Monitoreo de la variación de los espejos de agua de los humedales Ramsar de Bogotá D.C. utilizando inteligencia artificial a partir de imágenes satelitales
dc.contributor.advisor | Ladino Moreno, Edgar Orlando | |
dc.contributor.author | Viasus Wilches, Jennyfer Damaris | |
dc.contributor.orcid | Ladino Moreno Edgar Orlando [0000-0002-7770-452X] | |
dc.date.accessioned | 2025-09-01T13:11:22Z | |
dc.date.available | 2025-09-01T13:11:22Z | |
dc.date.created | 2025-08-13 | |
dc.description | Se plantea una metodología que utiliza conjuntamente imágenes satelitales y métodos de inteligencia artificial para detectar y monitorear cambios en las zonas hídricas dentro de los humedales de Bogotá. Dichas variaciones suelen estar relacionadas con la pérdida o reducción de las superficies acuáticas debido a la presencia de especies invasoras, especialmente la Eichhornia crassipes, conocida comúnmente como Buchón. El crecimiento de estas especies representa una amenaza para los cuerpos de agua, ya que genera diversos impactos en las especies nativas, incluida la pérdida de hábitat debido a la eutrofización. La detección oportuna de estas alteraciones en las áreas hídricas permite a las autoridades intervenir de manera oportuna e iniciar procesos de restauración ecológica para conservar el ecosistema. | |
dc.description.abstract | A methodology is proposed that combines satellite imagery and artificial intelligence methods to detect and monitor changes in water areas within the wetlands of Bogotá. Such variations are often related to the loss or reduction of water surfaces due to the presence of invasive species, particularly Eichhornia crassipes, commonly known as water hyacinth. The growth of these species poses a threat to water bodies, as it generates various impacts on native species, including habitat loss caused by eutrophication. Timely detection of these alterations in water areas enables authorities to intervene promptly and initiate ecological restoration processes to preserve the ecosystem. | |
dc.format.mimetype | ||
dc.identifier.uri | http://hdl.handle.net/11349/98761 | |
dc.language.iso | spa | |
dc.publisher | Universidad Distrital Francisco José de Caldas | |
dc.relation.references | Aal, H. A. A. El, Taie, S. A., & El-Bendary, N. (2021). An optimized rnn-lstm approach for parkinson’s disease early detection using speech features. Bulletin of Electrical Engineering and Informatics, 10(5), 2503–2512. https://doi.org/10.11591/eei.v10i5.3128 | |
dc.relation.references | Acevedo, E., Serna, A., & Serna, E. (2017). CAPÍTULO 10 Principios y características de las redes neuronales artificiales. In DESARROLLO E INNOVACIÓN EN INGENIERÍA (Vol. 1, pp. 173–182). | |
dc.relation.references | Adelabu, S., Mutanga, O., & Adam, E. (2015). Testing the reliability and stability of the internal accuracy assessment of random forest for classifying tree defoliation levels using different validation methods. Geocarto International, 30(7), 810–821. https://doi.org/10.1080/10106049.2014.997303 | |
dc.relation.references | Ahmed, B., & Ahmed, R. (2012). Modeling urban land cover growth dynamics using multioral satellite images: A case study of Dhaka, Bangladesh. ISPRS International Journal of Geo-Information, 1(1), 3–31. https://doi.org/10.3390/ijgi1010003 | |
dc.relation.references | Aldiansyah, S., & Saputra, R. A. (2023). Comparison of Machine Learning Algorithms for Land Use and Land Cover Analysis Using Google Earth Engine (Case Study: Wanggu Watershed). International Journal of Remote Sensing and Earth Sciences (IJReSES), 19(2), 197. https://doi.org/10.30536/j.ijreses.2022.v19.a3803 | |
dc.relation.references | Alem, A., & Kumar, S. (2020). Deep Learning Methods for Land Cover and Land Use Classification in Remote Sensing: A Review. ICRITO 2020 - IEEE 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions), 903–908. https://doi.org/10.1109/ICRITO48877.2020.9197824 | |
dc.relation.references | Ali, Y. M., & El-Din Khedr, I. S. (2018). Estimation of water losses through evapotranspiration of aquatic weeds in the Nile River (Case study: Rosetta Branch). Water Science, 32(2), 259–275. https://doi.org/10.1016/j.wsj.2018.08.002 | |
dc.relation.references | Alikhani, S., Nummi, P., & Ojala, A. (2021). Urban wetlands: A review on ecological and cultural values. Water (Switzerland), 13(22), 1–47. https://doi.org/10.3390/w13223301 | |
dc.relation.references | Alqadhi, S., Mallick, J., Balha, A., Bindajam, A., Singh, C. K., & Hoa, P. V. (2021). Spatial and decadal prediction of land use/land cover using multi-layer perceptron-neural network (MLP-NN) algorithm for a semi-arid region of Asir, Saudi Arabia. Earth Science Informatics, 14(3), 1547–1562. https://doi.org/10.1007/s12145-021-00633-2 | |
dc.relation.references | Alqurashi, A. F., & Kumar, L. (2013). Investigating the Use of Remote Sensing and GIS Techniques to Detect Land Use and Land Cover Change: A Review. Advances in Remote Sensing, 02(02), 193–204. https://doi.org/10.4236/ars.2013.22022 | |
dc.relation.references | Álvarez Vega, M., Quirós Mora, L. M., & Cortés Badilla, M. V. (2020). Inteligencia artificial y aprendizaje automático en medicina. Revista Medica Sinergia, 5(8), e557. https://doi.org/10.31434/rms.v5i8.557 | |
dc.relation.references | Apín, Y., & Torres, B. (2016). Introducción De Especies Invasoras a Partir Del Agua De Lastre Proveniente Del Transporte Marítimo Comercial: Estado Del Arte. Red de Revistas Científicas de América Latina, El Caribe, España y Portugal. | |
dc.relation.references | Araneda C, E. (2002). Uso de Sistemas de Información Geográficos y análisis espacial en arqueología: Proyecciones y limitaciones. Estudios Atacameños, 22, 59–75. https://doi.org/10.4067/S0718-10432002002200004 | |
dc.relation.references | Ariza, A., Roa Melgarejo, O. J., Serrato, P. K., & León Rincón, H. A. (2018). Uso de índices espectrales derivados de sensores remotos para la caracterización geomorfológica en zonas insulares del Caribe colombiano. Perspectiva Geográfica, 23(1), 105–122. https://doi.org/10.19053/01233769.5863 | |
dc.relation.references | Arpitha, M., Ahmed, S. A., & Harishnaika, N. (2023). Land use and land cover classification using machine learning algorithms in google earth engine. Earth Science Informatics, 16(4), 3057–3073. https://doi.org/10.1007/s12145-023-01073-w | |
dc.relation.references | Aryal, J., Sitaula, C., & Frery, A. C. (2023). Land use and land cover (LULC) performance modeling using machine learning algorithms: a case study of the city of Melbourne, Australia. Scientific Reports, 13(1), 1–11. https://doi.org/10.1038/s41598-023-40564-0 | |
dc.relation.references | Atehortua, E., & Gartner, C. (2013). Estudios Preliminares De La Biomasa Seca De Eichhornia Crassipes Como Adsorbente De Plomo Y Cromo En Aguas Preliminary Studies of Eichhornia Crassipes Dry Biomass for Lead and Chromium Removal From Waters. Revista Colombiana de Materiales N.4., 81–92. | |
dc.relation.references | Awad, M. (2021). Google Earth Engine (GEE) cloud computing based crop classification using radar, optical images and Support Vector Machine Algorithm (SVM). 2021 IEEE 3rd International Multidisciplinary Conference on Engineering Technology, IMCET 2021, 71–76. https://doi.org/10.1109/IMCET53404.2021.9665519 | |
dc.relation.references | Ayala-Niño, D., & González-Camacho, J. M. (2024). ALGORITMOS DE APRENDIZAJE AUTOMÁTICO PARA IDENTIFICAR VARIEDADES DE DURAZNO CON BASE EN DESCRIPTORES CROMÁTICOS Y MORFOLÓGICOS MACHINE LEARNING ALGORITHMS TO IDENTIFY PEACH VARIETIES BASED ON CHROMATIC AND MORPHOLOGICAL DESCRIPTORS Daniel Ayala-Niño y Jua. 47(1), 62–69. | |
dc.relation.references | Bai, B., Tan, Y., Donchyts, G., Haag, A., Xu, B., Chen, G., & Weerts, A. H. (2023). Naive Bayes classification-based surface water gap-filling from partially contaminated optical remote sensing image. 616(November 2022). https://doi.org/10.1016/j.jhydrol.2022.128791 | |
dc.relation.references | Baptiste, M. P., Castaño, N., Cárdenas López, D., Gutiérrez, F. de P., Gil, D. L., Lasso, C. A., & Baptiste, M. P. (2010). Análisis de riesgo y propuesta de categorización de especies introducidas para Colombia. | |
dc.relation.references | Bengio, Y. (2012). Practical Recommendations for Gradient-Based Training of Deep Architectures. Researchgate.Net, 437–478. http://deeplearning.net/software/pylearn2 | |
dc.relation.references | Berhane, T. M., Lane, C. R., Wu, Q., Autrey, B. C., Anenkhonov, O. A., Chepinoga, V. V., & Liu, H. (2018). Decision-tree, rule-based, and random forest classification of high-resolution multispectral imagery for wetland mapping and inventory. Remote Sensing, 10(4). https://doi.org/10.3390/rs10040580 | |
dc.relation.references | Bhosle, K., & Musande, V. (2019). Evaluation of Deep Learning CNN Model for Land Use Land Cover Classification and Crop Identification Using Hyperspectral Remote Sensing Images. Journal of the Indian Society of Remote Sensing, 47(11), 1949–1958. https://doi.org/10.1007/s12524-019-01041-2 | |
dc.relation.references | Blackburn, T. M., Pyšek, P., Bacher, S., Carlton, J. T., Duncan, R. P., Jarošík, V., Wilson, J. R. U., & Richardson, D. M. (2011). A proposed unified framework for biological invasions. Trends in Ecology and Evolution, 26(7), 333–339. https://doi.org/10.1016/j.tree.2011.03.023 | |
dc.relation.references | Blanco, D. E. (1999). Los humedales como hábitat de aves acuáticas. Tópicos Sobre Humedales Subtropicales y Templados de Sudamérica, 2142(1428), 219–228. | |
dc.relation.references | Borràs, J., Delegido, J., Pezzola, A., Pereira, M., Morassi, G., & Camps-Valls, G. (2017). Clasificación de usos del suelo a partir de imágenes sentinel-2. Revista de Teledeteccion, 2017(48), 55–66. https://doi.org/10.4995/raet.2017.7133 | |
dc.relation.references | Brown De Colstoun, E. C., Story, M. H., Thompson, C., Commisso, K., Smith, T. G., & Irons, J. R. (2003). National Park vegetation mapping using multitemporal Landsat 7 data and a decision tree classifier. Remote Sensing of Environment, 85(3), 316–327. https://doi.org/10.1016/S0034-4257(03)00010-5 | |
dc.relation.references | Cao, C., Dragićević, S., & Li, S. (2019). Short-term forecasting of land use change using recurrent neural network models. Sustainability (Switzerland), 11(19), 1–18. https://doi.org/10.3390/su11195376 | |
dc.relation.references | CAR. (2020). Informe del registro e impactos de heladas en el territorio car Durante Enero de 2020. 37. https://www.car.gov.co/uploads/files/5e543336c829c.pdf | |
dc.relation.references | Cárdenas, J., Baptiste, P., Ramirez, W., & Aguilar-garavito, M. (2015). Herramienta para la gestión de áreas afectadas por invasiones biológicas en colombia. In Instituto de Investigación de Recursos Biológicos Alexander von HumboldtHumboldt. | |
dc.relation.references | Carreño, U. (2020). “Buchón de agua” (Eichhornia Crassipes): impulsor de la fitorremediación (L. Libertadores (ed.)). | |
dc.relation.references | Castillo, S. P. (2016). Introducción intencional de fauna exótica y futuros invasores: ¿seguimos tropezando con la misma piedra una y otra vez? Bosque, 37(2), 237–241. https://doi.org/10.4067/S0717-92002016000200002 | |
dc.relation.references | Cerda Lorca, J., & Villarroel Del P., L. (2008). Evaluación de la concordancia inter-observador en investigación pediátrica: Coeficiente de Kappa. Revista Chilena de Pediatria, 79(1), 54–58. https://doi.org/10.4067/s0370-41062008000100008 | |
dc.relation.references | Cheng, W., Sun, Y., Li, G., Jiang, G., & Liu, H. (2019). Jointly network: a network based on CNN and RBM for gesture recognition. Neural Computing and Applications, 31(s1), 309–323. https://doi.org/10.1007/s00521-018-3775-8 | |
dc.relation.references | Cigliano, M., & Torrusio, S. (2003). Sistemas de información geográfica y teledetección en entomología: aplicación en tucuras y langostas (Orthoptera: Acridoidea). Revista de La Sociedad Entomológica Argentina, 62(1–2), 1–14. | |
dc.relation.references | Copernicus. (n.d.). S2 Products. Retrieved January 2, 2025, from https://sentiwiki.copernicus.eu/web/s2-products | |
dc.relation.references | Corporación AutónomaRegional de Cundinamarca, & Secretaría Distrital de Ambiente De Bogotá. (2023). Plan de Manejo Ambiental del Sitio Ramsar Complejo de Humedales Urbanos del Distrito Capital de Bogotá. https://www.ambientebogota.gov.co/plan-de-manejo-ambiental-pma-sitio-ramsar-complejo-de-humedales-urbanos-del-distrito-capital-de-bogota | |
dc.relation.references | Cortés Ballén, L. A. (2018). Aproximación al paisaje de los humedales urbanos de Bogotá dentro de la estructura ecológica principal de la ciudad. Cuadernos de Geografía: Revista Colombiana de Geografía, 27(1), 118–130. https://doi.org/10.15446/rcdg.v27n1.60584 | |
dc.relation.references | Cuellar, Y., & Perez, L. (2023). Multitemporal modeling and simulation of the complex dynamics in urban wetlands: the case of Bogota, Colombia. Scientific Reports, 13(1), 1–18. https://doi.org/10.1038/s41598-023-36600-8 | |
dc.relation.references | Dabija, A., Kluczek, M., Zagajewski, B., Raczko, E., Kycko, M., Al-Sulttani, A. H., Tardà, A., Pineda, L., & Corbera, J. (2021). Comparison of support vector machines and random forests for corine land cover mapping. Remote Sensing, 13(4), 1–35. https://doi.org/10.3390/rs13040777 | |
dc.relation.references | Damtie, Y. A., Mengistu, D. A., & Meshesha, D. T. (2021). Spatial coverage of water hyacinth (Eichhornia crassipes (Mart.) Solms) on Lake Tana and associated water loss. Heliyon, 7(10), e08196. https://doi.org/10.1016/j.heliyon.2021.e08196 | |
dc.relation.references | DANE. (2022). Cuentas Departamentales 2022 - Producto Interno Bruto por Departamento. 1–19. https://www.dane.gov.co/files/operaciones/PIB/bol-PIBDep-2022p.pdf | |
dc.relation.references | Davidson, N. C. (2014). How much wetland has the world lost? Long-term and recent trends in global wetland area. Marine and Freshwater Research, 65(10), 934–941. https://doi.org/10.1071/MF14173 | |
dc.relation.references | DeLancey, E. R., Simms, J. F., Mahdianpari, M., Brisco, B., Mahoney, C., & Kariyeva, J. (2020). Comparing deep learning and shallow learning for large-scalewetland classification in Alberta, Canada. Remote Sensing, 12(1). https://doi.org/10.3390/RS12010002 | |
dc.relation.references | Delpino, M., Portillo, V., & Mora, C. (2018). Evaluación de índices espectrales derivados de sensores remotos para la caracterización de ambientes de humedales. Anais 7o Simpósio de Geotecnologias No Pantanal, Jardim, MS, 20 a 24 de Outubro 2018, 111–121. | |
dc.relation.references | Díaz-Ramírez, J. (2021). Aprendizaje Automático y Aprendizaje Profundo. Ingeniare. Revista Chilena de Ingeniería, 29(2), 182–183. https://www.mckinsey.com/business-functions/sustainability/our-insights/artificial-intelligence-and-the- | |
dc.relation.references | Diaz, A., Diaz, J., & Vargas, O. (2012). Catalogo de Plantas Invasoras de los humedales de Bogot[a. | |
dc.relation.references | Duan, H., Deng, Z., Deng, F., & Wang, D. (2016). Assessment of groundwater potential based on multicriteria decision making model and decision tree algorithms. Mathematical Problems in Engineering, 2016. https://doi.org/10.1155/2016/2064575 | |
dc.relation.references | Ehrenfeld, J. G. (2008). Exotic invasive species in urban wetlands: Environmental correlates and implications for wetland management. Journal of Applied Ecology, 45(4), 1160–1169. https://doi.org/10.1111/j.1365-2664.2008.01476.x | |
dc.relation.references | Etter, A., Andrade, A., Saavedra, K., & Cortés, J. (2022). Actualización de la Lista Roja de los Ecosistemas Terrestres de Colombia | Biodiversidad 2022. Ficha: 208. http://reporte.humboldt.org.co/biodiversidad/2022/cap2/208/#seccion1 | |
dc.relation.references | Farhadi, H., & Najafzadeh, M. (2021). Flood Risk Mapping by Remote Sensing Data and Random. MDPI. | |
dc.relation.references | Feng, J., & Lu, S. (2019). Performance Analysis of Various Activation Functions in Artificial Neural Networks. Journal of Physics: Conference Series, 1237(2). https://doi.org/10.1088/1742-6596/1237/2/022030 | |
dc.relation.references | Fialho Cordeiro, P., Figueiredo Goulart, F., Rodrigues Macedo, D., Souza Campos, M. de C., & Rodrigues Castro, S. (2019). Modeling of the potential distribution of Eichhornia crassipes on a global scale: risks and threats to water ecosystems. Revista Ambiente e Agua, 9(3), 445–458. https://doi.org/10.4136/1980-993X | |
dc.relation.references | García, F., & Miranda, V. (2018). Eutrofización, una amenaza para el recurso hídrico. Volumen II de La Colección: Agenda Pública Para El Desarrollo Regional, La Metropolización y La Sostenibilidad, 35–367. http://ru.iiec.unam.mx/4269/1/2-Vol2_Parte1_Eje3_Cap5-177-García-Miranda.pdf | |
dc.relation.references | Ghatkar, J. G., Singh, R. K., & Shanmugam, P. (2019). Classification of algal bloom species from remote sensing data using an extreme gradient boosted decision tree model. International Journal of Remote Sensing, 40(24), 9412–9438. https://doi.org/10.1080/01431161.2019.1633696 | |
dc.relation.references | Ghayour, L., Neshat, A., Paryani, S., Shahabi, H., Shirzadi, A., Chen, W., Al-Ansari, N., Geertsema, M., Amiri, M. P., Gholamnia, M., Dou, J., & Ahmad, A. (2021). Performance evaluation of sentinel-2 and landsat 8 OLI data for land cover/use classification using a comparison between machine learning algorithms. Remote Sensing, 13(7). https://doi.org/10.3390/rs13071349 | |
dc.relation.references | Gibson, R., Danaher, T., Hehir, W., & Collins, L. (2020). A remote sensing approach to mapping fire severity in south-eastern Australia using sentinel 2 and random forest. Remote Sensing of Environment, 240(December 2019), 111702. https://doi.org/10.1016/j.rse.2020.111702 | |
dc.relation.references | Gil-Vera, V. D., & Seguro-Gallego, C. (2022). Machine learning aplicado al análisis del rendimiento de desarrollos de software. Revista Politécnica, 18(35), 128–139. https://doi.org/10.33571/rpolitec.v18n35a9 | |
dc.relation.references | Gómez, I., & Martín, I. (2008). Estudio Comparativo de Índices Espectrales para la Cartografía de Áreas Quemadas con Imágenes MODIS. Revista de Teledetección: Revista de La Asociación Española de Teledetección, 29, 15–24. | |
dc.relation.references | González-Vélez, J. C., Martinez-Vargas, J. D., & Torres-Madronero, M. C. (2022). Land Cover Classification Using CNN and Semantic Segmentation: A Case of Study in Antioquia, Colombia. Communications in Computer and Information Science, 1532 CCIS, 306–317. https://doi.org/10.1007/978-3-030-99170-8_22 | |
dc.relation.references | González Angarita, G., Henríquez, C., Peña Angulo, D., Castro Álvarez, D., & Forero Buitrago, G. (2022). Técnicas de análisis geomático en la pérdida de humedales urbanos de Bogotá. ¿Qué rol juegan los asentamientos ilegales? Revista de Geografia Norte Grande, 2022(81), 207–233. https://doi.org/10.4067/S0718-34022022000100207 | |
dc.relation.references | González, R. M., González, M. A. B., Cruz, A. M., González, A. R., & Pérez, A. L. (2022). Classification of land use and vegetation with convolutional neural networks. Revista Mexicana de Ciencias Forestales, 13(74), 97–119. https://doi.org/10.29298/rmcf.v13i74.1269 | |
dc.relation.references | Granadas, S. (2024). ¿Por qué se acaba el agua en Bogotá? Te explicamos las razones. ALCALDÍA DE BOGOTÁ. https://bogota.gov.co/mi-ciudad/habitat/por-que-se-acaba-el-agua-en-bogota-te-explicamos-las-razones#:~:text=Del 100 %25 de abastecimiento de,Sistema Sur%2C el 5 %25. | |
dc.relation.references | Guan, H. L., Wu, L. Q., & Luo, Y. P. (2011). A GIS-based approach for information management in ecotourism region. In Procedia Engineering (Vol. 15, pp. 1988–1992). https://doi.org/10.1016/j.proeng.2011.08.371 | |
dc.relation.references | Guerrero, J., & Tendilla, E. (2022). Aprendizaje profundo: Redes neuronales. Revistas.Uvp.Mx, 15(8), 10–22. https://revistas.uvp.mx/index.php/nextia/article/view/193 | |
dc.relation.references | Guevara, M. F., & Ramirez-Cando, L. J. (2015). Eichhornia crassipes, su invasividad y potencial fitorremediador. La Granja, 22(1), 18–25. https://doi.org/10.17163/lgr.n22.2015.01 | |
dc.relation.references | Gunawan, T. S., Ashraf, A., Riza, B. S., Haryanto, E. V., Rosnelly, R., Kartiwi, M., & Janin, Z. (2020). Development of video-based emotion recognition using deep learning with Google Colab. Telkomnika (Telecommunication Computing Electronics and Control), 18(5), 2463–2471. https://doi.org/10.12928/TELKOMNIKA.v18i5.16717 | |
dc.relation.references | Hailu, A. (2018). Water Hyacinth (Eichhornia crassipes) Biology and its Impacts on Ecosystem, Biodiversity, Economy and Human Well-being. Journal of Life Science and Biomedicine, 8(6), 343–372. https://doi.org/10.1093/acprof:oso/9780199646142.003.0012 | |
dc.relation.references | Handoko, J., Herwindiati, D. E., & Hendryli, J. (2020). Gradient Boosting Tree for Land Use Change Detection Using Landsat 7 and 8 Imageries: A Case Study of Bogor Area as Water Buffer Zone of Jakarta. IOP Conference Series: Earth and Environmental Science, 581(1). https://doi.org/10.1088/1755-1315/581/1/012045 | |
dc.relation.references | Howard, G. W., & Harley, K. L. S. (1997). How do floating aquatic weeds affect wetland conservation and development? How can these effects be minimised? Wetlands Ecology and Management, 5(3), 215–225. https://doi.org/10.1023/A:1008209207736 | |
dc.relation.references | Hu, Q., Woldt, W., Neale, C., Zhou, Y., Drahota, J., Varner, D., Bishop, A., LaGrange, T., Zhang, L., & Tang, Z. (2021). Utilizing unsupervised learning, multi-view imaging, and CNN-based attention facilitates cost-effective wetland mapping. Remote Sensing of Environment, 267, 112757. https://doi.org/10.1016/J.RSE.2021.112757 | |
dc.relation.references | Humboldt, I. de I. de R. B. A. von. (n.d.). FAUNA EXÓTICA E INVASORA EN COLOMBIA. | |
dc.relation.references | IGAC. (n.d.). Datos Geodésicos | Instituto Geográfico Agustín Codazzi. Retrieved March 25, 2025, from https://antiguo.igac.gov.co/es/contenido/areas-estrategicas/informacion-geodesica | |
dc.relation.references | Jagannathan, J., & Divya, C. (2021). Deep learning for the prediction and classification of land use and land cover changes using deep convolutional neural network. Ecological Informatics, 65(August), 101412. https://doi.org/10.1016/j.ecoinf.2021.101412 | |
dc.relation.references | Jiménez Prado, P. J., Vásquez, F., Rodríguez-Olarte, D., & Taphorn, D. (2020). Efectos de la especie invasora (Cyprinodontiformes: Poeciliidae) sobre Pseudopoecilia fria en ríos costeros de la región del Chocó, Ecuador. Revista de Biología Tropical, 68(1), 122–138. https://doi.org/10.15517/rbt.v68i1.36000 | |
dc.relation.references | Kandel, I., & Castelli, M. (2020). The effect of batch size on the generalizability of the convolutional neural networks on a histopathology dataset. ICT Express, 6(4), 312–315. https://doi.org/10.1016/j.icte.2020.04.010 | |
dc.relation.references | Kaplan, A., & Haenlein, M. (2019). Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. Business Horizons, 62(1), 15–25. https://doi.org/10.1016/j.bushor.2018.08.004 | |
dc.relation.references | Kaur, R., & Pandey, P. (2022). A review on spectral indices for built-up area extraction using remote sensing technology. Arabian Journal of Geosciences, 15(5). https://doi.org/10.1007/s12517-022-09688-x | |
dc.relation.references | Kaur, S. (2020). CONTROL DE CALIDAD OPERACIONAL DE PROCESADOR DE INDICADORES AGRONÓMICOS DE ALTA RESOLUCIÓN ESTIMADOS CON DATOS DE SATÉLITES SENTINEL 2 Y LANDSAT 8. Universidad Politecnica de Valencia. | |
dc.relation.references | Kavran, D., Mongus, D., Žalik, B., & Lukač, N. (2023). Graph Neural Network-Based Method of Spatiotemporal Land Cover Mapping Using Satellite Imagery. Sensors, 23(14). https://doi.org/10.3390/s23146648 | |
dc.relation.references | Keskes, M. I., Mohamed, A. H., & Borz, S. A. (2025). Improving National Forest Mapping in Romania Using Machine Learning and Sentinel-2 Multispectral Imagery. | |
dc.relation.references | Kriticos, D. J., & Brunel, S. (2016). Assessing and managing the current and future pest risk from water hyacinth, (Eichhornia crassipes), an invasive aquatic plant threatening the environment and water security. PLoS ONE, 11(8), 1–18. https://doi.org/10.1371/journal.pone.0120054 | |
dc.relation.references | Lary, D. J., Alavi, A. H., Gandomi, A. H., & Walker, A. L. (2016). Machine learning in geosciences and remote sensing. Geoscience Frontiers, 7(1), 3–10. https://doi.org/10.1016/j.gsf.2015.07.003 | |
dc.relation.references | Ledesma, C., Bonansea, M., Rodriguez, C. M., & Delgado, A. R. S. (2013). Determinación de indicadores de eutrofización en el embalse Río Tercero, Córdoba (Argentina). Revista Ciencia Agronomica, 44(3), 419–425. https://doi.org/10.1590/S1806-66902013000300002 | |
dc.relation.references | Li, M., Dong, J., Zhang, Y., Yang, H., Van Zwieten, L., Lu, H., Alshameri, A., Zhan, Z., Chen, X., Jiang, X., Xu, W., Bao, Y., & Wang, H. (2021). A critical review of methods for analyzing freshwater eutrophication. Water (Switzerland), 13(2), 1–20. https://doi.org/10.3390/w13020225 | |
dc.relation.references | Liao, C., Wang, J., Xie, Q., Baz, A. Al, Huang, X., Shang, J., & He, Y. (2020). Synergistic use of multi-temporal RADARSAT-2 and VENμS data for crop classification based on 1D convolutional neural network. Remote Sensing, 12(5), 1–17. https://doi.org/10.3390/rs12050832 | |
dc.relation.references | Mahlein, A. K., Rumpf, T., Welke, P., Dehne, H. W., Plümer, L., Steiner, U., & Oerke, E. C. (2013). Development of spectral indices for detecting and identifying plant diseases. Remote Sensing of Environment, 128, 21–30. https://doi.org/10.1016/j.rse.2012.09.019 | |
dc.relation.references | Main-Knorn, Pflug, Bebaecker, & Louis. (2015). CALIBRATION AND VALIDATION PLAN FOR THE L2A PROCESSOR AND PRODUCTS OF THE SENTINEL-2 MISSION M. XL(May), 11–15. https://doi.org/10.5194/isprsarchives-XL-7-W3-1249-2015 | |
dc.relation.references | Martínez, A. A. A., Rodríguez, J. M., & Hernández, A. C. (2014). LOS PAISAJES DE HUMEDALES, MARCO CONCEPTUAL Y ASPECTOS METODOLÓGICOS PARA SU ESTUDIO Y ORDENAMIENTO. Mercator (Fortaleza), 13(2), 169–191. http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1984-22012014000200169&lang=pt%0Ahttp://www.scielo.br/pdf/mercator/v13n2/1676-8329-mercator-13-02-0169.pdf | |
dc.relation.references | Mazón, B., Rivas, W., & Mejia, E. (2018). Capítulo 1: Generalidades de las redes neuronales artificiales. Redes Neuronales Artificiales Aplicadas Al Reconocimiento de Patrones, September, 11–35. https://www.researchgate.net/publication/327703478_Capitulo_1_Generalidades_de_las_redes_neuronales_artificiales | |
dc.relation.references | McCarty, D. A., Kim, H. W., & Lee, H. K. (2020). Evaluation of light gradient boosted machine learning technique in large scale land use and land cover classification. Environments - MDPI, 7(10), 1–22. https://doi.org/10.3390/environments7100084 | |
dc.relation.references | McFeeters, S. K. (2013). Using the normalized difference water index (ndwi) within a geographic information system to detect swimming pools for mosquito abatement: A practical approach. Remote Sensing, 5(7), 3544–3561. https://doi.org/10.3390/rs5073544 | |
dc.relation.references | Mehmood, K., Anees, S. A., Rehman, A., Pan, S., Tariq, A., Zubair, M., Liu, Q., Rabbi, F., Khan, K. A., & Luo, M. (2024). Exploring spatiotemporal dynamics of NDVI and climate-driven responses in ecosystems: Insights for sustainable management and climate resilience. Ecological Informatics, 80(February), 102532. https://doi.org/10.1016/j.ecoinf.2024.102532 | |
dc.relation.references | Mengistu, B. B., Unbushe, D., & Abebe, E. (2017). Invasion of Water Hyacinth (Eichhornia crassipes) Is Associated with Decline in Macrophyte Biodiversity in an Ethiopian Rift-Valley Lake—Abaya. Open Journal of Ecology, 07(13), 667–681. https://doi.org/10.4236/oje.2017.713046 | |
dc.relation.references | Migas-Mazur, R., Kycko, M., Zwijacz-Kozica, T., & Zagajewski, B. (2021). Assessment of sentinel-2 images, support vector machines and change detection algorithms for bark beetle outbreaks mapping in the tatra mountains. Remote Sensing, 13(16). https://doi.org/10.3390/rs13163314 | |
dc.relation.references | Mintz, Y., & Brodie, R. (2019). Introduction to artificial intelligence in medicine. Minimally Invasive Therapy and Allied Technologies, 28(2), 73–81. https://doi.org/10.1080/13645706.2019.1575882 | |
dc.relation.references | Montalvo, J. F., García Ramil, I. de los A., Almeida Rodríguez, M., Betanzos Vega, A., & García García, N. (2014). Modelación de la eutroficación e índice de calidad del agua en algunas bahías del archipiélago Sabana Camagüey. Tecnología Química, 34(3), 184–196. https://www.redalyc.org/pdf/4455/445543783002.pdf | |
dc.relation.references | Mora-Goyes, M. F., Rubio, J., Ocampo, R., & Barrera-Cataño, J. I. (2015). Catálogo de especies invasoras del territorio CAR. Pontificia Universidad Javeriana, Corporación Autónoma Regional de Cundinamarca – CAR, 238. https://www.car.gov.co/uploads/files/5b451c903677d.pdf | |
dc.relation.references | Mousa, A., Shahin, I., Nassif, A. B., & Elnagar, A. (2020). Cascaded RBF-CBiLSTM for Arabic Named Entity Recognition. Proceedings of the 2020 IEEE International Conference on Communications, Computing, Cybersecurity, and Informatics, CCCI 2020, 1–5. https://doi.org/10.1109/CCCI49893.2020.9256638 | |
dc.relation.references | Mu, M., Li, Y., Bi, S., Lyu, H., Xu, J., Lei, S., Miao, S., Zeng, S., Zheng, Z., & Du, C. (2021). Prediction of algal bloom occurrence based on the naive Bayesian model considering satellite image pixel differences. Ecological Indicators, 124, 107416. https://doi.org/10.1016/j.ecolind.2021.107416 | |
dc.relation.references | Munizaga, J., García, M., Ureta, F., Novoa, V., Rojas, O., & Rojas, C. (2022). Mapping Coastal Wetlands Using Satellite Imagery and Machine Learning in a Highly Urbanized Landscape. Sustainability (Switzerland), 14(9), 1–19. https://doi.org/10.3390/su14095700 | |
dc.relation.references | Naidu, G., Zuva, T., & Sibanda, E. M. (2023). A Review of Evaluation Metrics in Machine Learning Algorithms. Lecture Notes in Networks and Systems, 724 LNNS, 15–25. https://doi.org/10.1007/978-3-031-35314-7_2 | |
dc.relation.references | Nyenje, P. M., Foppen, J. W., Uhlenbrook, S., Kulabako, R., & Muwanga, A. (2010). Eutrophication and nutrient release in urban areas of sub-Saharan Africa - A review. Science of the Total Environment, 408(3), 447–455. https://doi.org/10.1016/j.scitotenv.2009.10.020 | |
dc.relation.references | Olaniyi, E., Oyedotun, O., & Khashman, A. (2017). A simple and practical review of over-fitting in neural network learning. International Journal of Applied Pattern Recognition, 4(4), 307. https://doi.org/10.1504/ijapr.2017.10010243 | |
dc.relation.references | Padilla-Mendoza, C., Torres-Bejarano, F., Campo-Daza, G., & González-Márquez, L. C. (2023). Potential of Sentinel Images to Evaluate Physicochemical Parameters Concentrations in Water Bodies—Application in a Wetlands System in Northern Colombia. Water (Switzerland), 15(4). https://doi.org/10.3390/w15040789 | |
dc.relation.references | Park, Y. S., & Lek, S. (2016). Artificial Neural Networks: Multilayer Perceptron for Ecological Modeling. In Developments in Environmental Modelling (Vol. 28). Elsevier. https://doi.org/10.1016/B978-0-444-63623-2.00007-4 | |
dc.relation.references | Patel, S. (2012). Threats, management and envisaged utilizations of aquatic weed Eichhornia crassipes: An overview. Reviews in Environmental Science and Biotechnology, 11(3), 249–259. https://doi.org/10.1007/s11157-012-9289-4 | |
dc.relation.references | Patil, S. D., Gu, Y., Dias, F. S. A., Stieglitz, M., & Turk, G. (2017). Predicting the spectral information of future land cover using machine learning. International Journal of Remote Sensing, 38(20), 5592–5607. https://doi.org/10.1080/01431161.2017.1343512 | |
dc.relation.references | Peña-Guzmán, C. A., Melgarejo, J., & Prats, D. (2016). El ciclo urbano del agua en Bogotá, Colombia: Estado actual y desafíos para la sostenibilidad. Tecnologia y Ciencias Del Agua, 7(6), 57–71. | |
dc.relation.references | Piao, Y., Jeong, S., Park, S., & Lee, D. (2021). Analysis of land use and land cover change using time-series data and random forest in north korea. Remote Sensing, 13(17), 1–18. https://doi.org/10.3390/rs13173501 | |
dc.relation.references | Piedad, A., Hernández, D., Lárraga, H., & González, E. (2020). TELEDETECCIÓN EN LA AGRICULTURA DE PRECISIÓN: ESTADO DEL ARTE DE LOS ÍNDICES DE VEGETACIÓN. TECTZAPIC, 6(2), 46–58. | |
dc.relation.references | Polykretis, C., Grillakis, M. G., & Alexakis, D. D. (2020). Exploring the impact of various spectral indices on land cover change detection using change vector analysis: A case study of Crete Island, Greece. Remote Sensing, 12(2). https://doi.org/10.3390/rs12020319 | |
dc.relation.references | Pranckutė, R. (2021). Web of Science (WoS) and Scopus: the titans of bibliographic information in today’s academic world. Publications, 9(1). https://doi.org/10.3390/publications9010012 | |
dc.relation.references | Quispe, L., Arias Chavez, J. B., Martinez Suarez, C. F., & Cruz Huaranga, M. (2017). Eficiencia de la especie macrófita Eichhornia crassipes (Jacinto de agua) para la remoción de parámetros fisicoquímicos, metal pesado (Pb) y la evaluación de su crecimiento en función al tiempo y adopción al medio en una laguna experimental. Revista de Investigación Ciencia, Tecnología y Desarrollo, 3(1). https://doi.org/10.17162/rictd.v1i1.899 | |
dc.relation.references | Ramsar. (1971a). Criterios para Sitios Ramsar. Ramsar.Org, 1–2. http://www.ramsar.org/sites/default/files/documents/library/ramsarsites_criteria_sp.pdf | |
dc.relation.references | Ramsar. (2024). La Lista de Humedales de Importancia Internacional | The Convention on Wetlands, La Convención sobre los Humedales. https://www.ramsar.org/es/document/la-lista-de-humedales-de-importancia-internacional | |
dc.relation.references | Ramsar, I. (1971b). Convención Relativa a los Humedales de Importancia Internacional Especialmente como Hábitat de Aves Acuáticas. | |
dc.relation.references | Ranganath, R., . Jayaraman, V., & Roy, P. (2007). Remote sensing applications: An overview. Current Science, 93(12), 1747–1766. https://www.jstor.org/stable/24102069 | |
dc.relation.references | Rifai, M., & Harintaka. (2024). Integration of Cloud Score+ with Sentinel-2 Harmonized for land use and land cover classification using machine learning algorithms. IOP Conference Series: Earth and Environmental Science, 1418(1). https://doi.org/10.1088/1755-1315/1418/1/012039 | |
dc.relation.references | Rodríguez-Lara, J. W., Cervantes-Ortiz, F., Arámbula-Villa, G., Mariscal-Amaro, L. A., Aguirre-Mancilla, C. L., & Andrio-Enríquez, E. (2022). Lirio acuático (Eichhornia crassipes): una revisión. Agronomia Mesoamericana, 33(1). https://doi.org/10.15517/am.v33i1.44201 | |
dc.relation.references | Rodríguez-Puerta, F., Perroy, R. L., Barrera, C., Price, J. P., & García-Pascual, B. (2024). Five-Year Evaluation of Sentinel-2 Cloud-Free Mosaic Generation Under Varied Cloud Cover Conditions in Hawai’i. Remote Sensing, 16(24). https://doi.org/10.3390/rs16244791 | |
dc.relation.references | Rosselli, L., & Stiles, F. G. (2012). Wetland habitats of the Sabana de Bogotá Andean Highland Plateau and their birds. Aquatic Conservation: Marine and Freshwater Ecosystems, 22(3), 303–317. https://doi.org/10.1002/aqc.2234 | |
dc.relation.references | Ruiz, A. E., Stephens, C. R., & Flores, H. (2015). Una Generalización del Clasificador Naive Bayes para Usarse en Bases de Datos con Dependencia de Variables. Research in Computing Science, 94(1), 59–71. https://doi.org/10.13053/rcs-94-1-5 | |
dc.relation.references | Ruiz, M. P., Huamán, E., & Mejía, F. (2019). Diagnóstico ecológico del humedal Chochoc. Revista de Investigacion Cientifica REBIOL, 39(2), 1–16. | |
dc.relation.references | Sandoval, D. (2012). Protected areas in the city, urban wetlands of Bogotá. Cuadernos de Arquitectura y Urbanismo, 6(11), 80–103. | |
dc.relation.references | Secretaría Distrital de Ambiente. (2016, November 1). Humedal Juan Amarillo ahora tiene más oxígeno gracias a recuperación En siete meses, Acueducto ha retirado 35 toneladas de buchón en 10 hectáreas de este espejo de agua. » Observatorio Ambiental de Bogotá. Observatorio Ambiental de Bogotá. https://oab.ambientebogota.gov.co/humedal-juan-amarillo-ahora-tiene-mas-oxigeno-gracias-a-recuperacion-en-siete-meses-acueducto-ha-retirado-35-toneladas-de-buchon-en-10-hectareas-de-este-espejo-de-agua/ | |
dc.relation.references | Secretaría Distrital de Ambiente, & Corporación Autónoma Regional de Cundinamarca. (2023). Resolución Conjunta 37 de 2023 Por la cual se adopta el Plan de Manejo Ambiental del sitio Ramsar Complejo de Humedales Urbanos del Distrito Capital de Bogotá y se toman otras determinaciones. | |
dc.relation.references | Senhadji-Navarro, K., Ruiz-Ochoa, M. A., & Rodríguez Miranda, J. P. (2017). Estado ecológico de algunos humedales colombianos en los últimos 15 años: Una evaluación prospectiva. Colombia Forestal, 20(2), 181–191. https://doi.org/10.14483/udistrital.jour.colomb.for.2017.2.a07 | |
dc.relation.references | Shang, C., Li, X., Foody, G. M., Du, Y., & Ling, F. (2022). Superresolution Land Cover Mapping Using a Generative Adversarial Network. IEEE Geoscience and Remote Sensing Letters, 19, 1–5. https://doi.org/10.1109/LGRS.2020.3020395 | |
dc.relation.references | Shrestha, M., Mitra, C., Rahman, M., & Marzen, L. (2023). Mapping and Predicting Land Cover Changes of Small and Medium Size Cities in Alabama Using Machine Learning Techniques. Remote Sensing, 15(1). https://doi.org/10.3390/rs15010106 | |
dc.relation.references | Silva, L. P. e., Xavier, A. P. C., da Silva, R. M., & Santos, C. A. G. (2020). Modeling land cover change based on an artificial neural network for a semiarid river basin in northeastern Brazil. Global Ecology and Conservation, 21. https://doi.org/10.1016/j.gecco.2019.e00811 | |
dc.relation.references | Singh, G., Reynolds, C., Byrne, M., & Rosman, B. (2020). A remote sensing method to monitor water, aquatic vegetation, and invasive water hyacinth at national extents. Remote Sensing, 12(24), 1–24. https://doi.org/10.3390/rs12244021 | |
dc.relation.references | Sirous, A., Satari, M., Shahraki, M. M., & Pashayi, M. (2023). A Conditional Generative Adversarial Network for urban area classification using multi-source data. Earth Science Informatics, 16(3), 2529–2543. https://doi.org/10.1007/s12145-023-01050-3 | |
dc.relation.references | Smith Guerra, P., & Romero Aravena, H. (2009). Efectos del crecimiento urbano del Área Metropolitana de Concepción sobre los humedales de Rocuant-Andalién, Los Batros y Lenga. Revista de Geografía Norte Grande, 43. https://doi.org/10.4067/s0718-34022009000200005 | |
dc.relation.references | Soria, E., Sánchez, M., Gamero, R., Castillo, B., & Cano, P. (2023). Sistemas de Aprendizaje Automático (R. Editorial (ed.)). Ra - Ma. | |
dc.relation.references | Soto-Durán, D. E., Marín-Morales, M. I., & Vargas-Agudelo, F. A. (2014). Caracterización de Formatos de Almacenamiento, Transporte y Visualización de Datos Geográficos. Lámpsakos, 12, 23. https://doi.org/10.21501/21454086.1309 | |
dc.relation.references | Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15, 1929–1958. | |
dc.relation.references | Stiles, F. G., Rosselli, L., & De la Zerda, S. (2021). Una avifauna en cambio: 26 años de conteos navideños en la Sabana de Bogotá, Colombia. Ornitologia Colombiana, 1–65. | |
dc.relation.references | Sun, Z., Di, L., & Fang, H. (2019). Using long short-term memory recurrent neural network in land cover classification on Landsat and Cropland data layer time series. International Journal of Remote Sensing, 40(2), 593–614. https://doi.org/10.1080/01431161.2018.1516313 | |
dc.relation.references | Tarazona, M., Salamanca-Coy, J. L., Forero-Gutièrrez, K., Núñez, L. A., Pisco-Guabave, J., Escobar-Diaz, F., & Sierra-Porta, D. (2024). Assessing and monitoring air quality in cities and urban areas with a portable, modular and low-cost sensor station: calibration challenges. International Journal of Remote Sensing, 45(17), 5713–5736. https://doi.org/10.1080/01431161.2024.2373338 | |
dc.relation.references | Tegegne, A. M. (2022). Applications of Convolutional Neural Network for Classification of Land Cover and Groundwater Potentiality Zones. Journal of Engineering (United Kingdom), 2022. https://doi.org/10.1155/2022/6372089 | |
dc.relation.references | Torres, J., Zarzoso, J., Ten, M., Gaitán, R., & Lluch, J. (2009). Edición y visualización de información vectorial en aplicaciones SIG. 19th Spanish Computer Graphics Conference, CEIG 2009, 11, 115–124. https://doi.org/10.2312/LocalChapterEvents/CEIG/CEIG09/115-124 | |
dc.relation.references | Tran, T. V., Reef, R., & Zhu, X. (2022). A Review of Spectral Indices for Mangrove Remote Sensing. Remote Sensing, 14(19). https://doi.org/10.3390/rs14194868 | |
dc.relation.references | Tsutsumida, N., Nasahara, K., Tadono, T., Birch, T., & Erickson, T. (2023). 10-Meter Resolution Land Cover Classification Mapping Using Sentinel-1 & 2 and Dynamic World. International Geoscience and Remote Sensing Symposium (IGARSS), 2023-July, 2954–2957. https://doi.org/10.1109/IGARSS52108.2023.10282556 | |
dc.relation.references | United Nations. (n.d.). Water – at the center of the climate crisis. Retrieved May 13, 2024, from https://www.un.org/en/climatechange/science/climate-issues/water | |
dc.relation.references | van Duynhoven, A., & Dragićević, S. (2021). Exploring the sensitivity of recurrent neural network models for forecasting land cover change. Land, 10(3). https://doi.org/10.3390/land10030282 | |
dc.relation.references | Vilardy, S., Jaramillo, U., Florez, C., Cortés, J., Estupiñan, L., Acevedo, O., Samacá, W., Santos, A., Peláez, S., & Aponte, C. (2014). Principios y criterios para la delimitación de humedales continentales principios y criterios para la delimitación de humedales continentales una herramienta para fortalecer la resiliencia y la adaptación al cambio climático en colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humbold. | |
dc.relation.references | Vizcaíno Mendoza, L., Fuentes Molina, N., & González Fragozo, H. (2017). Adsorción de plomo (II) en solución acuosa con tallos y hojas de Eichhornia crassipes. Revista U.D.C.A Actualidad & Divulgación Científica, 20(2), 435–444. https://doi.org/10.31910/rudca.v20.n2.2017.400 | |
dc.relation.references | Wang, M., Lu, S., Zhu, D., Lin, J., & Wang, Z. (2018). A High-Speed and Low-Complexity Architecture for Softmax Function in Deep Learning. 2018 IEEE Asia Pacific Conference on Circuits and Systems, APCCAS 2018, 223–226. https://doi.org/10.1109/APCCAS.2018.8605654 | |
dc.relation.references | Waoo, A. A., & Soni, B. K. (2021). Performance Analysis of Sigmoid and Relu Activation Functions in Deep Neural Network. 39–52. https://doi.org/10.1007/978-981-16-2248-9_5 | |
dc.relation.references | Wei, P., Ye, H., Qiao, S., Liu, R., Nie, C., Zhang, B., Song, L., & Huang, S. (2023). Early Crop Mapping Based on Sentinel-2 Time-Series Data and the Random Forest Algorithm. Remote Sensing, 15(13), 1–18. https://doi.org/10.3390/rs15133212 | |
dc.relation.references | Wu, H., & Ding, J. (2020). Abiotic and Biotic Determinants of Plant Diversity in Aquatic Communities Invaded by Water Hyacinth [Eichhornia crassipes (Mart.) Solms]. Frontiers in Plant Science, 11(August), 1–11. https://doi.org/10.3389/fpls.2020.01306 | |
dc.relation.references | Xiao, Z., Xu, P., Wang, X., Chen, L., & An, F. (2020). A Multi-Class Objects Detection Coprocessor with Dual Feature Space and Weighted Softmax. IEEE Transactions on Circuits and Systems II: Express Briefs, 67(9), 1629–1633. https://doi.org/10.1109/TCSII.2020.3010517 | |
dc.relation.references | Xu, H. (2006). Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27(14), 3025–3033. https://doi.org/10.1080/01431160600589179 | |
dc.relation.references | Xu, Y., Yang, Y., Chen, X., & Liu, Y. (2022). Bibliometric Analysis of Global NDVI Research Trends from 1985 to 2021. Remote Sensing, 14(16), 1–20. https://doi.org/10.3390/rs14163967 | |
dc.relation.references | Yang, L., Hu, C., Hu, W., Wang, Z., Zhang, M., Cang, Y., & Yang, B. (2024). Artificial neural network assisted omnidirectional strain sensors for human motion perception. Chemical Engineering Journal, 502(September), 158115. https://doi.org/10.1016/j.cej.2024.158115 | |
dc.relation.references | Yasin, M. Y., Abdullah, J., Noor, N. M., Yusoff, M. M., & Noor, N. M. (2022). Landsat observation of urban growth and land use change using NDVI and NDBI analysis. IOP Conference Series: Earth and Environmental Science, 1067(1). https://doi.org/10.1088/1755-1315/1067/1/012037 | |
dc.relation.references | Zarkami, R., Ahmadi, M., & Abedini, A. (2021). Modelling habitat preferences of water hyacinth (Eichhornia crassipes) in some wetlands of Guilan province. Iranian Journal of Biology, 34(2), 449–466. | |
dc.relation.references | Zarkami, R., Esfandi, J., & Sadeghi, R. (2021). Modelling Occurrence of Invasive Water Hyacinth (Eichhornia crassipes) in Wetlands. Wetlands, 41(1). https://doi.org/10.1007/s13157-021-01405-w | |
dc.relation.references | Zhang, C., Liu, Y., & Tie, N. (2023). Forest Land Resource Information Acquisition with Sentinel-2 Image Utilizing Support Vector Machine , K-Nearest Neighbor , Random Forest , Decision Trees and Multi-Layer Perceptron. | |
dc.relation.references | Zhang, L., & Zhang, L. (2022). Artificial Intelligence for Remote Sensing Data Analysis: A review of challenges and opportunities. IEEE Geoscience and Remote Sensing Magazine, 10(2), 270–294. https://doi.org/10.1109/MGRS.2022.3145854 | |
dc.relation.references | Zhang, R., Yu, L., Tian, S., & Lv, Y. (2019). Unsupervised remote sensing image segmentation based on a dual autoencoder. Https://Doi.Org/10.1117/1.JRS.13.038501, 13(3), 038501. https://doi.org/10.1117/1.JRS.13.038501 | |
dc.relation.references | Zhang, X., Chen, G., Wang, W., Wang, Q., & Dai, F. (2017). Object-Based Land-Cover Supervised Classification for Very-High-Resolution UAV Images Using Stacked Denoising Autoencoders. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(7), 3373–3385. https://doi.org/10.1109/JSTARS.2017.2672736 | |
dc.relation.references | Zhang, X., Zhou, Y., & Luo, J. (2022). Deep learning for processing and analysis of remote sensing big data: a technical review. Big Earth Data, 6(4), 527–560. https://doi.org/10.1080/20964471.2021.1964879 | |
dc.relation.references | Zhang, Y., Yang, J., Wang, D., Wang, J., Yu, L., Yan, F., Chang, L., & Zhang, S. (2021). An integrated cnn model for reconstructing and predicting land use/cover change: A case study of the baicheng area, northeast china. Remote Sensing, 13(23). https://doi.org/10.3390/rs13234846 | |
dc.relation.references | Zhu, X. X., Tuia, D., Mou, L., Xia, G.-S., Zhang, L., Xu, F., & Fraundorfer, F. (2017). Deep learning in remote sensing: a review. december. https://doi.org/10.1109/MGRS.2017.2762307 | |
dc.rights.acceso | Abierto (Texto Completo) | |
dc.rights.accessrights | OpenAccess | |
dc.subject | humedales | |
dc.subject | imágenes satelitales | |
dc.subject | inteligencia artificial | |
dc.subject | sistemas de información geográfica | |
dc.subject.keyword | wetlands | |
dc.subject.keyword | satellite imagery | |
dc.subject.keyword | artificial intelligence | |
dc.subject.keyword | Geographic Information Systems | |
dc.subject.lemb | Maestría en ingeniería Civil -- Tesis y disertaciones académicas | |
dc.title | Monitoreo de la variación de los espejos de agua de los humedales Ramsar de Bogotá D.C. utilizando inteligencia artificial a partir de imágenes satelitales | |
dc.title.titleenglish | Monitoring the variation of water bodies in the Ramsar wetlands of Bogotá D.C. using artificial intelligence and satellite imagery | |
dc.type | masterThesis | |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
dc.type.degree | Monografía | |
dc.type.driver | info:eu-repo/semantics/bachelorThesis |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 7 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: