Una evaluación de los potenciales efectos del cambio climático sobre la Distribución Nymphargus Ignotus (Lynch, 1990) (Amphibia, Anura, Centrolenidae)
| dc.contributor.advisor | Mahecha Jimenez, Oscar Javier | |
| dc.contributor.author | Sandoval Barbosa, Francy Johanna | |
| dc.contributor.orcid | Mahecha Jimenez, Oscar Javier [0000-0002-8682-0020] | |
| dc.date.accessioned | 2024-10-25T19:49:50Z | |
| dc.date.available | 2024-10-25T19:49:50Z | |
| dc.date.created | 2024-08-09 | |
| dc.description | El cambio climático antropogénico amenaza la biodiversidad global al ser el clima uno de los factores promotores de la reorganización de la misma. Los anfibios, especialmente los anuros, han mostrado alteraciones en sus patrones de diversidad y distribución debido a esta problemática. Este estudio evalúa cuáles son los potenciales efectos del Cambio Climático sobre la distribución de Nymphargus ignotus (Lynch, 1990), una rana de cristal endémica de la Cordillera Occidental de Colombia, bajo dos escenarios futuros del Sexto Informe de Evaluación (IE6) del IPCC (2021): el SSP1-2.6, con emisiones bajas de CO2 que alcanzarían el 0% para el 2070, y el SSP3-7.0 con emisiones de CO2 que duplicarían para el 2100 las concentraciones actuales. Los resultados preliminares aquí descritos proyectan una reducción significativa del área de distribución potencial de la especie bajo la trayectoria más crítica para el 2050. Considerando las bajas tasas de dispersión de los anuros y otras presiones adicionales como la pérdida y fragmentación del hábitat por minería y agricultura, es pertinente continuar evaluando las amenazas que enfrenta N. ignotus, cuyas poblaciones disminuyen gradualmente. Así mismo, es necesaria la consolidación de información de rangos de distribución, monitoreo de poblaciones y aspectos fundamentales en la historia natural de N. ignotus para integrar en estos modelos análisis más complejos. Se recomienda para futuras investigaciones realizar una adecuada parametrización del modelo, de forma tal que se eviten sesgos y sobreestimaciones. De esta manera sería posible prever y estructurar potenciales estrategias de conservación oportunas que mantengan la especie en su categoría de menor preocupación. | |
| dc.description.abstract | Anthropogenic climate change threatens global biodiversity as climate is one of the driving factors behind its reorganization. Amphibians, especially anurans, have shown alterations in their diversity and distribution patterns due to this issue. This study assesses the potential effects of climate change on the distribution of Nymphargus ignotus (Lynch, 1990), an endemic glass frog from the Western Cordillera of Colombia, under two future scenarios from the Sixth Assessment Report (AR6) of the IPCC (2021): SSP1-2.6, with low CO2 emissions reaching 0% by 2070, and SSP3-7.0, with CO2 emissions doubling current concentrations by 2100. The preliminary results described here project a significant reduction in the potential distribution area of the species under the most critical trajectory by 2050. Considering the low dispersal rates of anurans and other additional pressures such as habitat loss and fragmentation due to mining and agriculture, it is pertinent to continue evaluating the threats faced by N. ignotus, whose populations are gradually decreasing. Additionally, it is necessary to consolidate information on distribution ranges, population monitoring, and fundamental aspects of the natural history of N. ignotus to incorporate more complex analyses into these models. It is recommended that future research includes proper model parameterization to avoid biases and overestimations. This would allow for the anticipation and development of timely conservation strategies that could maintain the species in its least concern category. | |
| dc.format.mimetype | ||
| dc.identifier.uri | http://hdl.handle.net/11349/42192 | |
| dc.language.iso | spa | |
| dc.publisher | Universidad Distrital Francisco José de Caldas | |
| dc.relation.references | Acevedo, P., Jiménez-Valverde, A., Lobo, J. M., & Real, R. (2012). Delimiting the geographical background in species distribution modelling. Journal Of Biogeography, 39(8), 1383-1390. https://doi.org/10.1111/j.1365-2699.2012.02713.x | |
| dc.relation.references | Acosta Galvis, A. (2021). Lista de los anfibios de Colombia: Nymphargus ignotus. BATRACHIA. Retrieved June 23, 2024, from https://www.batrachia.com/orden-anura/centrolenidae-81-spp/nymphargus-ignotus/ | |
| dc.relation.references | Agudelo-Hz, W. J., & Armenteras, D. (2018). Cambio climático en Ecosistemas Andinos de Colombia: una revisión de sus efectos sobre la Biodiversidad. ResearchGate. https://www.researchgate.net/publication/328492678_Cambio_climatico_en_Ecosistemas_Andinos_de_Colombia_una_revision_de_sus_efectos_sobre_la_Biodiversidad | |
| dc.relation.references | Agudelo-Hz, W. J., Urbina-Cardona, N., & Armenteras-Pascual, D. (2019). Critical shifts on spatial traits and the risk of extinction of Andean anurans: an assessment of the combined effects of climate and land-use change in Colombia. Perspectives In Ecology And Conservation, 17(4), 206-219. https://doi.org/10.1016/j.pecon.2019.11.002 | |
| dc.relation.references | Alves-Ferreira, G., Giné, G. A. F., De Siqueira Fortunato, D., Solé, M., & Heming, N. M. (2022). Projected responses of Cerrado anurans to climate change are mediated by biogeographic character. Perspectives In Ecology And Conservation, 20(2), 126-131. https://doi.org/10.1016/j.pecon.2021.12.001 | |
| dc.relation.references | Anderson, E. P., Marengo, J., Villalba, R., Halloy, S., Young, B., Cordero, D., Gast, F., Jaimes, E., Ruiz, D., Herzog, S. K., Martinez, R., J©argensen, P. M., & Tiessen, H. (2011). Consequences of climate change for ecosystems and ecosystem 62 services in the Tropical Andes. En Climate Change and Biodiversity in the Tropical Andes (pp. 1-18). Inter-American Institute for Global Change Research (IAI) and Scientific Committee on Problems of the Environment (SCOPE). http://wedocs.unep.org/handle/20.500.11822/19915 | |
| dc.relation.references | Anunciação, P. R., Ernst, R., Martello, F., Vancine, M. H., De Carvalho, L. M. T., & Ribeiro, M. C. (2023). Climate-driven loss of taxonomic and functional richness in Brazilian Atlantic Forest anurans. Perspectives In Ecology And Conservation, 21(4), 274-285. https://doi.org/10.1016/j.pecon.2023.09.001 | |
| dc.relation.references | Armesto, L. O., & Señaris, J. C. (2017). Anuros del norte de los andes: patrones de riqueza de especies y estado de conservación. Papéis Avulsos de Zoologia, 57(39), 491-526. https://doi.org/10.11606/0031-1049.2017.57.39 | |
| dc.relation.references | Arroyo, S., Chaves-Portilla, G., Rivera-Correa, M., & Rada, M. (2019). Capítulo 2 Sistemática y taxonomía de anfibios. En Sistemática y taxonomía de anfibios (pp. 55-95). https://doi.org/10.19053/978-958-660-341-6.2 | |
| dc.relation.references | Báez, S., Jaramillo, L., Cuesta, F., & Donoso, D. A. (2016). Effects of climate change on Andean biodiversity: a synthesis of studies published until 2015. Neotropical Biodiversity, 2(1), 181-194. https://doi.org/10.1080/23766808.2016.1248710 | |
| dc.relation.references | Ballesteros-Barrera, C., Tapia-Pérez, O., Zárate-Hernández, R., Leyte-Manrique, A., Martínez-Bernal, A., Vargas-Miranda, B., Martínez-Coronel, M., & Ortiz-Burgos, S. (2022). The Potential Effect of Climate Change on the Distribution of Endemic Anurans from Mexico’s Tropical Dry Forest. Diversity, 14(8), 650. https://doi.org/10.3390/d14080650 | |
| dc.relation.references | Barbet‐Massin, M., Jiguet, F., Albert, C. H., & Thuiller, W. (2012). Selecting pseudo‐absences for species distribution models: how, where and how many? Methods In Ecology And Evolution, 3(2), 327-338. https://doi.org/10.1111/j.2041-210x.2011.00172.x | |
| dc.relation.references | Bax, V., & Francesconi, W. (2019). Conservation gaps and priorities in the Tropical Andes biodiversity hotspot: Implications for the expansion of protected areas. Journal Of Environmental Management, 232, 387-396. https://doi.org/10.1016/j.jenvman.2018.11.086 | |
| dc.relation.references | Biggs, R., Simons, H., Bakkenes, M., Scholes, R. J., Eickhout, B., Van Vuuren, D., & Alkemade, R. (2008). Scenarios of biodiversity loss in southern Africa in the 21st century. Global Environmental Change, 18(2), 296-309. https://doi.org/10.1016/j.gloenvcha.2008.02.001 | |
| dc.relation.references | Braunisch, V., Coppes, J., Arlettaz, R., Suchant, R., Schmid, H., & Bollmann, K. (2013). Selecting from correlated climate variables: a major source of uncertainty for predicting species distributions under climate change. Ecography, 36(9), 971-983. https://doi.org/10.1111/j.1600-0587.2013.00138.x | |
| dc.relation.references | Breiner, F. T., Nobis, M. P., Bergamini, A., & Guisan, A. (2018). Optimizing ensembles of small models for predicting the distribution of species with few occurrences. Methods In Ecology And Evolution, 9(4), 802-808. https://doi.org/10.1111/2041-210x.12957 | |
| dc.relation.references | Bunn, C., Läderach, P., Rivera, O. O., & Kirschke, D. (2014). A bitter cup: climate change profile of global production of Arabica and Robusta coffee. Climatic Change, 129(1-2), 89-101. https://doi.org/10.1007/s10584-014-1306-x | |
| dc.relation.references | Calvin, K., Dasgupta, D., Krinner, G., Mukherji, A., Thorne, P. W., Trisos, C., Romero, J., Aldunce, P., Barrett, K., Blanco, G., Cheung, W. W., Connors, S., Denton, F., Diongue-Niang, A., Dodman, D., Garschagen, M., Geden, O., Hayward, B., Jones, C., 64 . . . Ha, M. (2023). IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland. https://doi.org/10.59327/ipcc/ar6-9789291691647 | |
| dc.relation.references | Casajus, N., Périé, C., Logan, T., Lambert, M., De Blois, S., & Berteaux, D. (2016). An Objective Approach to Select Climate Scenarios when Projecting Species Distribution under Climate Change. PloS One, 11(3), e0152495. https://doi.org/10.1371/journal.pone.0152495 | |
| dc.relation.references | Castro-Herrera, F., & Bolívar-García, W. (2010). LIBRO ROJO DE LOS ANFIBIOS DEL VALLE DEL CAUCA (1.a ed.). Feriva Impresores SA. https://www.researchgate.net/profile/Fernando-Castro-Herrera/publication/292146270_Libro_rojo_de_los_anfibios_del_Valle_del_Cauca/links/56aa630f08aed5a0135897d9/Libro-rojo-de-los-anfibios-del-Valle-del-Cauca.pdf | |
| dc.relation.references | Castro-Llanos, F., Hyman, G., Rubiano, J., Ramirez-Villegas, J., & Achicanoy, H. (2019). Climate change favors rice production at higher elevations in Colombia. Mitigation And Adaptation Strategies For Global Change, 24(8), 1401-1430. https://doi.org/10.1007/s11027-019-09852-x | |
| dc.relation.references | Castroviejo‐Fisher, S., Guayasamin, J. M., Gonzalez‐Voyer, A., & Vilà, C. (2013). Neotropical diversification seen through glassfrogs. Journal Of Biogeography, 41(1), 66-80. https://doi.org/10.1111/jbi.12208 | |
| dc.relation.references | Catenazzi, A., & Von May, R. (2021). Systematics and Conservation of Neotropical Amphibians and Reptiles. Diversity, 13(2), 45. https://doi.org/10.3390/d13020045 | |
| dc.relation.references | Ceron, K., Sales, L. P., Santana, D. J., & Pires, M. M. (2023). Decoupled responses of biodiversity facets driven from anuran vulnerability to climate and land‐use changes. Ecology Letters, 26(6), 869-882. https://doi.org/10.1111/ele.14207 | |
| dc.relation.references | Cisneros-Heredia, D. F., & Mcdiarmid, R. W. (2007). Revision of the characters of Centrolenidae (Amphibia: Anura: Athesphatanura), with comments on its taxonomy and the description of new taxa of glassfrogs. Zootaxa, 1572(1), 1-82. https://doi.org/10.11646/zootaxa.1572.1.1 | |
| dc.relation.references | Coumou, D., & Rahmstorf, S. (2012). A decade of weather extremes. Nature Climate Change, 2(7), 491-496. https://doi.org/10.1038/nclimate1452 | |
| dc.relation.references | Dawson, T. P., Jackson, S. T., House, J. I., Prentice, I. C., & Mace, G. M. (2011). Beyond predictions: Biodiversity conservation in a changing climate. Science, 332(6025), 53-58. https://doi.org/10.1126/science.1200303 | |
| dc.relation.references | Doak, D. F., & Morris, W. F. (2010). Demographic compensation and tipping points in climate-induced range shifts. Nature, 467(7318), 959-962. https://doi.org/10.1038/nature09439 | |
| dc.relation.references | Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., & Yates, C. J. (2010). A statistical explanation of MaxEnt for ecologists. Diversity And Distributions, 17(1), 43-57. https://doi.org/10.1111/j.1472-4642.2010.00725.x | |
| dc.relation.references | Fahrig, L. (2003). Effects of Habitat Fragmentation on Biodiversity. Annual Review Of Ecology, Evolution, And Systematics, 34(1), 487-515. https://doi.org/10.1146/annurev.ecolsys.34.011802.132419 | |
| dc.relation.references | Field, Barros, Mastrandrea, Mach, Abdrabo, Adger, N., Anokhin, Anisimov, Arent, Australia, J. B., Burkett, China, R. C., India, M. C., Cohen, S., India, P. D., Davidson, Gambia, F. D., Dow, K., Australia, O. H., . . . Yohe. (2014). Climate 66 change 2014: impacts, adaptation, and vulnerability – IPCC WGII AR5 summary for policymakers. Cambridge University Press. https://www.researchgate.net/profile/Hans_Otto_Poertner2/publication/272150376_Climate_change_2014_impacts_adaptation_and_vulnerability_-_IPCC_WGII_AR5_summary_for_policymakers/links/54db84960cf233119bc638b6.pdf | |
| dc.relation.references | Frost, D. (2018). Nymphargus ignotus (Lynch, 1990) (De American Museum of Natural History.). Amphibian Species Of The World. https://amphibiansoftheworld.amnh.org/Amphibia/Anura/Centrolenidae/Centroleninae/Nymphargus/Nymphargus-ignotus | |
| dc.relation.references | Garcia, R. A., Cabeza, M., Rahbek, C., & Araújo, M. B. (2014). Multiple dimensions of climate change and their implications for biodiversity. Science, 344(6183). https://doi.org/10.1126/science.1247579 | |
| dc.relation.references | Guayasamin, J. M., Castroviejo-Fisher, S., Trueb, L., Ayarzagüena, J., Rada, M., & Vilà, C. (2009). Phylogenetic systematics of Glassfrogs (Amphibia: Centrolenidae) and their sister taxon Allophryne ruthveni. Zootaxa, 2100(1), 1-97. https://doi.org/10.11646/zootaxa.2100.1.1 | |
| dc.relation.references | Guayasamin, J. M., Cisneros-Heredia, D. F., McDiarmid, R. W., Peña, P., & Hutter, C. R. (2020). Glassfrogs of Ecuador: Diversity, Evolution, and Conservation. Diversity, 12(6), 222. https://doi.org/10.3390/d12060222 | |
| dc.relation.references | Guayasamin, J. M., Cisneros-Heredia, D. F., Vieira, J., Kohn, S., Gavilanes, G., Lynch, R. L., Hamilton, P. S., & Maynard, R. J. (2019). A new glassfrog (Centrolenidae) from the Chocó-Andean Río Manduriacu Reserve, Ecuador, endangered by mining. PeerJ, 7, e6400. https://doi.org/10.7717/peerj.6400 | |
| dc.relation.references | Guisan, A., & Thuiller, W. (2005). Predicting species distribution: offering more than simple habitat models. Ecology Letters, 8(9), 993-1009. https://doi.org/10.1111/j.1461-0248.2005.00792.x | |
| dc.relation.references | Guisan, A., Tingley, R., Baumgartner, J. B., Naujokaitis‐Lewis, I., Sutcliffe, P. R., Tulloch, A. I. T., Regan, T. J., Brotons, L., McDonald‐Madden, E., Mantyka‐Pringle, C., Martin, T. G., Rhodes, J. R., Maggini, R., Setterfield, S. A., Elith, J., Schwartz, M. W., Wintle, B. A., Broennimann, O., Austin, M., . . . Buckley, Y. M. (2013). Predicting species distributions for conservation decisions. Ecology Letters, 16(12), 1424-1435. https://doi.org/10.1111/ele.12189 | |
| dc.relation.references | Haller, A. (2012). Climate Change and Biodiversity in the Tropical Andes. Mountain Research And Development, 32(2), 258. https://doi.org/10.1659/mrd.mm097 | |
| dc.relation.references | Hernandez, P. A., Graham, C. H., Master, L. L., & Albert, D. L. (2006). The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography, 29(5), 773-785. https://doi.org/10.1111/j.0906-7590.2006.04700.x | |
| dc.relation.references | Herrera-Lopera, J. M., Castaño, V. A. R., & Cultid-Medina, C. A. (2023). What are the Andean Colombian anurans? Empirical regionalization proposals vs. observed patterns of compositional dissimilarity. PeerJ, 11, e15217. https://doi.org/10.7717/peerj.15217 | |
| dc.relation.references | Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal Of Climatology, 25(15), 1965-1978. https://doi.org/10.1002/joc.1276 | |
| dc.relation.references | Instituto Humboldt, & Acosta-Galvis, A. (2016). Los anfibios en Colombia: Ranas, sapos, cecilias y salamandras. Biodiversidad. Recuperado 11 de junio de 2024, de http://reporte.humboldt.org.co/biodiversidad/2015/cap1/105/#seccion3 | |
| dc.relation.references | IPCC. (2013). Climate change 2013 : the physical science basis : Working Group I contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. En T. F. Stocker, D. Qin, M. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Intergovernmental Panel on Climate Change eBooks. Cambridge University Press. http://ci.nii.ac.jp/ncid/BB15229414 | |
| dc.relation.references | IPCC. (2014). Cambio climático 2014: impactos, adaptación y vulnerabilidad – Resumen para responsables de políticas. Contribución del Grupo de Trabajo II al quinto Informe de Evaluación del Grupo Intergubernamental de Expertos sobre el Cambio Climático. En The Intergovernmental Panel On Climate Change. Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.). Recuperado 20 de junio de 2024, de https://www.ipcc.ch/ | |
| dc.relation.references | IPCC. (2021). Resumen para responsables de políticas. en: Climate Change 2021: the Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu y B. Zhou (editores)]. ]. Cambridge University Press.]. Cambridge University Press. https://www.ipcc.ch/report/ar6/syr/downloads/report/IPCC_AR6_SYR_FullVolume.pdf | |
| dc.relation.references | IPCC. (2023). Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland. [Core Writing Team, H. Lee and J. Romero (eds.)]. https://doi.org/10.59327/ipcc/ar6-9789291691647 | |
| dc.relation.references | IUCN SSC Amphibian Specialist Group. (2020). IUCN Red List of Threatened Species: : Nymphargus ignotus. IUCN Red List Of Threatened Species. https://www.iucnredlist.org/species/54966/176743577 | |
| dc.relation.references | Kappelle, M., & Brown, A. (2001). Bosques Nublados del Neotropico. ResearchGate. https://www.researchgate.net/publication/237139539_Bosques_Nublados_del_Neotropico | |
| dc.relation.references | Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., Zimmermann, N. E., Linder, H. P., & Kessler, M. (2017). Climatologies at high resolution for the Earth’s land surface areas. Scientific Data, 4(1). https://doi.org/10.1038/sdata.2017.122 | |
| dc.relation.references | Kattan, G. H., Franco, P., Rojas, V., & Morales, G. (2004). Biological diversification in a complex region: a spatial analysis of faunistic diversity and biogeography of the Andes of Colombia. Journal Of Biogeography, 31(11), 1829-1839. https://doi.org/10.1111/j.1365-2699.2004.01109.x | |
| dc.relation.references | Lacher, T., & Roach, N. (2018). The status of biodiversity in the Anthropocene: Trends, threats, and actions. En Elsevier eBooks (pp. 1-8). https://doi.org/10.1016/b978-0-12-809665-9.10674-3 | |
| dc.relation.references | Liu, C., White, M., & Newell, G. (2013). Selecting thresholds for the prediction of species occurrence with presence-only data. Journal Of Biogeography, 40(4), 778-789. https://doi.org/10.1111/jbi.12058 | |
| dc.relation.references | Marquardt, D. W. (1970). Generalized Inverses, Ridge Regression, Biased Linear Estimation, and Nonlinear Estimation. Technometrics, 12(3), 591. https://doi.org/10.2307/1267205 | |
| dc.relation.references | Menéndez‐Guerrero, P. A., Green, D. M., & Davies, T. J. (2019). Climate change and the future restructuring of Neotropical anuran biodiversity. Ecography, 43(2), 222-235. https://doi.org/10.1111/ecog.04510 | |
| dc.relation.references | Mitchell, P. J., Monk, J., & Laurenson, L. (2016). Sensitivity of fine‐scale species distribution models to locational uncertainty in occurrence data across multiple sample sizes. Methods In Ecology And Evolution, 8(1), 12-21. https://doi.org/10.1111/2041-210x.12645 | |
| dc.relation.references | Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. B., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403(6772), 853-858. https://doi.org/10.1038/35002501 | |
| dc.relation.references | Naimi, B., Hamm, N., Groen, T., Skidmore, A., & Toxopeus, A. (2014). USDM: Uncertainty Analysis for Species Distribution models (2.1-7) [Conjunto de datos; CRAN R]. https://doi.org/10.32614/cran.package.usdm | |
| dc.relation.references | Newbold, T. (2018). Future effects of climate and land-use change on terrestrial vertebrate community diversity under different scenarios. Proceedings - Royal Society. Biological Sciences/Proceedings - Royal Society. Biological Sciences, 285(1881), 20180792. https://doi.org/10.1098/rspb.2018.0792 | |
| dc.relation.references | Pearson, R. G., & Dawson, T. P. (2003). Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global 71 Ecology And Biogeography, 12(5), 361-371. https://doi.org/10.1046/j.1466-822x.2003.00042.x | |
| dc.relation.references | Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E., & Blair, M. E. (2017). Opening the black box: an open‐source release of Maxent. Ecography, 40(7), 887-893. https://doi.org/10.1111/ecog.03049 | |
| dc.relation.references | Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3-4), 231-259. https://doi.org/10.1016/j.ecolmodel.2005.03.026 | |
| dc.relation.references | Phillips, S. J., Dudík, M., & Schapire, R. E. (s. f.). Maxent Software for Modeling Species Niches and Distributions [Software]. En Schapire (Version 3.4.1). http://biodiversityinformatics.amnh.org/open_source/maxent/ | |
| dc.relation.references | Prakash, S., & Srivastava, S. (2019). Impact of climate change on biodiversity: An Overview. International Journal Of Biological Innovations, 01(02), 60-65. https://doi.org/10.46505/ijbi.2019.1205 | |
| dc.relation.references | Rada, M., Ospina-Sarria, J. J., & Guayasamin, J. M. (2017). A Taxonomic Review of Tan-Brown Glassfrogs (Anura: Centrolenidae), with the Description of a New Species from Southwestern Colombia. South American Journal Of Herpetology, 12(2), 136-156. https://doi.org/10.2994/sajh-d-16-00026.1 | |
| dc.relation.references | Rahbek, C., Borregaard, M. K., Colwell, R. K., Dalsgaard, B., Holt, B. G., Morueta-Holme, N., Nogues-Bravo, D., Whittaker, R. J., & Fjeldså, J. (2019). Humboldt’s enigma: What causes global patterns of mountain biodiversity? Science, 365(6458), 1108-1113. https://doi.org/10.1126/science.aax0149 | |
| dc.relation.references | Ramirez-Villegas, J., Cuesta, F., Devenish, C., Peralvo, M., Jarvis, A., & Arnillas, C. A. (2014). Using species distributions models for designing conservation strategies of Tropical Andean biodiversity under climate change. Journal For Nature Conservation, 22(5), 391-404. https://doi.org/10.1016/j.jnc.2014.03.007 | |
| dc.relation.references | Restrepo, J. H., & Naranjo, L. G. (1999). Ecología reproductiva de una población de cochranella ignota (Anura: Centrolenidae). Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 23, ISSN 03703908. https://www.accefyn.com/revista/Vol_23/86/49-59.pdf | |
| dc.relation.references | Roach, N. S., Castellanos, A. A., & Lacher, T. E. (2024). Assessing the vulnerability of endemic Colombian amphibian species to climate change in an isolated Montane ecosystem. Tropical Conservation Science, 17. https://doi.org/10.1177/19400829231225236 | |
| dc.relation.references | Rödder, D., & Weinsheimer, F. (2009). Will future anthropogenic climate change increase the potential distribution of the alien invasive Cuban treefrog (Anura: Hylidae)? Journal Of Natural History, 43(19-20), 1207-1217. https://doi.org/10.1080/00222930902783752 | |
| dc.relation.references | Rodríguez, A., D., Morales, M., & Romero, M. (2006). Ecosistemas de los Andes colombianos. Instituto de Investigación de Recursos Biológicos Alexander Von Humbolt. | |
| dc.relation.references | Ruiz, A., & Rueda-Almonacid, J. V. (2008). Batrachochytrium dendrobatidis and Chytridiomycosis in Anuran Amphibians of Colombia. Ecohealth, 5(1), 27-33. https://doi.org/10.1007/s10393-008-0159-z | |
| dc.relation.references | Salamanca, G. G., Osorio, T. M. P., Vargas, G. E. F., & Gonzalez, V. (2022). Ecorregiones colombia. ResearchGate. 73 https://www.researchgate.net/publication/364844636_Ecorregiones_colombia?enrichId=rgreq-be326375faad124def33859e59a1cce5-XXX&enrichSource=Y292ZXJQYWdlOzM2NDg0NDYzNjtBUzoxMTQzMTI4MTA5Mjk2ODkxMkAxNjY3MDY4MDYxNDc0&el=1_x_2&_esc=publicationCoverPdf | |
| dc.relation.references | Sánchez-Carvajal, M. J., Reyes-Ortega, G. C., Cisneros-Heredia, D. F., & Ortega-Andrade, H. M. (2021). Rediscovery of Laura’s glassfrog Nymphargus laurae (Anura: Centrolenidae) with new data on its morphology, colouration, phylogenetic position and conservation in Ecuador. PeerJ, 9, e12644. https://doi.org/10.7717/peerj.12644 | |
| dc.relation.references | Thompson, J. N. (1994). The coevolutionary process. https://doi.org/10.7208/chicago/9780226797670.001.0001 | |
| dc.relation.references | Tobar-Suárez, C., Urbina-Cardona, N., Villalobos, F., & Pineda, E. (2021). Amphibian species richness and endemism in tropical montane cloud forests across the Neotropics. Biodiversity And Conservation, 31(1), 295-313. https://doi.org/10.1007/s10531-021-02335-z | |
| dc.relation.references | Urban, M. C. (2018). Escalator to extinction. Proceedings Of The National Academy Of Sciences Of The United States Of America, 115(47), 11871-11873. https://doi.org/10.1073/pnas.1817416115 | |
| dc.relation.references | Valavi, R., Guillera‐Arroita, G., Lahoz‐Monfort, J. J., & Elith, J. (2021). Predictive performance of presence‐only species distribution models: a benchmark study with reproducible code. Ecological Monographs, 92(1). https://doi.org/10.1002/ecm.1486 | |
| dc.relation.references | Warren, D. L., & Seifert, S. N. (2011). Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecological Applications, 21(2), 335-342. https://doi.org/10.1890/10-1171.1 | |
| dc.relation.references | Yadav, E. (2022). Climate change and biodiversity. ResearchGate. https://www.researchgate.net/publication/377766897 | |
| dc.relation.references | Zhong, L., & Wang, J. (2017). Evaluation on effect of land consolidation on habitat quality based on InVEST model[J]. Transactions Of The Chinese Society Of Agricultural Engineering (Transactions Of The CSAE), 33(1), 250-255. https://doi.org/10.11975/j.issn.1002-6819.2017.01.034 | |
| dc.rights.acceso | Abierto (Texto Completo) | |
| dc.rights.accessrights | OpenAccess | |
| dc.subject | Especie Endémica | |
| dc.subject | Modelos de Nicho ecológico | |
| dc.subject | MaxEnt | |
| dc.subject | Precipitación | |
| dc.subject | Temperatura | |
| dc.subject.keyword | Endemic Species | |
| dc.subject.keyword | Ecological Niche models | |
| dc.subject.keyword | MaxEnt | |
| dc.subject.keyword | Precipitation | |
| dc.subject.keyword | Temperature | |
| dc.subject.lemb | Licenciatura en Biología -- Tesis y disertaciones académicas | |
| dc.subject.lemb | Cambio climático y biodiversidad | |
| dc.subject.lemb | Distribución de especies y efectos del cambio climático | |
| dc.subject.lemb | Conservación de especies endémicas | |
| dc.subject.lemb | Impacto del cambio climático en los anfibios | |
| dc.title | Una evaluación de los potenciales efectos del cambio climático sobre la Distribución Nymphargus Ignotus (Lynch, 1990) (Amphibia, Anura, Centrolenidae) | |
| dc.title.titleenglish | An assessment of the potential effects of climate change on the Distribution of Nymphargus ignotus (Lynch, 1990) (Amphibia, Anura, Centrolenidae) | |
| dc.type | bachelorThesis | |
| dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
| dc.type.degree | Investigación-Innovación | |
| dc.type.driver | info:eu-repo/semantics/bachelorThesis |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 7 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:
