Evaluación del efecto borde de un bosque de Galería en Cabuyaro (Meta) a través de la caracterización de la macrofauna edáfica

dc.contributor.advisorBogotá Ángel, Raúl Giovanni
dc.contributor.advisorRamírez Correal, Beatriz Helena
dc.contributor.authorMejía Ávila, Laura Daniela
dc.contributor.orcidBogotá Ángel, Raúl Giovanni [0000-0003-3846-4735]
dc.contributor.orcidRamírez Correal, Beatriz Helena [0000-0002-8411-2602]
dc.date.accessioned2025-07-31T21:15:30Z
dc.date.available2025-07-31T21:15:30Z
dc.date.created2024-10-31
dc.descriptionLa macrofauna del suelo interviene en las características del suelo como la estructura, porosidad y capacidad de infiltración, que se asocian a la regulación hídrica y es sensible a los cambios en su hábitat. Los bosques de Galería cumplen diversos servicios ecosistémicos asociados al recurso hídrico tales como la regulación de los caudales de agua, el control de las inundaciones y de la erosión de las márgenes de los ríos. Sin embargo, se ven sometidos a presiones antrópicas que reducen su extensión, y/o alteran la riqueza y abundancia de los organismos del suelo y sus propiedades. La presente investigación evalúa el efecto borde de un bosque de Galería en Cabuyaro (Meta) sobre la diversidad de macrofauna edáfica en función de la distancia del borde (0-20 m, 20-40 m, 40-80 m y más de 80 m). En tres sectores del bosque de Galería se midieron variables relacionadas a la estructura de la vegetación, se delimitaron 45 puntos de muestreo y se recolectó la macrofauna existente. Se extrajeron muestras de suelo para su caracterización. Además, se llevó a cabo un análisis de Escalamiento multidimensional no paramétrico (NMDS) para determinar si el efecto borde tiene correlación con la composición de la macrofauna edáfica. Los 2086 individuos recolectados corresponden a 159 morfoespecies agrupadas en cuatro (4) filos, nueve (9) clases y 19 órdenes y son los órdenes Blattodea, Hymenoptera y Coleoptera los de mayor número de individuos. La mayor abundancia se registró entre los 20 y 40 m de distancia al borde. Se observó que la cobertura del dosel y algunas variables del suelo como Ca/Mg, acidez intercambiable, CICE, K, Mg/K, SAI y Ca, el agua disponible para las plantas, el punto de marchitez permanente y el contenido de C y N variaron con respecto a la distancia del borde, particularmente Ca/Mg, Mg/K, Ca y el agua disponible para las plantas aumentaron hacia el interior del bosque. Este estudio muestra que la composición de la macrofauna del suelo en el bosque de Galería está levemente influenciada por la distancia del borde, la acidez intercambiable, el punto de saturación y el agua disponible para las plantas.
dc.description.abstractSoil macrofauna influences soil characteristics such as structure, porosity, and infiltration capacity, which are associated with water regulation, and it is sensitive to changes in its habitat. Gallery forests provide various ecosystem services related to water resources, such as regulating water flows, controlling floods, and preventing riverbank erosion. However, these forests are subjected to anthropogenic pressures that reduce their extent and/or alter the richness and abundance of soil organisms and their properties. This study evaluates the edge effect of a Gallery forest in Cabuyaro (Meta) on the diversity of soil macrofauna as a function of distance from the edge (0-20 m, 20-40 m, 40-80 m, and more than 80 m). In three sections of the Gallery forest, variables related to vegetation structure were measured, 45 sampling points were established, and existing macrofauna were collected. Soil samples were also extracted for characterization. Additionally, a non-metric multidimensional scaling (NMDS) analysis was conducted to determine whether the edge effect correlates with soil macrofauna composition. A total of 2,086 individuals were collected, corresponding to 159 morphospecies grouped into four (4) phyla, nine (9) classes, and 19 orders. The orders Blattodea, Hymenoptera, and Coleoptera had the highest number of individuals. The greatest abundance was recorded between 20 and 40 meters from the edge. Canopy cover and several soil variables, such as Ca/Mg, exchangeable acidity, cation exchange capacity (CEC), K, Mg/K, soil acidity index (SAI), Ca, plant-available water, permanent wilting point, and C and N content, varied with distance from the edge. Specifically, Ca/Mg, Mg/K, Ca, and plant-available water increased towards the forest interior. This study shows that soil macrofauna composition in the Gallery forest is slightly influenced by edge distance, exchangeable acidity, saturation point, and plant-available water.
dc.format.mimetypepdf
dc.identifier.urihttp://hdl.handle.net/11349/98354
dc.publisherUniversidad Francisco José de Caldas
dc.relation.referencesAlcaldía Municipal de Cabuyaro. (2000). Esquema de ordenamiento territorial. Municipio de Cabuyaro, Meta.
dc.relation.referencesAmat, G., Andrade, G.M & Fernández, F. (1999). Insectos de Colombia. Volumen II. Academia Colombiana de Ciencias Exactas, Físicas y Naturales. Colombia
dc.relation.referencesAnderson, J. M., & Ingram, J. S. I. (Eds.). (1993). Tropical Soil Biology and Fertility: A Handbook of Methods (2nd edition). C.A.B International. https://www.researchgate.net/publication/232141777_Tropical_Soil_Biology_and_Fertility _A_Handbook_of_Methods
dc.relation.referencesCabrera Dávila, G. de la C. (2022). Consideraciones sobre los servicios ecosistémicos de las termitas (Insecta: Isoptera). Poeyana, (513). http://www.revistasgeotech.com/index.php/poey/article/view/403
dc.relation.referencesCalderón-Medina, C. L., Bautista-Mantilla, G. P., & Rojas-González, S. (2018). Propiedades químicas, físicas y biológicas del suelo, indicadores del estado de diferentes ecosistemas en una terraza alta del departamento del Meta. Orinoquia, 22(2), 141-157.
dc.relation.referencesCartwright, O. L. (1974). Ataenius, Aphotaenius, and Pseudataenius of the United States and Canada (Coleoptera: Scarabaeidae: Aphodiinae). Washington: Smithsonian Institution Press; for sale by the Supt. of Docs., U.S. Govt. Print. Off.. In Smithsonian Contributions to Zoology, 154. https://repository.si.edu/handle/10088/5385
dc.relation.referencesCelentano, D., Rousseau, G., Lex Engel, V., Zelarayán, M., Oliveira, E., Araujo, A., & Moura, E. (2016). Degradation of riparian forest affects soil properties and ecosystem services provision in eastern amazon of Brazil: Degradation of soil ecosystem services in eastern amazon. Land Degradation & Development, 28. https://doi.org/10.1002/ldr.2547
dc.relation.referencesChao, A., & Jost, L. (2012). Coverage-based rarefaction and extrapolation: Standardizing samples by completeness rather than size. Ecology, 93(12), 2533-2547. https://doi.org/10.1890/11-1952.1
dc.relation.referencesCheik, S., Harit, A., Bottinelli, N., & Jouquet, P. (2022). Bioturbation by dung beetles and termites. Do they similarly impact soil and hydraulic properties?. Pedobiologia, 95, 150845. https://doi.org/10.1016/j.pedobi.2022.150845
dc.relation.referencesDaily, G. C. (2012). Nature’s Services: Societal Dependence On Natural Ecosystems. Island Press.
dc.relation.referencesDavid, J. F., & Handa, I. T. (2010). The ecology of saprophagous macroarthropods (millipedes, woodlice) in the context of global change. Biological reviews, 85(4), 881-895. DOI: 10.1111/j.1469-185X.2010.00138.x
dc.relation.referencesDe Cáceres, M., Jansen, F., Dell, N., & De Cáceres, M. M. (2022). Package ‘indicspecies’. Indicators, 7(1), 1–31.
dc.relation.referencesDecaëns, T., Jiménez, J. J., Rangel, A. F., Cepeda, A., Moreno, A. G., & Lavelle, P. (2001). La Macrofauna del Suelo en la Sabana Bien Drenada de los Llanos Orientales. En G. Rippstein, G. Escobar, & F. Motta (Eds.), Agroecología y biodiversidad de las sabanas en los Llanos Orientales de Colombia. Centro internacional de Agricultura Tropical. https://cgspace.cgiar.org/bitstream/handle/10568/55159/agroecologia_y_biodiversidad.pdf
dc.relation.referencesDecaëns, T., Jiménez, J. J., Barros, E., Chauvel, A., Blanchart, E., Fragoso, C., & Lavelle, P. (2004). Soil macrofaunal communities in permanent pastures derived from tropical forest or savanna. Agriculture, Ecosystems & Environment, 103(2), 301–312. doi:10.1016/j.agee.2003.12.005
dc.relation.referencesDidham, R. K., & Lawton, J. H. (1999). Edge Structure Determines the Magnitude of Changes in Microclimate and Vegetation Structure in Tropical Forest Fragments. Biotropica, 31(1), 17–30. doi:10.1111/j.1744-7429.1999.tb00113.x
dc.relation.referencesDufrêne, M. & Legendre, P. (1997). Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs, 67(3), 345-366. DOI: https://doi.org/10.1890/0012-9615(1997)067[0345:SAAIST]2.0.CO;2
dc.relation.referencesGalili, T. (2015). dendextend: an R package for visualizing, adjusting, and comparing trees of hierarchical clustering. Bioinformatics. DOI: 10.1093/bioinformatics/btv428
dc.relation.referencesFajardo, A., Veneklaas, E., Obregon, S., & Beaulieu, N. (2000). Los bosques de Galería. Guía para su apreciación y su conservación. Centro Internacional de Agricultura Tropical (CIAT). https://core.ac.uk/download/pdf/132686963.pdf
dc.relation.referencesFrouz, J. (2018). Effects of soil macro-and mesofauna on litter decomposition and soil organic matter stabilization. Geoderma, 332, 161-172. https://doi.org/10.1016/j.geoderma.2017.08.039
dc.relation.referencesHarper, K., Macdonald, S., Burton, P., Chen, J., Brosofske, K., Saunders, S., Euskirchen, E., Roberts, D., Jaiteh, M., & Esseen, P.-A. (2005). Edge Influence on Forest Structure and Composition in Fragmented Landscapes. Conservation Biology, 19, 768-782. https://doi.org/10.1111/j.1523-1739.2005.00045.x
dc.relation.referencesHolt, J. A., Lepage, M. (2000). Termites and Soil Properties. In: Abe, T., Bignell, D.E., Higashi, M. (eds) Termites: Evolution, Sociality, Symbioses, Ecology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3223-9_18
dc.relation.referencesHsieh, T. C., Ma, K., & Chao, A. (2016). iNEXT: An R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution, 7. https://doi.org/10.1111/2041-210X.12613
dc.relation.referencesIDEAM, (2018). Manual de Campo Inventario Forestal Nacional Colombia. Colombia. Bogotá, 2018. 160 páginas
dc.relation.referencesIGAC. (2004). Estudio general de suelos y zonificación de tierras del departamento del Meta. Instituto Geográfico Agustín Codazzi (Bogotá). 555 pp.
dc.relation.referencesInkotte, J., Bomfim, B., da Silva, S. C., Valadão, M. B. X., da Rosa, M. G., Viana, R. B., Rios, P. D., Gatto, A. & Pereira, R. S. (2022). Linking soil biodiversity and ecosystem function in a Neotropical savanna. Applied Soil Ecology, 169, 104-209. https://doi.org/10.1016/j.apsoil.2021.104209
dc.relation.referencesITTO. (2002). Guidelines for the restoration, management and rehabilitation of degraded and secondary tropical forests. ITTO Policy Development Series No. 13. Japan
dc.relation.referencesJiménez, E.; Fernández, F.; Arias, T.M.; Lozano-Zambrano, F. H. (eds.) (2008). Sistemática, biogeografía y conservación de las hormigas cazadoras de Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, D. C., Colombia. xiv + 609 p
dc.relation.referencesJouquet, P., Lepage, M., & Velde, B. (2002). Termite soil preferences and particle selections: strategies related to ecological requirements. Insectes Sociaux, 49(1), 1–7. DOI:10.1007/s00040-002-8269-z
dc.relation.referencesJoya Triana, J.D. (2018). Macrofauna insectil epiedáfica en sabanas y forestaciones con Acacia mangium Willd., en un núcleo forestal de la Orinoquia. [Tesis de pregrado]. Universidad Distrital Francisco José de Caldas, Bogotá, Colombia
dc.relation.referencesLal, R. (1988). Effects of macrofauna on soil properties in tropical ecosystems. Agriculture, ecosystems & environment, 24(1-3), 101-116. https://doi.org/10.1016/0167-8809(88)90059- X
dc.relation.referencesLamoureux, S. & O’Kane, M. A. (2012). Effects of termites on soil cover system performance. En: Fourie, A. B & Tibbett, M. (eds), Mine Closure 2012: Proceedings of the Seventh International Conference on Mine Closure, Australian Centre for Geomechanics, Perth, pp. 433-446, https://doi.org/10.36487/ACG_rep/1208_38_Lamoureux
dc.relation.referencesLaurance, W. F., Lovejoy, T. E., Vasconcelos, H. L., Bruna, E. M., Didham, R. K., Stouffer, P. C., Gascon, C., Bierregaard, R. O., Laurance, S. G., & Sampaio, E. (2002). Ecosystem Decay of Amazonian Forest Fragments: A 22-Year Investigation. Conservation Biology, 16(3), 605-618. https://www.jstor.org/stable/3061207
dc.relation.referencesLavelle, P. (1983). The structure of earthworm communities. In: Satchell, J.E. (eds) Earthworm Ecology. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5965-1_39
dc.relation.referencesLavelle, P. (1996). Diversity of Soil Fauna and Ecosystem Function. Biology International, 33, 3-16. https://www.researchgate.net/publication/32971315_Diversity_of_Soil_Fauna_and_Ecosys tem_Function
dc.relation.referencesLavelle, P. (2012). Chapter 1.1. Soil as a Habit. En D. H. Wall (Ed.), Soil ecology and ecosystem services. Oxford University Press.
dc.relation.referencesLavelle, P., Blanchart, E., Martin, A., Spain, A., & Martin, S. (1992). Impact of Soil Fauna on the Properties of Soils in the Humid Tropics. Myths and Science of Soils of the Tropics. https://doi.org/10.2136/sssaspecpub29.c9
dc.relation.referencesMachado Cuellar, L., Rodríguez Suárez, L., Murcia Torrejano, V., Orduz Tovar, S.A., Ordoñez Espinosa, C.M., & Suárez, J.C. (2020). Macrofauna del suelo y condiciones edafoclimáticas en un gradiente altitudinal de zonas cafeteras, Huila, Colombia. Revista de Biología Tropical, 69(1), 102-112. DOI 10.15517/rbt.v69i1.42955
dc.relation.referencesMartín-Regalado, C.N. (2019). Detección de especies indicadoras de condiciones de hábitats. En: Moreno CE (Ed). La biodiversidad en un mundo cambiante: Fundamentos teóricos y metodológicos para su estudio. Universidad Autónoma del Estado de Hidalgo/Libermex, Ciudad de México, pp. 223-235.
dc.relation.referencesMendonça, A. H., Russo, C., Melo, A. C. G. & Durigan, G. (2015). Edge effects in savanna fragments: a case study in the cerrado. Plant Ecology & Diversity, DOI: 10.1080/17550874.2015.1014068
dc.relation.referencesMurcia, C. (1995). Edge effects in fragmented forests: implications for conservation. Trends in ecology & evolution, 10(2), 58-62. https://doi.org/10.1016/S0169-5347(00)88977-6
dc.relation.referencesNaiman, R. J., Décamps, H., & McClain, M. E. (2005). Riparia: Ecology, conservation, and management of streamside communities. Elsevier Academic.
dc.relation.referencesNobre, T., Nunes, L., & Bignell, D. E. (2009). Survey of subterranean termites (Isoptera: Rhinotermitidae) in a managed silvicultural plantation in Portugal, using a line-intersection method (LIS). Bulletin of entomological research, 99(1), 11-21. DOI: 10.1017/S000748530800607X
dc.relation.referencesNuñez-Avellaneda, L. A., Castro, M. I., Mestre, G., & Lozano, L. (2019). Los bosques de galería conectores de vida. Ámbito Investigativo, 4(1), 14-19. https://ciencia.lasalle.edu.co/cgi/viewcontent.cgi?article=1030&context=ai
dc.relation.referencesOksanen J, Simpson G, Blanchet F, Kindt R, Legendre P, Minchin P, O'Hara R, Solymos P, Stevens M, Szoecs E, Wagner H, Barbour M, Bedward M, Bolker B, Borcard D, Carvalho G, Chirico M, De Caceres M, Durand S, Evangelista H, FitzJohn R, Friendly M, Furneaux B, Hannigan G, Hill M, Lahti L, McGlinn D, Ouellette M, Ribeiro Cunha E, Smith T, Stier A, Ter Braak C, Weedon J (2022). vegan: Community Ecology Package. R package version 2.6-4, https://cran.r-project.org/web/packages/vegan/vegan.pdf
dc.relation.referencesPinzón, S. T., Rousseau, G. X., Piedade, A. R., Celentano, D., Zelarayán, M. L. C & Braun, H. (2015). La macrofauna del suelo como indicadora de degradación de bosques ribereños en la Amazonia oriental brasilera. Revista de la Facultad de Agronomía, 114(01), 49-60. http://sedici.unlp.edu.ar/handle/10915/47307
dc.relation.referencesPinzón Triana, S., Rousseau, G. X., Muñoz Gutiérrez, J. A., Rocha da Piedade, A., & Braun, H. (2019). ¿Refleja Formicidae el impacto de la degradación de los bosques ribereños en la Amazonía Oriental?. Revista de Biología Tropical, 67(4), 850-860. https://doi.org/10.15517/rbt.v67i4.34680
dc.relation.referencesPollierer, M. M., Klarner, B., Ott, D., Digel, C., Ehnes, R. B., Eitzinger, B., Erdman, G.,Brose, U., Maraun, M. & Scheu, S. (2021). Diversity and functional structure of soil animal communities suggest soil animal food webs to be buffered against changes in forest land use. Oecologia, 196, 195-209. https://doi.org/10.1007/s00442-021-04910-1
dc.relation.referencesRies, L., Fletcher Jr, R. J., Battin, J. & Sisk, T. D. (2004). Ecological Responses to Habitat Edges: Mechanisms, Models, and Variability Explained. Annual Review of Ecology, Evolution, and Systematics, 35, 491-522. DOI: 10.1146/annurev.ecolsys.35.112202.130148
dc.relation.referencesRitz, K., & van der Putten, W. H. (2012). Section 1: The living Soil and Ecosystem Services— Introduction. En D. H. Wall (Ed.), Soil ecology and ecosystem services. Oxford University Press.
dc.relation.referencesRosales, J. (2003). Bosques y selvas de galería. En M. Aguilera, A. Azocar, & E. GonzalezJiménez (Eds.), Biodiversidad en Venezuela, Tomos I y II (pp. 812-826). Fundación PolarFonacit. http://bibliofep.fundacionempresaspolar.org/media/17052/libro_bio_t2_048.pdf
dc.relation.referencesRuwanza S. (2019). The Edge Effect on Plant Diversity and Soil Properties in Abandoned Fields Targeted for Ecological Restoration. Sustainability, 11(1),140. https://doi.org/10.3390/su11010140
dc.relation.referencesSanabria, C., Lavelle, P., & Fonte, S. J. (2014). Ants as indicators of soil-based ecosystem services in agroecosystems of the Colombian Llanos. Applied Soil Ecology, 84, 24-30. https://doi.org/10.1016/j.apsoil.2014.07.001
dc.relation.referencesSanabria, C., Dubs, F., Lavelle, P., Fonte, S. J., & Barot, S. (2016). Influence of regions, land uses and soil properties on termite and ant communities in agricultural landscapes of the Colombian Llanos. European Journal of Soil Biology, 74, 81-92. https://doi.org/10.1016/j.ejsobi.2016.03.008
dc.relation.referencesSantana, L. D., Prado-Junior, J. A., Ribeiro, J. H. C., Ribeiro, M. A. S., Pereira, K. M. G., Antunes, K., ... & van den Berg, E. (2021). Edge effects in forest patches surrounded by native grassland are also dependent on patch size and shape. Forest Ecology and Management, 482, 118842
dc.relation.referencesSantos de Melo, A. M. & Santos, B. A. (2008). Are the vegetation structure and composition of the shrubby Caatinga free from edge influence? Acta Botanica Brasilica, 22 (4), pp. 1077- 1084. https://doi.org/10.1590/S0102-33062008000400018
dc.relation.referencesSilva, R. S. (1986). Vegetación en galería y sus relaciones hidrogeomorfológicas. Tecnología y ciencias del agua, 70-78. http://revistatyca.org.mx/index.php/tyca/article/view/527
dc.relation.referencesShaxson, F., & Barber, R. (1995). Optimizacion de la Humedad Del Suelo Para la Producción Vegetal: El Significado de la Porosidad Del Suelo. (Boletines de Suelos de la Fao) (Vol. 79)
dc.relation.referencesSmith, I. A., Hutyra, L. R., Reinmann, A. B., Thompson, J. R., & Allen, D. W. (2019). Evidence for Edge enhancements of soil respiration in temperate forests. Geophysical Research Letters, 46, 4278–4287. https://doi.org/10.1029/2019GL082459
dc.relation.referencesSouza, A., Fonseca, D., Libório, R., & Tanaka, M. (2013). Influence of riparian vegetation and forest structure on the water quality of rural low-order streams in SE Brazil. Forest Ecology and Management, 298, 12-18. https://doi.org/10.1016/j.foreco.2013.02.022
dc.relation.referencesSusanti, W. I., Krashevska, V., Widyastuti, R., Stiegler, C., Gunawan, D., Scheu, S., & Potapov, A. M. (2024). Seasonal fluctuations of litter and soil Collembola and their drivers in rainforest and plantation systems. PeerJ, 12, e17125. DOI: 10.7717/peerj.17125.
dc.relation.referencesTapia-Coral, S. C., Pinto Hernández, C. A., Candre Iguedama, A., Asencio, C., Cuellar C, R. & Waldez, F. (2019). Caracterización de la macrofauna del suelo en fragmentos forestales en el 32 municipio de Leticia, Amazonia colombiana. Revista colombiana de ciencia animal recia, 11(1), 4-16. https://doi.org/10.24188/recia.v11.n1.2019.690
dc.relation.referencesTriplehorn, C. & Johnson, N. F. (2005). Borror and Delong’s introduction to the study of insects.7th ed. Brooks/Cole. United States of America.
dc.relation.referencesValderrama Ardila, P. A. (2024). Macrofauna edáfica con énfasis en Isoptera en tres coberturas de suelo en la Orinoquía colombiana. [Tesis de pregrado]. Universidad Distrital Francisco José de Caldas, Bogotá, Colombia.
dc.relation.referencesVasconcellos, R. L., Segat, J. C., Bonfim, J. A., Baretta, D., & Cardoso, E. J. (2013). Soil macrofauna as an indicator of soil quality in an undisturbed riparian forest and recovering sites of different ages. European Journal of Soil Biology, 58, 105-112
dc.relation.referencesVelasquez, E., & Lavelle, P. (2019). Soil macrofauna as an indicator for evaluating soil based ecosystem services in agricultural landscapes. Acta Oecologica, 100, 103446. https://doi.org/10.1016/j.actao.2019.103446
dc.relation.referencesVeneklaas, E., Fajardo, A., Obregon, S., & Lozano, J. (2005). Gallery forest types and their environmental correlates in a Colombian savanna landscape. Ecography, 28, 236-252. https://doi.org/10.1111/j.0906-7590.2005.03934.x
dc.relation.referencesVoltz, M., Dagès, C., Prévot, L., & Bruand, A. (2018). Soils and Regulation of the Hydrological Cycle. En: Soils as a Key Component of the Critical Zone 1 (pp. 59-80). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119438069.ch3
dc.relation.referencesWhite, R. E. (1983). Peterson Field Guide: Beetles. Houghton Mifflin, New York.
dc.relation.referencesWilcke, W., Yasin, S., Abramowski, U., Valarezo, C., & Zech, W. (2002). Nutrient storage and turnover in organic layers under tropical montane rain forest in Ecuador. European Journal of Soil Science, 53(1), 15-27. https://doi.org/10.1046/j.1365-2389.2002.00411.x
dc.relation.referencesWilliams-Linera, G. (1990). Vegetation Structure and Environmental Conditions of Forest Edges in Panama. The Journal of Ecology, 78(2), 356. doi:10.2307/2261117
dc.rights.accesoAbierto (Texto Completo)
dc.rights.accessrightsOpenAccess
dc.subjectBosque de galería
dc.subjectCaracterísticas del suelo
dc.subjectEfecto borde
dc.subjectMacrofauna edáfica
dc.subjectOrinoquía
dc.subject.keywordGallery forest
dc.subject.keywordSoil characteristics
dc.subject.keywordEdge effect
dc.subject.keywordSoil macrofauna
dc.subject.keywordOrinoquia
dc.subject.lembIngeniería Forestal -- Tesis y disertaciones académicas
dc.subject.lembBiodiversidad
dc.subject.lembEcología forestal
dc.subject.lembEcosistemas fluviales
dc.titleEvaluación del efecto borde de un bosque de Galería en Cabuyaro (Meta) a través de la caracterización de la macrofauna edáfica
dc.title.titleenglishAssessment of the edge effect of a gallery forest in Cabuyaro (Meta) through the characterization of soil macrofauna
dc.typebachelorThesis
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.degreeInvestigación-Innovación

Archivos

Bloque original

Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
LauraDanielaMejiaAvila2024.pdf
Tamaño:
1.95 MB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
Licencia de uso y publicacion.pdf
Tamaño:
210.22 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
7 KB
Formato:
Item-specific license agreed upon to submission
Descripción: