nursing forum, 17(3 Suppl), 11-15
dc.relation.referencesFirbank, L. G., Petit Sandrine, S. S., Blain, A., & Fuller, R. J. (2008). Assessing the impacts of agricultural intensification on biodiversity: a British perspective. Trans. R. Soc. B, 363(1492), 777-787. https: //doi.org/http://doi.org/10.1098/rstb.2007.2183
dc.relation.referencesFood and Agriculture Organization (FAO), Fondo Internacional de Desarrollo Agrícola (FIDA), United Na- tions Children’s Fund (UNICEF), Programa Mundial de Alimentos (PMA) & Organización Mundial de la Salud (OMS). (2018). El Estado de la Seguridad Alimentaria y Nutricional en el Mundo. FAO. http://www.fao.org/3/a-I7695s.pdf
dc.relation.referencesForrester, J. W. (2007). System Dynamics: the Next Fifty Years. System Dynamics Review, 23(August), 1-15
dc.relation.referencesFowler, K. R., Jenkins, E. W., Ostrove, C., Chrispell, J. C., Farthing, M. W., & Parno, M. (2015). A decision making framework with MODFLOW-FMP2 via optimization: Determining trade-offs in crop selec- tion. Environmental Modelling and Software, 69, 280-291. https://doi.org/10.1016/j.envsoft.2014. 11.031
dc.relation.referencesFrancesconi, W., Pérez Miñana, E., Willcock, S. P., Villa, F., & Quintero, M. (2015). Linking ecosystem services to food security in a changing planet: assessing Peruvian Amazon deforestation using the ARtificial Intelligence for Ecosystem Services (ARIES) framework. ASABE 1st Climate Change Symposium: Adaptation and Mitigation Proceedings of the 3-5 May 2015 Conference
dc.relation.referencesFrank, R. H. (1997). Microeconomics and Behavior. McGraw-Hill.
dc.relation.referencesFürst, C., Volk, M., Pietzsch, K., & Makeschin, F. (2010). Pimp your landscape: A tool for qualitative evalua- tion of the effects of regional planning measures on ecosystem services. Environmental Management, 46(6), 953-968. https://doi.org/10.1007/s00267-010-9570-7
dc.relation.referencesGandhi, F. R., & Patel, J. N. (2022). Combined Standardized Precipitation Index and ANFIS Approach for Predicting Rainfall in the Tropical Savanna Region. Journal of Soft Computing in Civil Engineering, 6(3), 63-77. https://doi.org/10.22115/scce.2022.333365.1412
dc.relation.referencesGao, C., Wu, Q., Dyck, M., Lv, J., & He, H. (2022). Greenhouse area detection in Guanzhong Plain, Shaanxi, China: spatio-temporal change and suitability classification. International Journal of Digital Earth, 15(1), 226-248. https://doi.org/10.1080/17538947.2021.2023667
dc.relation.referencesGao, Y., Zhao, T., Xu, X., & Ndidiamaka, A. P. (2023). Can agricultural protectionist policies help achieve food security in Nigeria? Frontiers in Sustainable Food Systems, 7. https://doi.org/10.3389/fsufs. 2023.1095914
dc.relation.referencesGarcia-Diaz, N., Lopez-Martin, C., & Chavoya, A. (2013). A Comparative Study of Two Fuzzy Logic Mo- dels for Software Development Effort Estimation. Procedia Technology, 7, 305-314. https://doi.org/ https://doi.org/10.1016/j.protcy.2013.04.038
dc.relation.referencesGauriau, O., Gal´arraga, L., Brun, F., Termier, A., Davadan, L., & Joudelat, F. (2024). Comparing machine- learning models of different levels of complexity for crop protection: A look into the complexity- accuracy tradeoff. Smart Agricultural Technology, 7. https://doi.org/10.1016/j.atech.2023.100380
dc.relation.referencesGellrich, M., & Zimmermann, N. E. (2007). Investigating the regional-scale pattern of agricultural land abandonment in the Swiss mountains: A spatial statistical modelling approach. Landscape and Ur- ban Planning, 79(1), 65-76. https://doi.org/https://doi.org/10.1016/j.landurbplan.2006.03.004
dc.relation.referencesGhahramani, Z. (2001). An Introduction to Hidden Markov Models and Bayesian Networks. Int. J. Pattern Recognit. Artif. Intell., 15, 9-42
dc.relation.referencesGimona, A., & Polhill, J. G. (2011). Exploring robustness of biodiversity policy with a coupled meta com- munity and agent-based model. Journal of Land Use Science, 6(2-3), 175-193. https://doi.org/10. 1080/1747423X.2011.558601
dc.relation.referencesGimona, A., Polhill, J. G., & Davies, B. (2011). Sinks, sustainability, and conservation incentives. En J. Liu, V. Hull, A. T. Morzillo & J. A. Wiens (Eds.), Sources, Sinks and Sustainability (pp. 155-178). Cambridge University Press. https://doi.org/10.1017/CBO9780511842399.010
dc.relation.referencesGolosov, V. N., Collins, A. L., Dobrovolskaya, N. G., Bazhenova, O. I., Ryzhov, Y. V., & Sidorchuk, A. Y. (2021). Soil loss on the arable lands of the forest-steppe and steppe zones of European Russia and Siberia during the period of intensive agriculture. Geoderma, 381. https : / / doi . org / 10 . 1016 / j . geoderma.2020.114678
dc.relation.referencesGómez, P. P. (2016). Evaluación de la política pública de reforma agraria en Colombia (1991 – 2010): Estudios de caso en seis municipios del país [Tesis doctoral, Universidad Nacional de Colombia Facultad]. http://www.bdigital.unal.edu.co/53481/
dc.relation.referencesGómez R., D. T., Barbosa P., E. M., & Rojas V., W. E. (2016). Pol´ıtica agraria y posconflicto en Colombia. Inclusi´on & Desarrollo, 2(2), 74-82. https://doi.org/10.26620/uniminuto.inclusion.3.1.2016.74-84
dc.relation.referencesGopinath, M., Batarseh, F. A., & Beckman, J. (2020). Machine learning in gravity models : an application to agricultural trade, NATIONAL BUREAU OF ECONOMIC RESEARCH. http://www.nber.org/ papers/w27151
dc.relation.referencesGottero, E. (2019). Identifying vulnerable farmland: An index to capture high urbanisation risk areas. Eco- logical Indicators, 98(October 2018), 61-67. https://doi.org/https://doi.org/10.1016/j.ecolind.2018. 10.037
dc.relation.referencesGottlieb, C., & Grobovˇsek, J. (2019). Communal land and agricultural productivity. Journal of Development Economics, 138(July 2018), 135-152. https://doi.org/10.1016/j.jdeveco.2018.11.001
dc.relation.referencesGranco, G., Caldas, M., Bergtold, J., Heier Stamm, J. L., Mather, M., Sanderson, M., Daniels, M., Sheshu- kov, A., Haukos, D., & Ramsey, S. (2022). Local environment and individuals’ beliefs: The dynamics shaping public support for sustainability policy in an agricultural landscape. Journal of Environmen- tal Management, 301. https://doi.org/10.1016/j.jenvman.2021.113776
dc.relation.referencesGuanziroli, C. E. (2014). Evoluci´on de la Pol´ıtica Agr´ıcola Brasile˜na: 1980-2010. Mundo Agr´ario, 15(29), 1-33. http://www.mundoagrario.unlp.edu.ar/
dc.relation.referencesGuida, G. (2022). Manufactured in the Peri-Urban: Regenerative Strategies for Critical Lands. En GeoJour- nal Library (pp. 247-254, Vol. 128). Springer Science; Business Media B.V. https://doi.org/10.1007/ 978-3-030-78536-9 15
dc.relation.referencesGuresen, E., & Kayakutlu, G. (2011). Definition of Artificial Neural Networks with comparison to other networks. Procedia Computer Science, 3, 426-433. https://doi.org/10.1016/j.procs.2010.12.071
dc.relation.referencesGutiérrez García, G. A., Gutiérrez-Montes, I., Hernández Núñez, H. E., Suárez Salazar, J. C., & Casanoves, F. (2020). Relevance of local knowledge in decision-making and rural innovation: A methodologi- cal proposal for leveraging participation of Colombian cocoa producers. Journal of Rural Studies, 75(January), 119-124. https://doi.org/https://doi.org/10.1016/j.jrurstud.2020.01.012
dc.relation.referencesHaas, B. K. (1999). Clarification and integration of similar quality of life concepts. Image–the journal of nursing scholarship, 31(3), 215-220. https://doi.org/10.1111/j.1547-5069.1999.tb00483.x
dc.relation.referencesHabermas, J. (1992). Tres modelos de democrácia: Sobre el concepto de una política deliberativa. Debats, (39), 18-21
dc.relation.referencesHan, S. S. (2018). Agricultural surplus labor transfer. https://doi.org/10.4324/9780429501760
dc.relation.referencesHelfand, S. M. (2003). The Impact of Agricultural Policy Reforms on the Agricultural Sector in Brazil in the 1990s: Implications for Pro-Poor Agricul. Oecd Global Forum on Agriculture: Designing and Implementing Pro-Poor Agricultural Policies, 56
dc.relation.referencesHelmsing, A. H. J. B. (2016). Innovative local and regional economic development initiatives in Latin Ame- rica: a review. Interac¸ ˜oes (Campo Grande), 7(12). https : / / www. interacoes . ucdb. br / interacoes / article/view/475
dc.relation.referencesHernández Sampieri, R., Fernández Collado, C., Baptista Lucio, M. d. P., & Baptista Lucio, P. (2014). Meto- dología de la Investigación (Sexta). McGRAW-HILL / INTERAMERICANA EDITORES, S.A. DE C.V.
dc.relation.referencesHernández-Flores, J.A. A., Martínez-Corona, B., Méndez-Espinoza, J. A., Pérez-Avilés, R., Ramirez-Juárez, J., & Navarro-Garza, H. (2009). Rurales y periurbanos: Una aproximación al proceso de conformación de la periferia poblana. Papeles de población, 15(61), 275-295.
dc.relation.referencesHidayat, A. R. T., Onitsuka, K., Sianipar, C. P. M., Basu, M., & Hoshino, S. (2023). To migrate or not to migrate: Internet use and migration intention among rural youth in developing countries (case of Malang, Indonesia). Digital Geography and Society, 4.
dc.relation.referencesHossain, M., & Muromachi, Y. (2012). A Bayesian network based framework for real-time crash predic- tion on the basic freeway segments of urban expressways. Accident Analysis and Prevention, 45, 373-381. https://doi.org/10.1016/j.aap.2011.08.004
dc.relation.referencesHuang, J., Zhang, F., Song, J., & Li, W. (2022). An Agent-based Simulation Model of Wheat Market Ope- ration: The Benefit of Support Price. Journal of Systems Science and Systems Engineering, 31(4), 437-456. https://doi.org/10.1007/s11518-022-5527-7
dc.relation.referencesHuang, K., Cao, S., Qing, C., Xu, D., & Liu, S. (2023). Does labour migration necessarily promote farmers’ land transfer-in? - Empirical evidence from China’s rural panel data. Journal of Rural Studies, 97, 534-549. https://doi.org/10.1016/j.jrurstud.2022.12.027
dc.relation.referencesIBGE. (2023). Indicadores IBGE: Levantamento Sistemático da Producao Agrícola (inf. t'ec.). INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTAT´íSTICA - IBGE. https://ftp.ibge.gov.br/Producao Agricola/Levantamento Sistematico da Producao Agricola %5Bmensal%5D/Fasciculo Indicadores IBGE/2023/estProdAgri 202311.pdf
dc.relation.referencesIGAC, I. G. A. C. (2015). Solo el 16 por ciento de los suelos de Colombia está blindado contra la “depredación ambiental” del hombre — Noticias.
dc.relation.referencesIjaz, M., Zafar, Q., Khan, A. A., & Hassan, S. S. (2023). Assessing drought and its impacts on wheat yield using remotely sensed observations in rainfed Potohar region of Pakistan. Environment, Develop- ment and Sustainability, 25(4), 3699-3721. https://doi.org/10.1007/s10668-022-02200-1
dc.relation.referencesIllán-Fernández, E. J., Pérez-Morales, A., & Romero-Díaz, A. (2022). Reliability of sealed surfaces detection using Copernicus data. Boletin de la Asociacion de Geografos Espanoles, (93). https://doi.org/10. 21138/bage.3288
dc.relation.referencesIntergovernmental Panel on Climate Change (IPCC). (2014). Climate Change 2014 Synthesis Report Sum- mary Chapter for Policymakers. Ipcc, 31. https://doi.org/10.1017/CBO9781107415324
dc.relation.referencesInza, I., Larrañaga, P., Etxeberria, R., & Sierra, B. (2000). Feature Subset Selection by Bayesian network- based optimization. Artificial Intelligence, 123(1-2), 157-184.
dc.relation.referencesJäckering, L., Meemken, E.-M., Sellare, J., & Qaim, M. (2021). Promoting written employment contracts: Evidence from a randomised awareness campaign. European Review of Agricultural Economics, 48(4), 1007-1030. https://doi.org/10.1093/erae/jbaa035
dc.relation.referencesJaiswal, R. S., & Sarode, M. V. (2015). An Overview on Fuzzy Logic and Fuzzy Elements. International Research Journal of Computer Science, 3(2), 29-34. http://www.irjcs.com/volumes/vol2/iss3/05. MACS10088.pdf
dc.relation.referencesJamroga, W. (2008). A Temporal Logic for Markov Chains. Proceedings of the 7th International Joint Con- ference on Autonomous Agents and Multiagent Systems - Volume 2, (January), 697-704. https://doi. org/10.1145/1402298.1402321
dc.relation.referencesJang, J. S. R., Sun, C. T., & Mizutani, E. (1997). Neuro-Fuzzy and Soft Computing-A Computational Ap- proach to Learning and Machine Intelligence. IEEE Transactions on Automatic Control, 42(10), 1482-1484. https://doi.org/10.1109/TAC.1997.633847
dc.relation.referencesJang, J. S. (1993). ANFIS: adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics, 23(3), 665-685. https://doi.org/10.1109/21.256541
dc.relation.referencesJang, S. H., Roh, J. H., Kim, W., Sherpa, T., Kim, J. H., & Park, J. B. (2011). A novel binary ant colony optimization: Application to the unit commitment problem of power systems. Journal of Electrical Engineering and Technology, 6(2), 174-181. https://doi.org/10.5370/JEET.2011.6.2.174
dc.relation.referencesJiménez-Taracido, L., Martinez, A. I. M., & Chauvie, D. G. B. (2019). Reading education literacy centre and metacognition in a spanish adult education centre. European Journal for Research on the Education and Learning of Adults, 10(1), 29-46. https://doi.org/10.3384/rela.2000-7426.OJS169
dc.relation.referencesJ.Ross, T. (2010). Fuzzy Logic With Engineering Application.
dc.relation.referencesKadri, N., Jebari, S., Augusseau, X., Mahdhi, N., Lestrelin, G., & Berndtsson, R. (2023). Analysis of Four Decades of Land Use and Land Cover Change in Semiarid Tunisia Using Google Earth Engine. Remote Sensing, 15(13). https://doi.org/10.3390/rs15133257
dc.relation.referencesKalantari, K., & Abdollahzadeh, G. (2008). Factors affecting agricultural land fragmentation in Iran: A case study of Ramjerd sub district in Fars province. American Journal of Agricultural and Biological Science, 3(1), 358-363. https://doi.org/10.3844/ajabssp.2008.358.363
dc.relation.referencesKanigel, R., & Porter, G. (1997, enero). The One Best Way: Frederick Winslow Taylor and the Enigma of Efficiency (Vol. 278).
dc.relation.referencesKaramian, F., Mirakzadeh, A. A., & Azari, A. (2023). Application of multi-objective genetic algorithm for optimal combination of resources to achieve sustainable agriculture based on the water-energy-food nexus framework. Science of the Total Environment, 860. https://doi.org/10.1016/j.scitotenv.2022. 160419
dc.relation.referencesKhalid, B., & Urbánski, M. (2021). APPROACHES TO UNDERSTANDING MIGRATION: A MULT-COUNTRY ANALYSIS OF THE PUSH AND PULL MIGRATION TREND. Economics and Sociology, 14(4), 242-267. https://doi.org/10.14254/2071-789X.2021/14-4/14
dc.relation.referencesKhalmirzayeva, S. (2023). Evaluation of global experience of state support for the agribusiness and agricul- tural sections. En P. D., N. K. B. & K. V. (Eds.), E3S Web of Conferences (Vol. 389). EDP Sciences. https://doi.org/10.1051/e3sconf/202338903071
dc.relation.referencesKingdon, J. W., & Thurber, J. A. (2011). Agendas, Alternatives, and Public Policies. Longman.
dc.relation.referencesKinra, A., Hald, K. S., Mukkamala, R. R., & Vatrapu, R. (2020). An unstructured big data approach for country logistics performance assessment in global supply chains. International Journal of Opera- tions and Production Management, 40(4), 439-458. https://doi.org/10.1108/IJOPM-07-2019-0544
dc.relation.referencesKochar, A. (2004). Urban influences on rural schooling in India. Journal of Development Economics, 74(1), 113-136. https://doi.org/10.1016/j.jdeveco.2003.12.006
dc.relation.referencesKoulouri, M., & Giourga, C. (2007). Land abandonment and slope gradient as key factors of soil erosion in Mediterranean terraced lands. CATENA, 69(3), 274-281. https://doi.org/https://doi.org/10.1016/j. catena.2006.07.001
dc.relation.referencesKrumbiegel, K., Maertens, M., & Wollni, M. (2018). The Role of Fairtrade Certification for Wages and Job Satisfaction of Plantation Workers. World Development, 102, 195-212. https://doi.org/10.1016/j. worlddev.2017.09.020
dc.relation.referencesKulisz, M., Duisenbekova, A., Kujawska, J., Kaldybayeva, D., Issayeva, B., Lichograj, P., & Cel, W. (2023). Implications of neural network as a decision-making tool in managing kazakhstan’s agricultural economy. Applied Computer Science, 19(4), 121-135. https://doi.org/10.35784/acs-2023-39
dc.relation.referencesLai, Y. R., Orton, T. G., Pringle, M. J., Menzies, N. W., & Dang, Y. P. (2020). Increment-averaged kriging: a comparison with depth-harmonized mapping of soil exchangeable sodium percentage in a cropping region of eastern Australia. Geoderma, 363. https://doi.org/10.1016/j.geoderma.2019.114151
dc.relation.referencesLamino Jaramillo, P., & Boren-Alp´ızar, A. E. (2023). Agricultural identity of Indigenous Salasacas in Ecua- dor. AlterNative, 19(4), 882-891. https://doi.org/10.1177/11771801231197979
dc.relation.referencesLarrubia Vargas, R. (2017). La pol´ıtica agraria com´un y sus reformas : reflexiones en torno a la reforma de 2014-2020. Cuadernos Geogr´afico, 56(1), 124-147
dc.relation.referencesLawton, M. P. (1999). Quality of life in chronic illness. Gerontology, 45(4), 181-183. https://doi.org/10. 1159/000022083
dc.relation.referencesLerner, J. S., Li, Y., Valdesolo, P., & Kassam, K. S. (2015). Emotion and decision making. Annual Review of Psychology, 66, 799-823. https://doi.org/10.1146/annurev-psych-010213-115043
dc.relation.referencesLi, C., Will, M., Gruji´c, N., Ge, J., M¨uller, B., Gosal, A., & Ziv, G. (2023). An Agent-Based Model of UK Farmers’ Decision-Making on Adoption of Agri-environment Schemes. En S. F. (Ed.), Springer Proceedings in Complexity (pp. 463-475). Springer Science; Business Media B.V. https://doi.org/ 10.1007/978-3-031-34920-1 37
dc.relation.referencesLi, J., Rodriguez, D., & Tang, X. (2017). Effects of land lease policy on changes in land use, mechanization and agricultural pollution. Land Use Policy, 64(1), 405-413. https://doi.org/10.1016/j.landusepol. 2017.03.008
dc.relation.referencesLi, J., & Wang, M. (2010). Chaotic Genetic Algorithm-Based Forest Harvest Adjustment. Journal of Donghua University, 27(2)
dc.relation.referencesLiberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gøtzsche, P. C., Ioannidis, J. P., Clarke, M., Devereaux, P. J., Kleijnen, J., & Moher, D. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. PLoS Medicine, 6(7). https://doi.org/10.1371/journal.pmed.1000100
dc.relation.referencesLichtenstein, S., Fischhoff, B., & Phillips, L. D. (1982). Calibration of probabilities: The state of the art to 1980. En A. Tversky, D. Kahneman & P. Slovic (Eds.), Judgment under Uncertainty: Heu- ristics and Biases (pp. 306-334). Cambridge University Press. https : / / doi . org / DOI : 10 . 1017 / CBO9780511809477.023
dc.relation.referencesLindblom, C. E. (1959). The Science of ”Muddling Through”. Public Administration Review, 19(2), 79-88
dc.relation.referencesLink, A., Montes, A., Andrade, J. C., Bonell, W., Acevedo, L. D., & de Luna, A. G. (2022). Primate Diversity and Population Status in the Serranía de San Lucas, Colombia: A Priority Area for Primate Conservation in Northern South America. Primate Conservation, 2022(36), 63-73.
dc.relation.referencesLópez, O. L., & Herrera, L. M. (2017). Tendencia de la producción y el consumo del café en Colombia. Apuntes del Cenes, 36(64), 139-165. https://doi.org/10.19053/01203053.v36.n64.2017.5419
dc.relation.referencesLozada Ordóñez, L., Dias da Cruz, D., & Oliveira de Andrade, M. (2018). Ecosystem services and use of Afro-descendant land in the Colombian North Pacific: Transformations in the traditional production system. Land Use Policy, 75(January), 631-641. https://doi.org/https://doi.org/10.1016/j.landusepol. 2018.01.043
dc.relation.referencesLytos, A., Lagkas, T., Sarigiannidis, P., Zervakis, M., & Livanos, G. (2020). Towards smart farming: Systems, frameworks and exploitation of multiple sources. Computer Networks, 172. https://doi.org/10.1016/ j.comnet.2020.107147
dc.relation.referencesMa, S., Wu, K., Lao, C., Zhong, Y., Zhang, T., & Huang, T. (2017). Establishment and application of iZone system for intelligently identifying preserved zones of permanent prime farmland. Transactions of the Chinese Society of Agricultural Engineering, 33(2), 276-282
dc.relation.referencesMaarif, S., Hardjomidjojo, H., & Adrianto, L. (2020). A design of optimization based logistic strategy for seaweed agroindustry: A case study in South Sulawesi Indonesia. IOP Conference Series: Earth and Environmental Science, 454(1). https://doi.org/10.1088/1755-1315/454/1/012033
dc.relation.referencesMaitra, S., Hossain, A., Brestic, M., Skalicky, M., Ondrisik, P., Gitari, H., Brahmachari, K., Shankar, T., Bha- dra, P., Palai, J. B., Jena, J., Bhattacharya, U., Duvvada, S. K., Lalichetti, S., & Sairam, M. (2021). Intercropping - A low input agricultural strategy for food and environmental security. Agronomy, 11(2). https://doi.org/10.3390/agronomy11020343
dc.relation.referencesMan, K. F., Tang, K. S., & Kwong, S. (1996). Genetic algorithms: Concepts and applications. IEEE Transac- tions on Industrial Electronics, 43(5), 519-534. https://doi.org/10.1109/41.538609
dc.relation.referencesManyika, J., Chui, M., Miremadi, M., Bughin, J., George, K., Willmott, K., Willmott, P., & Dewhurst, M. (2017). Un futuro que funciona: automatizaci´on, empleo y productividad. McKinsey Global Institu- te
dc.relation.referencesMardani Najafabadi, M., Mirzaei, A., Azarm, H., & Nikmehr, S. (2022). Managing Water Supply and Demand to Achieve Economic and Environmental Objectives: Application of Mathematical Program- ming and ANFIS Models. Water Resources Management, 36(9), 3007-3027. https : / / doi . org / 10 . 1007/s11269-022-03178-1
dc.relation.referencesMartin, B. (2007). Damage spreading and µ-sensitivity on cellular automata. Ergodic Theory and Dynamical Systems, 27(2), 545-565. https://doi.org/10.1017/S0143385706000782
dc.relation.referencesMartin, D. A. (2018). U-shaped wage curve and the internet: The colombian case; [Internet y curva salarial en forma de U: El caso colombiano]. Estudios de Economia, 45(2), 173-202. https://doi.org/10. 4067/S0718-52862018000200173
dc.relation.referencesMartín del Brío, B., Sanz Molina, A., Martín-del-Brío, B., & Sanz, A. (2006, enero). Redes neuronales y sistemas borrosos
dc.relation.referencesMartínez Hernández, C. (2017). El abandono de campos de cultivo en la Región de Murcia : causas y con- secuencias medioambientales y socioeconómicas [Tesis doctoral, UNIVERSIDAD DE MURCIA]. Universidad de Murcia, 2017. http://bd.univalle.edu.co/login?url=https://search.ebscohost.com/ login.aspx?direct=true&db=edstdx&AN=edstdx.10803.405714&lang=es&site=eds-live
dc.relation.referencesMatlab. (2023). Support Vector Machine (SVM) Explained - MATLAB & Simulink. Consultado el 23 de septiembre de 2023, desde https://www.mathworks.com/discovery/support-vector-machine.html
dc.relation.referencesMazzocchi, C., Sali, G., & Corsi, S. (2013). Land use conversion in metropolitan areas and the permanence of agriculture: Sensitivity Index of Agricultural Land (SIAL), a tool for territorial analysis. Land Use Policy, 35, 155-162. https://doi.org/https://doi.org/10.1016/j.landusepol.2013.05.019
dc.relation.referencesMehraban, N., Kubitza, C., Alamsyah, Z., & Qaim, M. (2021). Oil palm cultivation, household welfare, and exposure to economic risk in the Indonesian small farm sector. Journal of Agricultural Economics, 72(3), 901-915. https://doi.org/10.1111/1477-9552.12433
dc.relation.referencesMehryar, S., Sliuzas, R., Schwarz, N., Sharifi, A., & van Maarseveen, M. (2019). From individual Fuzzy Cognitive Maps to Agent Based Models: Modeling multi-factorial and multi-stakeholder decision- making for water scarcity. Journal of Environmental Management, 250(September), 109482. https: //doi.org/10.1016/j.jenvman.2019.109482
dc.relation.referencesMeiFang, W., & JinMing, L. (2008). Adaptive genetic algorithm-based forest harvest adjustment. Procee- dings of 2008 3rd International Conference on Intelligent System and Knowledge Engineering, ISKE 2008, 1, 541-544. https://doi.org/10.1109/ISKE.2008.4730990
dc.relation.referencesMeisner, M. H., Rosenheim, J. A., Tagkopoulos, I., & Peters, D. P. (2016). A data-driven, machine learning framework for optimal pest management in cotton. Ecosphere, 7(3), 1-13. https://doi.org/10.1002/ ecs2.1263
dc.relation.referencesMejía Jímenez, J. (2011). Modelos de implementación de las políticas públicas en Colombia y su impacto en el bienestar social. Analecta política, 2(3 Jul-Dic), 141-164. https://revistas.upb.edu.co/index. php/analecta/article/view/1392
dc.relation.referencesMena Report. (2017, septiembre). Colombia: MinAgriculture provides livestock and fish farming projects to boost educational centers with agricultural vocation in Magdalena. http://bd.univalle.edu.co/login? url=https://search.ebscohost.com/login.aspx?direct=true&db=edsinc&AN=edsinc.A502735518& lang=es&site=eds-live
dc.relation.referencesMéndez-Puga, A. M., Vargas-Garduño, M. d. L., & Vargas-Silva, A. D. (2022). Jornaleras y jornaleros agrícolas migrantes: colectivo de resistencia decolonial por la justicia social. Canadian Journal of Latin American and Caribbean Studies, 47(3), 479-498. https://doi.org/10.1080/08263663.2022. 2110787
dc.relation.referencesMeng, B., Kuang, H., Niu, E., Li, J., & Li, Z. (2020). Research on the transformation path of the green intelligent port: Outlining the perspective of the evolutionary game “government–port–third-party organization”. Sustainability (Switzerland), 12(19), 1-25. https://doi.org/10.3390/su12198072
dc.relation.referencesMinisterio de Hacienda de la Republica de Colombia. (1993). Por el cual se reglamenta la contabilidad en general y se expiden los principios o normas de contabilidad generalmente aceptados en Colombia
dc.relation.referencesMirzaei, A., Ashktorab, N., & Noshad, M. (2023). Evaluation of the policy options to adopt a water-energy- food nexus pattern by farmers: Application of optimization and agent-based models. Frontiers in Environmental Science, 11. https://doi.org/10.3389/fenvs.2023.1139565
dc.relation.referencesMolajou, A., Pouladi, P., & Afshar, A. (2021). Incorporating Social System into Water-Food-Energy Nexus. WATER RESOURCES MANAGEMENT, 35(13), 4561-4580. https://doi.org/10.1007/s11269-021- 02967-4
dc.relation.referencesMolina, J.-L., Pulido-Velázquez, M., Llopis-Albert, C., & Peña-Haro, S. (2013). Stochastic hydro-economic model for groundwater quality management using Bayesian networks. Water science and technology : a journal of the International Association on Water Pollution Research, 67(3), 579-586. https : //doi.org/10.2166/wst.2012.598
dc.relation.referencesMora Pacheco, K. G. (2015). Monotonía, aislamiento y atraso agrícola. Descripciones de viajeros del siglo XIX e historia agraria de la Sabana de Bogotá (Colombia) / Monotony, Isolation and Backward Agriculture. Travel Accounts of 19th Century and Agrarian History of Bogota Plateau (. HiSTOReLo. Re- vista de Historia Regional y Local, 7(14), 180-213. https://doi.org/10.15446/historelo.v7n14.48625
dc.relation.referencesMorales, S. L., Morales, M. R., & Rizo, R. (2017). Metodología para Procesos de Inteligencia de Negocios con mejoras en la extracción y transformación de fuentes de Datos. Revista Publicando, 4(11), 107-119. http://rmlconsultores.com/revista/index.php/crv/article/view/553/pdf 364
dc.relation.referencesMotamed, M. K., Irannejad, F., Rezaei, M., & Rousta, K. (2011). An investigation of educational needs of Guilan- Iran’s tea-planters. African Journal of Agricultural Research, 6(16), 3646-3653. https: / / www . scopus . com / inward / record . uri ? eid = 2 - s2 . 0 - 80052953290 & partnerID = 40 & md5 = 7cc90f9418a9dfe7989b7c896ae5b11e
dc.relation.referencesMtetwa, E. (2018). Disability and the challenge of employment in Zimbabwe: A social protection perspecti- ve. African Journal of Social Work, 8(2), 78-84. https://www.scopus.com/inward/record.uri?eid=2- s2.0-85064388331&partnerID=40&md5=d4a1e7b69f7c2378596e4d237d13567c
dc.relation.referencesMunthali, M. G., Mustak, S., Adeola, A., Botai, J., Singh, S. K., & Davis, N. (2020). Modelling land use and land cover dynamics of Dedza district of Malawi using hybrid Cellular Automata and Markov model. Remote Sensing Applications: Society and Environment, 17. https://doi.org/10.1016/j.rsase. 2019.100276
dc.relation.referencesMuñoz-Rios, L. A., Vargas-Villegas, J., & Suarez, A. (2020). Local perceptions about rural abandonment drivers in the Colombian coffee region: Insights from the city of Manizales. Land Use Policy, 91(November 2019), 104361. https://doi.org/https://doi.org/10.1016/j.landusepol.2019.104361
dc.relation.referencesNawroski, A. (2019). Education in rural society and the agricultura course for Brazilian boys in Poland (1918-1938). Tempo e Argumento, 11(28), 67-97. https://doi.org/10.5965/2175180311282019067
dc.relation.referencesNehaï, S. A., & Guettouche, M. S. (2020). Soil loss estimation using the revised universal soil loss equation and a GIS-based model: a case study of Jijel Wilaya, Algeria. Arabian Journal of Geosciences, 13(4). https://doi.org/10.1007/s12517-020-5160-z
dc.relation.referencesNikolenko, L., Jurakovskiy, E., Ivanyuta, N., Andronik, O., & Sharkovska, S. (2018). Investment policy of governance of economic security of agrarian sector of Ukraine on the basis of theory of fuzzy logics. Montenegrin Journal of Economics, 14(4), 125-140. https://doi.org/10.14254/1800-5845/2018.14- 4.9
dc.relation.referencesNiu, L. (2023). Design of intelligent agricultural environmental big data collection system based on ZigBee and NB-IoT. 2023 IEEE 2nd International Conference on Electrical Engineering, Big Data and Algorithms, EEBDA 2023, 1299-1304. https://doi.org/10.1109/EEBDA56825.2023.10090649
dc.relation.referencesNogales, R., & Oldiges, C. (2021). International labour migration and the many forms of poverty. Migration Studies, 9(1), 115-141. https://doi.org/10.1093/migration/mnaa022
dc.relation.referencesNouiri, I., Yitayew, M., Maßmann, J., & Tarhouni, J. (2015). Multi-objective Optimization Tool for Integra- ted Groundwater Management. Water Resources Management, 29(14), 5353-5375. https://doi.org/ 10.1007/s11269-015-1122-8
dc.relation.referencesNúñez, S. R., & Osses, G. T. (2014). El sector agropecuario en la región de Los Lagos y el paradigma “Chile potencia alimentaria”: desafíos para la política agraria nacional. Mundo Agrario, 15(29), 1-15
dc.relation.referencesOECD & Commission, E. (2008). Handbook on Constructing Composite Indicators: Methodology and User Guide
dc.relation.referencesOlivares, B. O., Pitti, J., & Montenegro, E. (2020). Socioeconomic characterization of bocas del toro in panama: An application of multivariate techniques. Revista Brasileira de Gestao e Desenvolvimento Regional, 16(3), 59-71. https://www.scopus.com/inward/record.uri?eid=2- s2.0- 85095814175& partnerID=40&md5=c7a14398987cddd02150d123be774bd2
dc.relation.referencesOliveira, A., Renato, N. D. S., Martins, M. A., Mendonc¸a, I. M. D., Moraes, C. A., & Lago, L. F. R. (2023). Renewable energy solutions based on artificial intelligence for farms in the state of Minas Gerais, Brazil: Analysis and proposition. Renewable Energy, 204, 24-38. https://doi.org/10.1016/j.renene. 2022.12.101
dc.relation.referencesOliveira, A., & Nero, M. (2013). Application of fuzzy logic in prediction of fire in Jo˜ao Pessoa City - Brazil. Communications in Computer and Information Science, 399 PART I, 323-334. https://doi.org/10. 1007/978-3-642-41908-9 33
dc.relation.referencesONU. (2015). Portada - Desarrollo Sostenible. Consultado el 20 de octubre de 2023, desde https://www.un. org/sustainabledevelopment/es
dc.relation.referencesONU. (2023). Alimentaci´on — Naciones Unidas. Consultado el 4 de marzo de 2024, desde https://www.un. org/es/global-issues/food
dc.relation.referencesOrdonez-Eraso, H. A., Pardo-Calvache, C.-J. J., Cobos-Lozada, C.-A. A., Ordoñez-Eraso, H.-A., Pardo- Calvache, C.-J. J., & Cobos-Lozada, C.-A. A. (2020). Detection of Homicide Trends in Colombia Using Machine Learning. Revista Facultad de Ingeniería, Universidad Pedagógica y Tecnológica de Colombia, 29(54). https://doi.org/10.19053/01211129.v29.n54.2020.11740
dc.relation.referencesOrganización de las Naciones Unidas para la Alimentación y la Agricultura (FAO). (2013). Brasil, granero del mundo.
dc.relation.referencesOrganización de las Naciones Unidas para la Alimentación y la Agricultura (FAO). (2021). Organización de las Naciones Unidas para la Alimentación y la Agricultura: Colombia en una mirada.
dc.relation.referencesOrganización para la Cooperación y el Desarrollo Económicos (OCDE). (2015). Revisión de la OCDE de las polóticas Agrícolas: Colombia 2015
dc.relation.referencesOrganización para la Cooperación y el Desarrollo Económicos (OCDE) & Oficina de Estadística de las Comunidades Europeas (EUROSTAT). (2004). Manual de Oslo (Tercera ed)
dc.relation.referencesOrhan, I., & Kocak, H. S. (2024). An Evaluation of Living Conditions and Dietary Habits of Seasonal Migrant Agricultural Workers: The Example of Turkey. Journal of Agromedicine. https://doi.org/ 10.1080/1059924X.2024.2388849
dc.relation.referencesOspina, D. M. (2017). Reivindicando al campesinado en Colombia: Análisis de las fallas de redistribución y de reconocimiento en la implementación de las Política Agrarias de los Siglos XX - XXI, y en la Política Pública de Víctimas y Restitución de Tierras
dc.relation.referencesPandey, B. K., & Khare, D. (2017). Analyzing and modeling of a large river basin dynamics applying in- tegrated cellular automata and Markov model. Environmental Earth Sciences, 76(22), 1-12. https: //doi.org/10.1007/s12665-017-7133-4
dc.relation.referencesPantoja Narvaez, G., & Rodriguez Escobar, F. R. (2017). La educaci´on para la vocaci´on agraria en la po- blaci´on infantil de las zonas de conflicto armado del departamento de Nari˜no. (Spanish). Revista Jur´ıdica Pi´elagus, 16(2), 25. http://bd.univalle.edu.co/login?url=https://search.ebscohost.com/ login.aspx?direct=true&db=edo&AN=129429460&lang=es&site=eds-live
dc.relation.referencesPaquette, S., & Domon, G. (2003). Changing ruralities, changing landscapes: Exploring social recomposition using a multi-scale approach. Journal of Rural Studies, 19(4), 425-444. https : / / doi . org / https : //doi.org/10.1016/S0743-0167(03)00006-8
dc.relation.referencesPartridge, M. D., Ali, M., & Rose Olfert, M. (2010). Rural-to-Urban commuting: Three degrees of integra- tion. Growth and Change, 41(2), 303-335. https://doi.org/10.1111/j.1468-2257.2010.00528.x
dc.relation.referencesPatel, P., Chaudhary, S., & Parmar, H. (2022). Analyze the Impact of Weather Parameters for Crop Yield Prediction Using Deep Learning. En R. P.P., A. A., L. T., K. R. P. & U. K. R. (Eds.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (pp. 249-259, Vol. 13773 LNCS). Springer Science; Business Media Deutschland GmbH. https://doi.org/10.1007/978-3-031-24094-2 17
dc.relation.referencesPavlidis, N. G., Parsopoulos, K. E., & Vrahatis, M. N. (2005). Computing Nash equilibria through compu- tational intelligence methods. Journal of Computational and Applied Mathematics, 175(1 SPEC. ISS.), 113-136. https://doi.org/10.1016/j.cam.2004.06.005
dc.relation.referencesPérez-Belmont, P., Lerner, A. M., Mazari-Hiriart, M., & Valiente, E. (2021). The survival of agriculture on the edge: Perceptions of push and pull factors for the persistence of the ancient chinampas of Xochimilco, Mexico City. Journal of Rural Studies, 86(July), 452-462. https://doi.org/https://doi. org/10.1016/j.jrurstud.2021.07.01
dc.relation.referencesPerfetti, J. J., Botero, J., Oviedo, S., Foreo, D., Higuera, S., Correa, M., & Garc´ıa, J. (2017). Política comercial agrícola: nivel, costos y efectos de la protección en Colombia (J. J. Perfetti & J. Botero, Eds.). Fedesarrollo
dc.relation.referencesPeter, B., Sanghvi, S., & Narendran, V. (2020). Inclusion of Interstate Migrant Workers in Kerala and Lessons for India. Indian Journal of Labour Economics, 63(4), 1065-1086. https://doi.org/10.1007/s41027- 020-00292-9
dc.relation.referencesPicuno, P., Cillis, G., & Statuto, D. (2019). Investigating the time evolution of a rural landscape: How histo- rical maps may provide environmental information when processed using a GIS. Ecological Engi- neering, 139(February), 105580. https://doi.org/https://doi.org/10.1016/j.ecoleng.2019.08.010
dc.relation.referencesPlan Unico de Cuentas Colombia. (2022). Cuenta 7 Costos de producci´on o de operaci´on.
dc.relation.referencesPNUD. (2023). Veinticinco países redujeron a la mitad la pobreza multidimensional en un periodo de 15 años, aunque todav´ıa hay 1,100 millones de personas en situación de pobreza.
dc.relation.referencesPolhill, J. G., Gimona, A., & Gotts, N. M. (2013). Nonlinearities in biodiversity incentive schemes: A study using an integrated agent-based and metacommunity model. Environmental Modelling and Software, 45, 74-91. https://doi.org/10.1016/j.envsoft.2012.11.011
dc.relation.referencesPortafolio. (2021). Dane: 2,4 millones de hogares ya no comen tres veces al d´ıa en Colombia. Consultado el 16 de febrero de 2022, desde https://www.portafolio.co/economia/dane-2-4-millones-de-hogares- ya-no-comen-tres-veces-al-dia-en-colombia-550416
dc.relation.referencesPortoghese, I., D’Agostino, D., Giordano, R., Scardigno, A., Apollonio, C., & Vurro, M. (2013). An inte- grated modelling tool to evaluate the acceptability of irrigation constraint measures for groundwater protection. Environmental Modelling and Software, 46, 90-103. https://doi.org/10.1016/j.envsoft. 2013.03.001
dc.relation.referencesPouladi, P., Afshar, A., Molajou, A., & Afshar, M. H. (2020). Socio-hydrological framework for investiga- ting farmers’ activities affecting the shrinkage of Urmia Lake; hybrid data mining and agent-based modelling. Hydrological Sciences Journal, 65(8), 1249-1261. https://doi.org/10.1080/02626667. 2020.1749763
dc.relation.referencesPraveen, B., Mustak, S., & Sharma, P. (2019). Assessing the transferability of machine learning algorithms using cloud computing and earth observation datasets for agricultural land use/cover mapping. Inter- national Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 42(3/W6), 585-592. https://doi.org/10.5194/isprs-archives-XLII-3-W6-585-2019
dc.relation.referencesPurohit, S. K., Panigrahi, S., Sethy, P. K., & Behera, S. K. (2021). Time Series Forecasting of Price of Agricultural Products Using Hybrid Methods. Applied Artificial Intelligence, 35(15), 1388-1406. https://doi.org/10.1080/08839514.2021.1981659
dc.relation.referencesQiu, T., Shi, X., He, Q., & Luo, B. (2021). The paradox of developing agricultural mechanization services in China: Supporting or kicking out smallholder farmers? China Economic Review, 69. https://doi.org/ 10.1016/j.chieco.2021.101680
dc.relation.referencesRAE. (2021a). Definici´on agr´ıcola. Consultado el 13 de mayo de 2022, desde https://dle.rae.es/agr%7B% 5C’%7Bi%7D%7Dcola?m=form
dc.relation.referencesRAE. (2021b). Definici´on vocaci´on. Consultado el 13 de mayo de 2022, desde https://dle.rae.es/vocaci% 7B%5C’%7Bo%7D%7Dn?m=form
dc.relation.referencesRajkhowa, P., & Qaim, M. (2022). Mobile phones, off-farm employment and household income in rural India. Journal of Agricultural Economics, 73(3), 789-805. https://doi.org/10.1111/1477-9552.12480
dc.relation.referencesRamoni-Perazzi, J., & Orlandoni-Merli, G. (2019). Labor elasticity of growth by sector and department in Colombia: the importance of the agricultural employment elasticity. Agroalimentaria, 25(48), 19-34
dc.relation.referencesRaza, F., Tamoor, M., Miran, S., Arif, W., Kiren, T., Amjad, W., Hussain, M. I., & Lee, G.-H. (2022). The Socio-Economic Impact of Using Photovoltaic (PV) Energy for High-Efficiency Irrigation Systems: A Case Study. Energies, 15(3). https://doi.org/10.3390/en15031198
dc.relation.referencesReilly, J. A., Dawson, T. P., Matthews, R. B., Smith, P., Musk, C. C., Potts, J. M., & Polhill, J. G. (2021). Projecting the effect of crop yield increases, dietary change and different price scenarios on land use under two different state security regimes. International Journal of Agricultural Sustainability, 19(3-4), 288-304. https://doi.org/10.1080/14735903.2021.1907991
dc.relation.referencesRibeiro, W. R., dos Santos, A. R., Pinheiro, A. A., Gonc¸alves, M. S., da Costa Gonc¸alves, D., da Silva, S. F., Moreira, T. R., Senhorelo, A. P., Billo, D. F., Ara´ujo, E. F., Heitor, F. D., Nascimento, G. S. P., Berude, L. C., Barros, Q. S., Silva, R. F., Gandine, S., de Carvalho, J. R., Santos, G., dos Reis, E. F., & Filho, P. A. G. (2022). Multicriteria analysis applied to prospection of potential areas for center pivots installation in a tropical ecosystem. European Journal of Agronomy, 140. https://doi.org/10. 1016/j.eja.2022.126595
dc.relation.referencesRijnks, R. H., Crowley, F., & Doran, J. (2022). Regional variations in automation job risk and labour market thickness to agricultural employment. Journal of Rural Studies, 91(December 2021), 10-23. https: //doi.org/10.1016/j.jrurstud.2021.12.012
dc.relation.referencesRodrigues, F. D. A., & Mosso, F. (2018). ICT, Data and Rural Youth: challenges of the current context. RECoDAF - Revista Eletrˆonica Competˆencias Digitais para Agricultura Familiar, 4(2), 15-25
dc.relation.referencesRodríguez, E., Martínez, G., & Mora, J. (2015). La Crisis Del Sector Agropecuario Colombiano : ¿ Cuál Es La Responsabilidad De Las Políticas Públicas ? Tendencias, 16(1), 159-174
dc.relation.referencesRodríguez Araújo, E. (2005). Perfiles de la Economía Boyacense. CENES Apuntes, 25(39), 95-124
dc.relation.referencesRodríguez Espinosa, H., Ramírez Gómez, C. J., & Restrepo-Betancur, L. F. (2016). Análisis Comparativo De La Dinámica De Desarrollo Agrícola En Suramérica En El Período 1980-2010. Luna Azul, (42), 15-29. https://doi.org/10.17151/luaz.2016.42.3
dc.relation.referencesRodríguez Sperat, R. (2014). ¿Representa el capital un limitante para la productividad en la Agricultura Familiar? Un estudio de caso en Santiago del Estero, Argentina. Revista Venezolana de Economía Social, 14(27), 9-34
dc.relation.referencesRuiz, B. D. A., Bañuelos-Torrontegui, K. A., & Pleite, F. M.-C. (2021). Labor conditions and social responsibility assessment at agricultural companies in the municipality of elota, sinaloa, México. Agrociencia, 55(2), 177-194. https://doi.org/10.47163/agrociencia.v55i2.2394
dc.relation.referencesRungmanee, S. (2016). Unravelling the Dynamics of Border Crossing and Rural-to-Rural-to-Urban Mobility in the Northeastern Thai–Lao Borderlands. Population, Space and Place, 22(7), 693-704. https : //doi.org/10.1002/psp.1989
dc.relation.referencesSaavedra, S., & Romero, M. (2021). Local incentives and national tax evasion: The response of illegal mining to a tax reform in Colombia. European Economic Review, 138. https://doi.org/10.1016/j.euroecorev. 2021.103843
dc.relation.referencesSalam, A., Pratomo, D. S., & Saputra, P. M. A. (2020). Sosio-economic determinants of multidimensional poverty in the rural and urban areas of East Java. International Journal of Scientific and Technology Research, 9(4), 1445-1449. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85083510744& partnerID=40&md5=dfb43078fa23556dcd7d4039c6ecb08f
dc.relation.referencesSalvini, G., Ligtenberg, A., van Paassen, A., Bregt, A. K., Avitabile, V., & Herold, M. (2016). REDD+ and climate smart agriculture in landscapes: A case study in Vietnam using companion modelling. Journal of Environmental Management, 172, 58-70. https://doi.org/10.1016/j.jenvman.2015.11.060
dc.relation.referencesSánchez, J. M., Rodríguez, J. P., & Espitia, H. E. (2020). Review of Artificial Intelligence Applied in Decision-Making Processes in Agricultural Public Policy. Processes, 8(11), 1374. https://doi.org/ 10.3390/pr8111374
dc.relation.referencesSánchez, J., Rodríguez, J., & Espitia, H. (2024). Design of a neuro-fuzzy model for agricultural employment in Colombia using fuzzy clustering. AIMS Environmental Science, 11(5), 759-775. https://doi.org/ 10.3934/environsci.2024038
dc.relation.referencesSánchez, J. M., García, C. A., & Narvaez, E. (2020). Problematic Of The Decision-Making Process In The Formulation Of Public Agricultural Policies In Colombia : Review Article. International Journal of Mechanical and Production Engineering Research and Development (IJMPERD), 10(6), 139-146
dc.relation.referencesSánchez, J. M., Rodriguez, J. P., & Amaya, D. (2020). Análisis Bibliométrico de la producción científica relacionada con la aplicación de inteligencia artificial en el proceso de formulación de políticas públicas agrarias. Revista Espacios, 41(28), 113-127. http://www.revistaespacios.com/a20v41n28/ a20v41n28p09.pdf%0Ahttps://www.revistaespacios.com
dc.relation.referencesSánchez, J. M., Rodríguez, J. P., & Espitia, H. E. (2022). Bibliometric analysis of publications discussing the use of the artificial intelligence technique agent-based models in sustainable agriculture. Heliyon, 8(12). https://doi.org/10.1016/j.heliyon.2022.e12005
dc.relation.referencesSánchez, J. M., Rodríguez, J. P., & Rivas, E. (2020). An´alisis estadístico de las precipitaciones en la cuenca del río de Bogotá ( Colombia ) incluyendo las variables del fenómeno El Niño y La Niña. Revista ESPACIOS, 41(38), 125-134. https://www.revistaespacios.com/a20v41n38/20413813.html
dc.relation.referencesSánchez, J. M., Rodríguez, J. P., & Ramos, O. L. (2020). Decision Support Systems (DSS) Applied to the Formulation of Agricultural Public Policies. Tecnura, 24(66), 95-108. https://doi.org/10.14483/ 22487638.15768
dc.relation.referencesSánchez, J. M. C., Pedraza, L. F. M., & Rodríguez, J. P. M. (2017). La influencia del nivel de inseguridad de una región y la presencia de meso-organizaciones favorecen la prevalencia de híbridos-organizativos en el sector agrícola de Colombia. Espacios, 38(18), 1-14
dc.relation.referencesSánchez C., J. M., Rodriguez M., J. P., & Montenegro M., C. E. (2020). La relevancia de la variabilidad climática en la formulación de políticas públicas agrarias en los países tropicales. Revista ESPACIOS, 41(8), 11
dc.relation.referencesSánchez Jiménez, W., Nieto Gómez, L. E., & Giraldo Díaz, R. (2018). Cambio estructural de la vocación agrícola y pecuaria en el municipio de Purificación, Tolima, Colombia. Libre Empresa, 15(2), 137-148. https://doi.org/10.18041/1657-2815/libreempresa.2018v15n2.5361
dc.relation.referencesSánchez-Céspedes, J. M., Rodríguez-Miranda, J. P., & Ramos-Sandoval, O. L. (2020). Artificial intelligence, an alternative for generating agricultural public policies in colombia – a review. International Journal of Mechanical and Production Engineering Research and Development (IJMPERD), 10(3), 15677-15692
dc.relation.referencesSánchez-Céspedes, J. M., Rodríguez-Miranda, J. P., & Salcedo-Parra, O. J. (2020). Análisis de la producción de publicaciones científicas en inteligencia artificial aplicada a la formulación de Políticas Públicas. Revista Científica, 39(3), 353-368. https://doi.org/10.14483/23448350.16301
dc.relation.referencesSánchez-Céspedes, J. M., Rodríguez-Miranda, Pablo, J., & Salcedo-Parra, O. J. (2022). Aplicación de la inteligencia artificial en la formulación de políticas públicas relacionadas con la vocación agrícola de las regiones. Revista Científica, 44(2), 172-187
dc.relation.referencesSaraf, S. A., Ali, J., Bahar, F. A., & Mahdi, S. S. (2022). Marketing of Agricultural Produce in India: Problems and Prospects. En Secondary Agriculture: Sustainability and Livelihood in India (pp. 85-95). Springer Singapore. https://doi.org/10.1007/978-3-031-09218-3 8
dc.relation.referencesSen, B., Dorosh, P., & Ahmed, M. (2021). Moving out of agriculture in Bangladesh: The role of farm, non- farm and mixed households. World Development, 144, 105479. https://doi.org/10.1016/j.worlddev. 2021.105479
dc.relation.referencesSenge, P. M. (1991). The fifth discipline, the art and practice of the learning organization. Performance + Instruction, 30(5), 37. https://doi.org/10.1002/pfi.4170300510
dc.relation.referencesSgroi, F. (2022). The circular economy for resilience of the agricultural landscape and promotion of the sustainable agriculture and food systems. Journal of Agriculture and Food Research, 8. https://doi. org/10.1016/j.jafr.2022.100307
dc.relation.referencesShah, H., Tairan, N., Garg, H., & Ghazali, R. (2018). A Quick Gbest Guided Artificial Bee Colony algorithm for stock market prices prediction. Symmetry, 10(7). https://doi.org/10.3390/sym10070292
dc.relation.referencesShaharum, N. S. N., Shafri, H. Z. M., Gambo, J., & Abidin, F. A. Z. (2018). Mapping of Krau Wildlife Reserve (KWR) protected area using Landsat 8 and supervised classification algorithms. Remote Sensing Applications: Society and Environment, 10(January), 24-35. https://doi.org/10.1016/j.rsase. 2018.01.002
dc.relation.referencesSihi, D., Dari, B., Kuruvila, A. P., Jha, G., & Basu, K. (2022). Explainable Machine Learning Approach Quantified the Long-Term (1981–2015) Impact of Climate and Soil Properties on Yields of Major Agricultural Crops Across CONUS. Frontiers in Sustainable Food Systems, 6. https://doi.org/10. 3389/fsufs.2022.847892
dc.relation.referencesSilva, R. P. (2023). Current State and Transformations of Rural Employment in Latin America. an Analysis of the Case of Chile. Chilean Journal of Agricultural and Animal Sciences, 39(1), 121-132. https: //doi.org/10.29393/CHJAA39-10EARP10010
dc.relation.referencesSimelton, E., Duong, T. M., & Houzer, E. (2021). When the “strong arms” leave the farms—migration, gender roles and risk reduction in Vietnam. Sustainability (Switzerland), 13(7). https://doi.org/10. 3390/su13074081
dc.relation.referencesSimon, H. A. (1979). Rational Decision Making in Business Organizations. The American Economic Review, 69(4), 493-513
dc.relation.referencesSingh, S. K., Mustak, S., Srivastava, P. K., Szab´o, S., & Islam, T. (2015). Predicting Spatial and Decadal LULC Changes Through Cellular Automata Markov Chain Models Using Earth Observation Data- sets and Geo-information. Environmental Processes, 2(1), 61-78. https://doi.org/10.1007/s40710- 015-0062-x
dc.relation.referencesSivaranjani, T., & Vimal, S. P. (2023). AI Method for Improving Crop Yield Prediction Accuracy Using ANN. Computer Systems Science and Engineering, 47(1), 154-170. https://doi.org/10.32604/csse. 2023.036724
dc.relation.referencesSoares, D. L., Polivanov, H., Barroso, E. V., Maria, L., & Souza, C. C. D. (2018). Erodibilidade de Solos em Taludes de Corte de Estrada Nao Pavimentada Soil Erodibility on Cutting Slopes of Unpaved Roads. Anuário do Instituto de Geociencias - UFRJ, 41(1), 179-193
dc.relation.referencesSofer, M. (2001). Pluriactivity in the Moshav: Family farming in Israel. Journal of Rural Studies, 17(3), 363-375. https://doi.org/https://doi.org/10.1016/S0743-0167(01)00012-2
dc.relation.referencesSogandi, F., & Shiri, M. (2023). Metaheuristic algorithms for a sustainable saffron supply chain network considering government policies and product quality under uncertainty. Journal of Computational Design and Engineering, 10(5), 1892-1929. https://doi.org/10.1093/jcde/qwad079
dc.relation.referencesSolomon, M. R. (2017). Consumer Behavior: Buying, Having, and Being. Pearson
dc.relation.referencesSoto, C. (2003). La agricultura comercial de los distritos de riego en M´exico y su impacto en el desarrollo agr´ıcola. Investigaciones Geogr´aficas, (50), 173-195. https://doi.org/10.14350/rig.30439
dc.relation.referencesSu, X. F., Asseng, S., Campbell, P., Cook, F., Schilizzi, S., Nancarrow, B., Poole, M., Carlin, G., & Brockman, H. (2005). A conceptual model for simulating farmer decisions and land use change. MODSIM05 - International Congress on Modelling and Simulation: Advances and Applications for Management and Decision Making, Proceedings, 156-161
dc.relation.referencesSuárez, J. (2015). Producción integrada de alimentos y energía a escala local en Cuba: bases para un desarrollo sostenible. Pastos y Forrajes, 38(1), 3-10
dc.relation.referencesSuresh, K. R., & Mujumdar, P. P. (2004). A fuzzy risk approach for performance evaluation of an irrigation reservoir system. Agricultural Water Management, 69(3), 159-177. https://doi.org/10.1016/j.agwat. 2004.05.001
dc.relation.referencesSuwanlee, S. R., Pinasu, D., Som-ard, J., Borgogno-Mondino, E., & Sarvia, F. (2024). Estimating Sugarcane Aboveground Biomass and Carbon Stock Using the Combined Time Series of Sentinel Data with Machine Learning Algorithms. Remote Sensing, 16(5). https://doi.org/10.3390/rs16050750
dc.relation.referencesSzegedy, I. (2017). Políticas Públicas Agrícolas En Colombia Desde Los Años 1970 Hasta Los Gobiernos Uribe - La Historia De Recurrentes Cuestiones Políticas Sin Resolver. Vniversitas, 66(134), 363-398. https://doi.org/10.11144/Javeriana.vj134.appc
dc.relation.referencesTabayashi, A., & Fujinaga, G. (2002). Characteristics of agriculture in the Hokuriku district. Tsukuba Dai- gaku Jinbun Chirigaku Kenkyu, 26, 1-23.
dc.relation.referencesTamayo y Tamayo, M. (2011). El proceso de la investigación científica (5a Ed.). Limusa
dc.relation.referencesTartibu, L. K. (2018). A predictive approach for effective management and planning within the energy sec- tor of South Africa. Proceedings of the International Conference on Industrial Engineering and Operations Management, 2018(NOV), 195-202
dc.relation.referencesTatis Diaz, R., Pinto Osorio, D., Medina Hernández, E., Moreno Pallares, M., Canales, F. A., Corrales Paternina, A., & Echeverría-González, A. (2022). Socioeconomic determinants that influence the agricultural practices of small farm families in northern Colombia. Journal of the Saudi Society of Agricultural Sciences, 21(7), 440-451. https://doi.org/10.1016/j.jssas.2021.12.001
dc.relation.referencesTéllez, D. C. (2017). La incidencia de la política agraria en el Gobierno Santos en el desarrollo del sector papero del departamento de Boyacá [Tesis doctoral, Universidad Colegio Mayor de Nuestra Señora del Rosario
dc.relation.referencesTemprano, A. G. (2013). Política agraria común y la de cohesión frente a la Estrategia Europa 2020. Problemas del Desarrollo, 173(44), 105-132.
dc.relation.referencesThoradeniya, B., Pinto, U., & Maheshwari, B. (2019). Perspectives on impacts of water quality on agriculture and community well-being—a key informant study from Sri Lanka. Environmental Science and Pollution Research, 26(3), 2047-2061. https://doi.org/10.1007/s11356-017-0493-1
dc.relation.referencesTian, G., & Qiao, Z. (2014). Modeling urban expansion policy scenarios using an agent-based approach for Guangzhou Metropolitan Region of China. Ecology and Society, 19(3). https://doi.org/10.5751/ES- 06909-190352
dc.relation.referencesTinbergen, J. (1981). The Use of Models: Experience and Prospects. The American Economic Review, 71(6), 17-22. http://www.jstor.org/stable/1914388
dc.relation.referencesTixier, P., Peyrard, N., Aubertot, J. N., Gaba, S., Radoszycki, J., Caron-Lormier, G., Vinatier, F., Mollot, G., & Sabbadin, R. (2013). Modelling interaction networks for enhanced ecosystem services in agro- ecosystems (Vol. 49). https://doi.org/10.1016/B978-0-12-420002-9.00007-X
dc.relation.referencesTsekeris, T. (2019). Rank-size distribution of urban employment in labour market areas. Cities, 95. https: //doi.org/10.1016/j.cities.2019.102472
dc.relation.referencesTulla, P. S., Kumar, P., Vishwakarma, D. K., Kumar, R., Kuriqi, A., Kushwaha, N. L., Rajput, J., Srivas- tava, A., Pham, Q. B., Panda, K. C., & Kisi, O. (2024). Daily suspended sediment yield estima- tion using soft-computing algorithms for hilly watersheds in a data-scarce situation: a case study of Bino watershed, Uttarakhand. Theoretical and Applied Climatology, 155(5), 4023-4047. https: //doi.org/10.1007/s00704-024-04862-5
dc.relation.referencesTung, W. L., & Quek, C. (2009). A Mamdani-Takagi-Sugeno based linguistic neural-fuzzy inference sys- tem for improved interpretability-accuracy representation. IEEE International Conference on Fuzzy Systems, (September), 367-372. https://doi.org/10.1109/FUZZY.2009.5277194
dc.relation.referencesUrrutia, G., & Bonfill, X. (2010). Declaración PRISMA: una propuesta para mejorar la publicación de revisiones sistematicas y metaanálisis. https://doi.org/10.1016/j.medcli.2010.01.015
dc.relation.referencesUzcanga Pérez, N. G., Chanatásig-Vaca, C. I., & Cano-González, A. (2020). Sustentabilidad socioeconómica y ambiental de los sistemas de producción de maíz de temporal. Revista Mexicana de Ciencias Agrícolas, 11(5), 993-1004. https://doi.org/10.29312/remexca.v11i5.2117
dc.relation.referencesVan Delden, H. (2009). Integration of socio-economic and bio-physical models to support sustainable development. 18th World IMACS Congress and MODSIM09 International Congress on Modelling and Simulation: Interfacing Modelling and Simulation with Mathematical and Computational Sciences, Proceedings, (July), 2457-2463
dc.relation.referencesVargas, C., Téllez, G., Cubillos, A., Gómez, P., & Garzón, L. (2016). Análisis de los beneficiarios de la Política Pública de Reforma Agraria en el marco del desarrollo rural en Colombia (1994–2010). Pampa, (13), 31-53
dc.relation.referencesVázquez García, V. (2020). Venta de tierras y transformación del waterscape en San Salvador Atenco, Estado de México. Cuicuilco Revista de Ciencias Antropológicas, 27(77), 185-206
dc.relation.referencesVelásquez, J. D., Olaya, Y., & Franco, C. J. (2010). Predicción de series temporales usando máquinas de vectores de soporte. Ingeniare, 18(1), 64-75. https://doi.org/10.4067/s0718-33052010000100008
dc.relation.referencesVergel Cabrales, G. (1997). Metodología un manual para la elaboración de diseños y proyectos de investigación (Cuarta)
dc.relation.referencesWang, Q., Yu, L., & Yang, Y. (2022). From Fragmentation to Intensification: Land Reform in China’s “New Era”. International Journal of Environmental Research and Public Health, 19(18). https://doi.org/ 10.3390/ijerph191811223
dc.relation.referencesWin, N. N., & Naing, A. (2023). Tolerant Tea Shops: The Social Construction of Forbearance in Child Labor. Journal of Burma Studies, 27(2), 261-289. https://doi.org/10.1353/jbs.2023.a902622
dc.relation.referencesXiao, L., Wang, G., Zhou, H., Jin, X., & Luo, Z. (2022). Coupling agricultural system models with machine learning to facilitate regional predictions of management practices and crop production. Environ- mental Research Letters, 17(11). https://doi.org/10.1088/1748-9326/ac9c71
dc.relation.referencesXie, Y., & Jiang, Q. (2016). Land arrangements for rural-urban migrant workers in China: Findings from Jiangsu Province. Land Use Policy, 50, 262-267. https://doi.org/10.1016/j.landusepol.2015.10.010
dc.relation.referencesYazici, I., Shayea, I., & Din, J. (2023). A survey of applications of artificial intelligence and machine learning in future mobile networks-enabled systems. Engineering Science and Technology, an International Journal, 44, 101455. https://doi.org/https://doi.org/10.1016/j.jestch.2023.101455
dc.relation.referencesYet, B., Lamanna, C., Shepherd, K. D., & Rosenstock, T. S. (2020). Evidence-based investment selection: Prioritizing agricultural development investments under climatic and socio-political risk using Ba- yesian networks. PLoS ONE, 15(6), 1-22. https://doi.org/10.1371/journal.pone.0234213
dc.relation.referencesYin, Z., Feng, Q., Yang, L., Deo, R. C., Wen, X., Si, J., & Xiao, S. (2017). Future projection with an extreme- learning machine and support vector regression of reference evapotranspiration in a mountainous in- land watershed in north-west China. Water (Switzerland), 9(11). https://doi.org/10.3390/w9110880
dc.relation.referencesYousefi, M., Khoshnevisan, B., Shamshirband, S., Motamedi, S., Mohd Hairul, M. H. N., Arif, M., & Ahmad, R. (2015). Support vector regression methodology for prediction of output energy in rice production. Stochastic Environmental Research and Risk Assessment, 29(8), 2115-2126. https://doi.org/10.1007/ s00477-015-1055-z
dc.relation.referencesYu, C., Xu, G., Cai, M., Li, Y., Wang, L., Zhang, Y., & Lin, H. (2024). Predicting environmental impacts of smallholder wheat production by coupling life cycle assessment and machine learning. Science of the Total Environment, 921. https://doi.org/10.1016/j.scitotenv.2024.171097
dc.relation.referencesYu, H., Wen, X., Li, B., Yang, Z., Wu, M., & Ma, Y. (2020). Uncertainty analysis of artificial intelligence modeling daily reference evapotranspiration in the northwest end of China. Computers and Electronics in Agriculture, 176(August). https://doi.org/10.1016/j.compag.2020.105653
dc.relation.referencesYuan, S., Li, X., & Du, E. (2021). Effects of farmers’ behavioral characteristics on crop choices and responses to water management policies. Agricultural Water Management, 247. https://doi.org/10.1016/j. agwat.2020.106693
dc.relation.referencesZambon, I., Monarca, D., Cecchini, M., Bedini, R., Longo, L., Romagnoli, M., & Marucci, A. (2016). Al- ternative energy and the development of local rural contexts: An Approach to improve the degree of smart cities in the central-southern Italy. Contemporary Engineering Sciences, 9(28), 1371-1386. https://doi.org/10.12988/ces.2016.68143
dc.relation.referencesZeman, K. R., & Rodríguez, L. F. (2019). Quantifying farmer decision-making in an agent-based model. 2019 ASABE Annual International Meeting
dc.relation.referencesZhang, J., Zuo, F., Zhou, Y., Zhai, M., Mei, L., Fu, Y., & Cheng, Y. (2018). Analyzing Influencing Factors of Rural Poverty in Typical Poverty Areas of Hainan Province: A Case Study of Lingao County. Chinese Geographical Science, 28(6), 1061-1076. https://doi.org/10.1007/s11769-018-1008-9
dc.relation.referencesZhang, W., & Huang, B. (2015). Soil erosion evaluation in a rapidly urbanizing city (Shenzhen, China) and implementation of spatial land-use optimization. Environmental Science and Pollution Research, 22(6), 4475-4490. https://doi.org/10.1007/s11356-014-3454-y
dc.relation.referencesZhang, Y. (2020). Can the Employability of Rural Migrant Workers Promote Their Employment Quality?- An Empirical Study Based on Intergenerational and Urban-Rural Comparison. Modern Economic Science, 42(2), 16-31. https://www.scopus.com/inward/record.uri?eid=2- s2.0- 85099854171& partnerID=40&md5=e6bb5f25db5c04b2dd521ccb1fed35eb
dc.relation.referencesZhang, Y., & Diao, X. (2020). The changing role of agriculture with economic structural change – The case of China. China Economic Review, 62(May), 101504. https://doi.org/10.1016/j.chieco.2020.101504
dc.rights.accesoAbierto (Texto Completo)
dc.rights.accessrightsOpenAccess
dc.subjectColombia
dc.subjectDesarrollo sostenible
dc.subjectFormulación de políticas públicas
dc.subjectInteligencia artificial
dc.subjectSociodemográfico
dc.subjectPolítica pública
dc.subjectVocación agrícola
dc.subject.keywordColombia
dc.subject.keywordSustainable development
dc.subject.keywordPublic policy formulation
dc.subject.keywordArtificial intelligence
dc.subject.keywordSociodemographic
dc.subject.keywordPublic policy
dc.subject.keywordAgricultural vocation
dc.subject.lembDoctorado en Ingeniería -- Tesis y disertaciones académicas
dc.subject.lembInteligencia artificial -- Colombiaspa
dc.subject.lembVocación agrícola -- Colombia -- Aspectos sociodemográficosspa
dc.subject.lembToma de decisiones -- Colombiaspa
dc.titleDesarrollo de un modelo de inteligencia artificial para ayudar en la toma de decisiones en política pública aplicado a la vocación agrícola desde la perspectiva sociodemográfica en el territorio colombiano
dc.title.titleenglishDevelopment of an artificial intelligence model to assist in decision-making in public policy applied to agricultural vocation from a sociodemographic perspective in Colombian territory
dc.typedoctoralThesis
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.degreeInvestigación-Innovación
dc.type.driverinfo:eu-repo/semantics/doctoralThesis

Archivos

Bloque original

Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
Licencia de uso y publicación.pdf
Tamaño:
248.8 KB
Formato:
Adobe Portable Document Format
Cargando...
Miniatura
Nombre:
SánchezCéspedesJuanManuel2024.pdf
Tamaño:
2.99 MB
Formato:
Adobe Portable Document Format
Descripción:
Trabajo de Doctorado

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
7 KB
Formato:
Item-specific license agreed upon to submission
Descripción: