Una evaluación de los potenciales efectos del cambio climático sobre la Distribución Nymphargus Ignotus (Lynch, 1990) (Amphibia, Anura, Centrolenidae)

dc.contributor.advisorMahecha Jimenez, Oscar Javier
dc.contributor.authorSandoval Barbosa, Francy Johanna
dc.contributor.orcidMahecha Jimenez, Oscar Javier [0000-0002-8682-0020]
dc.date.accessioned2024-10-25T19:49:50Z
dc.date.available2024-10-25T19:49:50Z
dc.date.created2024-08-09
dc.descriptionEl cambio climático antropogénico amenaza la biodiversidad global al ser el clima uno de los factores promotores de la reorganización de la misma. Los anfibios, especialmente los anuros, han mostrado alteraciones en sus patrones de diversidad y distribución debido a esta problemática. Este estudio evalúa cuáles son los potenciales efectos del Cambio Climático sobre la distribución de Nymphargus ignotus (Lynch, 1990), una rana de cristal endémica de la Cordillera Occidental de Colombia, bajo dos escenarios futuros del Sexto Informe de Evaluación (IE6) del IPCC (2021): el SSP1-2.6, con emisiones bajas de CO2 que alcanzarían el 0% para el 2070, y el SSP3-7.0 con emisiones de CO2 que duplicarían para el 2100 las concentraciones actuales. Los resultados preliminares aquí descritos proyectan una reducción significativa del área de distribución potencial de la especie bajo la trayectoria más crítica para el 2050. Considerando las bajas tasas de dispersión de los anuros y otras presiones adicionales como la pérdida y fragmentación del hábitat por minería y agricultura, es pertinente continuar evaluando las amenazas que enfrenta N. ignotus, cuyas poblaciones disminuyen gradualmente. Así mismo, es necesaria la consolidación de información de rangos de distribución, monitoreo de poblaciones y aspectos fundamentales en la historia natural de N. ignotus para integrar en estos modelos análisis más complejos. Se recomienda para futuras investigaciones realizar una adecuada parametrización del modelo, de forma tal que se eviten sesgos y sobreestimaciones. De esta manera sería posible prever y estructurar potenciales estrategias de conservación oportunas que mantengan la especie en su categoría de menor preocupación.
dc.description.abstractAnthropogenic climate change threatens global biodiversity as climate is one of the driving factors behind its reorganization. Amphibians, especially anurans, have shown alterations in their diversity and distribution patterns due to this issue. This study assesses the potential effects of climate change on the distribution of Nymphargus ignotus (Lynch, 1990), an endemic glass frog from the Western Cordillera of Colombia, under two future scenarios from the Sixth Assessment Report (AR6) of the IPCC (2021): SSP1-2.6, with low CO2 emissions reaching 0% by 2070, and SSP3-7.0, with CO2 emissions doubling current concentrations by 2100. The preliminary results described here project a significant reduction in the potential distribution area of the species under the most critical trajectory by 2050. Considering the low dispersal rates of anurans and other additional pressures such as habitat loss and fragmentation due to mining and agriculture, it is pertinent to continue evaluating the threats faced by N. ignotus, whose populations are gradually decreasing. Additionally, it is necessary to consolidate information on distribution ranges, population monitoring, and fundamental aspects of the natural history of N. ignotus to incorporate more complex analyses into these models. It is recommended that future research includes proper model parameterization to avoid biases and overestimations. This would allow for the anticipation and development of timely conservation strategies that could maintain the species in its least concern category.
dc.format.mimetypepdf
dc.identifier.urihttp://hdl.handle.net/11349/42192
dc.language.isospa
dc.publisherUniversidad Distrital Francisco José de Caldas
dc.relation.referencesAcevedo, P., Jiménez-Valverde, A., Lobo, J. M., & Real, R. (2012). Delimiting the geographical background in species distribution modelling. Journal Of Biogeography, 39(8), 1383-1390. https://doi.org/10.1111/j.1365-2699.2012.02713.x
dc.relation.referencesAcosta Galvis, A. (2021). Lista de los anfibios de Colombia: Nymphargus ignotus. BATRACHIA. Retrieved June 23, 2024, from https://www.batrachia.com/orden-anura/centrolenidae-81-spp/nymphargus-ignotus/
dc.relation.referencesAgudelo-Hz, W. J., & Armenteras, D. (2018). Cambio climático en Ecosistemas Andinos de Colombia: una revisión de sus efectos sobre la Biodiversidad. ResearchGate. https://www.researchgate.net/publication/328492678_Cambio_climatico_en_Ecosistemas_Andinos_de_Colombia_una_revision_de_sus_efectos_sobre_la_Biodiversidad
dc.relation.referencesAgudelo-Hz, W. J., Urbina-Cardona, N., & Armenteras-Pascual, D. (2019). Critical shifts on spatial traits and the risk of extinction of Andean anurans: an assessment of the combined effects of climate and land-use change in Colombia. Perspectives In Ecology And Conservation, 17(4), 206-219. https://doi.org/10.1016/j.pecon.2019.11.002
dc.relation.referencesAlves-Ferreira, G., Giné, G. A. F., De Siqueira Fortunato, D., Solé, M., & Heming, N. M. (2022). Projected responses of Cerrado anurans to climate change are mediated by biogeographic character. Perspectives In Ecology And Conservation, 20(2), 126-131. https://doi.org/10.1016/j.pecon.2021.12.001
dc.relation.referencesAnderson, E. P., Marengo, J., Villalba, R., Halloy, S., Young, B., Cordero, D., Gast, F., Jaimes, E., Ruiz, D., Herzog, S. K., Martinez, R., J©argensen, P. M., & Tiessen, H. (2011). Consequences of climate change for ecosystems and ecosystem 62 services in the Tropical Andes. En Climate Change and Biodiversity in the Tropical Andes (pp. 1-18). Inter-American Institute for Global Change Research (IAI) and Scientific Committee on Problems of the Environment (SCOPE). http://wedocs.unep.org/handle/20.500.11822/19915
dc.relation.referencesAnunciação, P. R., Ernst, R., Martello, F., Vancine, M. H., De Carvalho, L. M. T., & Ribeiro, M. C. (2023). Climate-driven loss of taxonomic and functional richness in Brazilian Atlantic Forest anurans. Perspectives In Ecology And Conservation, 21(4), 274-285. https://doi.org/10.1016/j.pecon.2023.09.001
dc.relation.referencesArmesto, L. O., & Señaris, J. C. (2017). Anuros del norte de los andes: patrones de riqueza de especies y estado de conservación. Papéis Avulsos de Zoologia, 57(39), 491-526. https://doi.org/10.11606/0031-1049.2017.57.39
dc.relation.referencesArroyo, S., Chaves-Portilla, G., Rivera-Correa, M., & Rada, M. (2019). Capítulo 2 Sistemática y taxonomía de anfibios. En Sistemática y taxonomía de anfibios (pp. 55-95). https://doi.org/10.19053/978-958-660-341-6.2
dc.relation.referencesBáez, S., Jaramillo, L., Cuesta, F., & Donoso, D. A. (2016). Effects of climate change on Andean biodiversity: a synthesis of studies published until 2015. Neotropical Biodiversity, 2(1), 181-194. https://doi.org/10.1080/23766808.2016.1248710
dc.relation.referencesBallesteros-Barrera, C., Tapia-Pérez, O., Zárate-Hernández, R., Leyte-Manrique, A., Martínez-Bernal, A., Vargas-Miranda, B., Martínez-Coronel, M., & Ortiz-Burgos, S. (2022). The Potential Effect of Climate Change on the Distribution of Endemic Anurans from Mexico’s Tropical Dry Forest. Diversity, 14(8), 650. https://doi.org/10.3390/d14080650
dc.relation.referencesBarbet‐Massin, M., Jiguet, F., Albert, C. H., & Thuiller, W. (2012). Selecting pseudo‐absences for species distribution models: how, where and how many? Methods In Ecology And Evolution, 3(2), 327-338. https://doi.org/10.1111/j.2041-210x.2011.00172.x
dc.relation.referencesBax, V., & Francesconi, W. (2019). Conservation gaps and priorities in the Tropical Andes biodiversity hotspot: Implications for the expansion of protected areas. Journal Of Environmental Management, 232, 387-396. https://doi.org/10.1016/j.jenvman.2018.11.086
dc.relation.referencesBiggs, R., Simons, H., Bakkenes, M., Scholes, R. J., Eickhout, B., Van Vuuren, D., & Alkemade, R. (2008). Scenarios of biodiversity loss in southern Africa in the 21st century. Global Environmental Change, 18(2), 296-309. https://doi.org/10.1016/j.gloenvcha.2008.02.001
dc.relation.referencesBraunisch, V., Coppes, J., Arlettaz, R., Suchant, R., Schmid, H., & Bollmann, K. (2013). Selecting from correlated climate variables: a major source of uncertainty for predicting species distributions under climate change. Ecography, 36(9), 971-983. https://doi.org/10.1111/j.1600-0587.2013.00138.x
dc.relation.referencesBreiner, F. T., Nobis, M. P., Bergamini, A., & Guisan, A. (2018). Optimizing ensembles of small models for predicting the distribution of species with few occurrences. Methods In Ecology And Evolution, 9(4), 802-808. https://doi.org/10.1111/2041-210x.12957
dc.relation.referencesBunn, C., Läderach, P., Rivera, O. O., & Kirschke, D. (2014). A bitter cup: climate change profile of global production of Arabica and Robusta coffee. Climatic Change, 129(1-2), 89-101. https://doi.org/10.1007/s10584-014-1306-x
dc.relation.referencesCalvin, K., Dasgupta, D., Krinner, G., Mukherji, A., Thorne, P. W., Trisos, C., Romero, J., Aldunce, P., Barrett, K., Blanco, G., Cheung, W. W., Connors, S., Denton, F., Diongue-Niang, A., Dodman, D., Garschagen, M., Geden, O., Hayward, B., Jones, C., 64 . . . Ha, M. (2023). IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland. https://doi.org/10.59327/ipcc/ar6-9789291691647
dc.relation.referencesCasajus, N., Périé, C., Logan, T., Lambert, M., De Blois, S., & Berteaux, D. (2016). An Objective Approach to Select Climate Scenarios when Projecting Species Distribution under Climate Change. PloS One, 11(3), e0152495. https://doi.org/10.1371/journal.pone.0152495
dc.relation.referencesCastro-Herrera, F., & Bolívar-García, W. (2010). LIBRO ROJO DE LOS ANFIBIOS DEL VALLE DEL CAUCA (1.a ed.). Feriva Impresores SA. https://www.researchgate.net/profile/Fernando-Castro-Herrera/publication/292146270_Libro_rojo_de_los_anfibios_del_Valle_del_Cauca/links/56aa630f08aed5a0135897d9/Libro-rojo-de-los-anfibios-del-Valle-del-Cauca.pdf
dc.relation.referencesCastro-Llanos, F., Hyman, G., Rubiano, J., Ramirez-Villegas, J., & Achicanoy, H. (2019). Climate change favors rice production at higher elevations in Colombia. Mitigation And Adaptation Strategies For Global Change, 24(8), 1401-1430. https://doi.org/10.1007/s11027-019-09852-x
dc.relation.referencesCastroviejo‐Fisher, S., Guayasamin, J. M., Gonzalez‐Voyer, A., & Vilà, C. (2013). Neotropical diversification seen through glassfrogs. Journal Of Biogeography, 41(1), 66-80. https://doi.org/10.1111/jbi.12208
dc.relation.referencesCatenazzi, A., & Von May, R. (2021). Systematics and Conservation of Neotropical Amphibians and Reptiles. Diversity, 13(2), 45. https://doi.org/10.3390/d13020045
dc.relation.referencesCeron, K., Sales, L. P., Santana, D. J., & Pires, M. M. (2023). Decoupled responses of biodiversity facets driven from anuran vulnerability to climate and land‐use changes. Ecology Letters, 26(6), 869-882. https://doi.org/10.1111/ele.14207
dc.relation.referencesCisneros-Heredia, D. F., & Mcdiarmid, R. W. (2007). Revision of the characters of Centrolenidae (Amphibia: Anura: Athesphatanura), with comments on its taxonomy and the description of new taxa of glassfrogs. Zootaxa, 1572(1), 1-82. https://doi.org/10.11646/zootaxa.1572.1.1
dc.relation.referencesCoumou, D., & Rahmstorf, S. (2012). A decade of weather extremes. Nature Climate Change, 2(7), 491-496. https://doi.org/10.1038/nclimate1452
dc.relation.referencesDawson, T. P., Jackson, S. T., House, J. I., Prentice, I. C., & Mace, G. M. (2011). Beyond predictions: Biodiversity conservation in a changing climate. Science, 332(6025), 53-58. https://doi.org/10.1126/science.1200303
dc.relation.referencesDoak, D. F., & Morris, W. F. (2010). Demographic compensation and tipping points in climate-induced range shifts. Nature, 467(7318), 959-962. https://doi.org/10.1038/nature09439
dc.relation.referencesElith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., & Yates, C. J. (2010). A statistical explanation of MaxEnt for ecologists. Diversity And Distributions, 17(1), 43-57. https://doi.org/10.1111/j.1472-4642.2010.00725.x
dc.relation.referencesFahrig, L. (2003). Effects of Habitat Fragmentation on Biodiversity. Annual Review Of Ecology, Evolution, And Systematics, 34(1), 487-515. https://doi.org/10.1146/annurev.ecolsys.34.011802.132419
dc.relation.referencesField, Barros, Mastrandrea, Mach, Abdrabo, Adger, N., Anokhin, Anisimov, Arent, Australia, J. B., Burkett, China, R. C., India, M. C., Cohen, S., India, P. D., Davidson, Gambia, F. D., Dow, K., Australia, O. H., . . . Yohe. (2014). Climate 66 change 2014: impacts, adaptation, and vulnerability – IPCC WGII AR5 summary for policymakers. Cambridge University Press. https://www.researchgate.net/profile/Hans_Otto_Poertner2/publication/272150376_Climate_change_2014_impacts_adaptation_and_vulnerability_-_IPCC_WGII_AR5_summary_for_policymakers/links/54db84960cf233119bc638b6.pdf
dc.relation.referencesFrost, D. (2018). Nymphargus ignotus (Lynch, 1990) (De American Museum of Natural History.). Amphibian Species Of The World. https://amphibiansoftheworld.amnh.org/Amphibia/Anura/Centrolenidae/Centroleninae/Nymphargus/Nymphargus-ignotus
dc.relation.referencesGarcia, R. A., Cabeza, M., Rahbek, C., & Araújo, M. B. (2014). Multiple dimensions of climate change and their implications for biodiversity. Science, 344(6183). https://doi.org/10.1126/science.1247579
dc.relation.referencesGuayasamin, J. M., Castroviejo-Fisher, S., Trueb, L., Ayarzagüena, J., Rada, M., & Vilà, C. (2009). Phylogenetic systematics of Glassfrogs (Amphibia: Centrolenidae) and their sister taxon Allophryne ruthveni. Zootaxa, 2100(1), 1-97. https://doi.org/10.11646/zootaxa.2100.1.1
dc.relation.referencesGuayasamin, J. M., Cisneros-Heredia, D. F., McDiarmid, R. W., Peña, P., & Hutter, C. R. (2020). Glassfrogs of Ecuador: Diversity, Evolution, and Conservation. Diversity, 12(6), 222. https://doi.org/10.3390/d12060222
dc.relation.referencesGuayasamin, J. M., Cisneros-Heredia, D. F., Vieira, J., Kohn, S., Gavilanes, G., Lynch, R. L., Hamilton, P. S., & Maynard, R. J. (2019). A new glassfrog (Centrolenidae) from the Chocó-Andean Río Manduriacu Reserve, Ecuador, endangered by mining. PeerJ, 7, e6400. https://doi.org/10.7717/peerj.6400
dc.relation.referencesGuisan, A., & Thuiller, W. (2005). Predicting species distribution: offering more than simple habitat models. Ecology Letters, 8(9), 993-1009. https://doi.org/10.1111/j.1461-0248.2005.00792.x
dc.relation.referencesGuisan, A., Tingley, R., Baumgartner, J. B., Naujokaitis‐Lewis, I., Sutcliffe, P. R., Tulloch, A. I. T., Regan, T. J., Brotons, L., McDonald‐Madden, E., Mantyka‐Pringle, C., Martin, T. G., Rhodes, J. R., Maggini, R., Setterfield, S. A., Elith, J., Schwartz, M. W., Wintle, B. A., Broennimann, O., Austin, M., . . . Buckley, Y. M. (2013). Predicting species distributions for conservation decisions. Ecology Letters, 16(12), 1424-1435. https://doi.org/10.1111/ele.12189
dc.relation.referencesHaller, A. (2012). Climate Change and Biodiversity in the Tropical Andes. Mountain Research And Development, 32(2), 258. https://doi.org/10.1659/mrd.mm097
dc.relation.referencesHernandez, P. A., Graham, C. H., Master, L. L., & Albert, D. L. (2006). The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography, 29(5), 773-785. https://doi.org/10.1111/j.0906-7590.2006.04700.x
dc.relation.referencesHerrera-Lopera, J. M., Castaño, V. A. R., & Cultid-Medina, C. A. (2023). What are the Andean Colombian anurans? Empirical regionalization proposals vs. observed patterns of compositional dissimilarity. PeerJ, 11, e15217. https://doi.org/10.7717/peerj.15217
dc.relation.referencesHijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal Of Climatology, 25(15), 1965-1978. https://doi.org/10.1002/joc.1276
dc.relation.referencesInstituto Humboldt, & Acosta-Galvis, A. (2016). Los anfibios en Colombia: Ranas, sapos, cecilias y salamandras. Biodiversidad. Recuperado 11 de junio de 2024, de http://reporte.humboldt.org.co/biodiversidad/2015/cap1/105/#seccion3
dc.relation.referencesIPCC. (2013). Climate change 2013 : the physical science basis : Working Group I contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. En T. F. Stocker, D. Qin, M. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Intergovernmental Panel on Climate Change eBooks. Cambridge University Press. http://ci.nii.ac.jp/ncid/BB15229414
dc.relation.referencesIPCC. (2014). Cambio climático 2014: impactos, adaptación y vulnerabilidad – Resumen para responsables de políticas. Contribución del Grupo de Trabajo II al quinto Informe de Evaluación del Grupo Intergubernamental de Expertos sobre el Cambio Climático. En The Intergovernmental Panel On Climate Change. Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.). Recuperado 20 de junio de 2024, de https://www.ipcc.ch/
dc.relation.referencesIPCC. (2021). Resumen para responsables de políticas. en: Climate Change 2021: the Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu y B. Zhou (editores)]. ]. Cambridge University Press.]. Cambridge University Press. https://www.ipcc.ch/report/ar6/syr/downloads/report/IPCC_AR6_SYR_FullVolume.pdf
dc.relation.referencesIPCC. (2023). Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland. [Core Writing Team, H. Lee and J. Romero (eds.)]. https://doi.org/10.59327/ipcc/ar6-9789291691647
dc.relation.referencesIUCN SSC Amphibian Specialist Group. (2020). IUCN Red List of Threatened Species: : Nymphargus ignotus. IUCN Red List Of Threatened Species. https://www.iucnredlist.org/species/54966/176743577
dc.relation.referencesKappelle, M., & Brown, A. (2001). Bosques Nublados del Neotropico. ResearchGate. https://www.researchgate.net/publication/237139539_Bosques_Nublados_del_Neotropico
dc.relation.referencesKarger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., Zimmermann, N. E., Linder, H. P., & Kessler, M. (2017). Climatologies at high resolution for the Earth’s land surface areas. Scientific Data, 4(1). https://doi.org/10.1038/sdata.2017.122
dc.relation.referencesKattan, G. H., Franco, P., Rojas, V., & Morales, G. (2004). Biological diversification in a complex region: a spatial analysis of faunistic diversity and biogeography of the Andes of Colombia. Journal Of Biogeography, 31(11), 1829-1839. https://doi.org/10.1111/j.1365-2699.2004.01109.x
dc.relation.referencesLacher, T., & Roach, N. (2018). The status of biodiversity in the Anthropocene: Trends, threats, and actions. En Elsevier eBooks (pp. 1-8). https://doi.org/10.1016/b978-0-12-809665-9.10674-3
dc.relation.referencesLiu, C., White, M., & Newell, G. (2013). Selecting thresholds for the prediction of species occurrence with presence-only data. Journal Of Biogeography, 40(4), 778-789. https://doi.org/10.1111/jbi.12058
dc.relation.referencesMarquardt, D. W. (1970). Generalized Inverses, Ridge Regression, Biased Linear Estimation, and Nonlinear Estimation. Technometrics, 12(3), 591. https://doi.org/10.2307/1267205
dc.relation.referencesMenéndez‐Guerrero, P. A., Green, D. M., & Davies, T. J. (2019). Climate change and the future restructuring of Neotropical anuran biodiversity. Ecography, 43(2), 222-235. https://doi.org/10.1111/ecog.04510
dc.relation.referencesMitchell, P. J., Monk, J., & Laurenson, L. (2016). Sensitivity of fine‐scale species distribution models to locational uncertainty in occurrence data across multiple sample sizes. Methods In Ecology And Evolution, 8(1), 12-21. https://doi.org/10.1111/2041-210x.12645
dc.relation.referencesMyers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. B., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403(6772), 853-858. https://doi.org/10.1038/35002501
dc.relation.referencesNaimi, B., Hamm, N., Groen, T., Skidmore, A., & Toxopeus, A. (2014). USDM: Uncertainty Analysis for Species Distribution models (2.1-7) [Conjunto de datos; CRAN R]. https://doi.org/10.32614/cran.package.usdm
dc.relation.referencesNewbold, T. (2018). Future effects of climate and land-use change on terrestrial vertebrate community diversity under different scenarios. Proceedings - Royal Society. Biological Sciences/Proceedings - Royal Society. Biological Sciences, 285(1881), 20180792. https://doi.org/10.1098/rspb.2018.0792
dc.relation.referencesPearson, R. G., & Dawson, T. P. (2003). Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global 71 Ecology And Biogeography, 12(5), 361-371. https://doi.org/10.1046/j.1466-822x.2003.00042.x
dc.relation.referencesPhillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E., & Blair, M. E. (2017). Opening the black box: an open‐source release of Maxent. Ecography, 40(7), 887-893. https://doi.org/10.1111/ecog.03049
dc.relation.referencesPhillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3-4), 231-259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
dc.relation.referencesPhillips, S. J., Dudík, M., & Schapire, R. E. (s. f.). Maxent Software for Modeling Species Niches and Distributions [Software]. En Schapire (Version 3.4.1). http://biodiversityinformatics.amnh.org/open_source/maxent/
dc.relation.referencesPrakash, S., & Srivastava, S. (2019). Impact of climate change on biodiversity: An Overview. International Journal Of Biological Innovations, 01(02), 60-65. https://doi.org/10.46505/ijbi.2019.1205
dc.relation.referencesRada, M., Ospina-Sarria, J. J., & Guayasamin, J. M. (2017). A Taxonomic Review of Tan-Brown Glassfrogs (Anura: Centrolenidae), with the Description of a New Species from Southwestern Colombia. South American Journal Of Herpetology, 12(2), 136-156. https://doi.org/10.2994/sajh-d-16-00026.1
dc.relation.referencesRahbek, C., Borregaard, M. K., Colwell, R. K., Dalsgaard, B., Holt, B. G., Morueta-Holme, N., Nogues-Bravo, D., Whittaker, R. J., & Fjeldså, J. (2019). Humboldt’s enigma: What causes global patterns of mountain biodiversity? Science, 365(6458), 1108-1113. https://doi.org/10.1126/science.aax0149
dc.relation.referencesRamirez-Villegas, J., Cuesta, F., Devenish, C., Peralvo, M., Jarvis, A., & Arnillas, C. A. (2014). Using species distributions models for designing conservation strategies of Tropical Andean biodiversity under climate change. Journal For Nature Conservation, 22(5), 391-404. https://doi.org/10.1016/j.jnc.2014.03.007
dc.relation.referencesRestrepo, J. H., & Naranjo, L. G. (1999). Ecología reproductiva de una población de cochranella ignota (Anura: Centrolenidae). Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 23, ISSN 03703908. https://www.accefyn.com/revista/Vol_23/86/49-59.pdf
dc.relation.referencesRoach, N. S., Castellanos, A. A., & Lacher, T. E. (2024). Assessing the vulnerability of endemic Colombian amphibian species to climate change in an isolated Montane ecosystem. Tropical Conservation Science, 17. https://doi.org/10.1177/19400829231225236
dc.relation.referencesRödder, D., & Weinsheimer, F. (2009). Will future anthropogenic climate change increase the potential distribution of the alien invasive Cuban treefrog (Anura: Hylidae)? Journal Of Natural History, 43(19-20), 1207-1217. https://doi.org/10.1080/00222930902783752
dc.relation.referencesRodríguez, A., D., Morales, M., & Romero, M. (2006). Ecosistemas de los Andes colombianos. Instituto de Investigación de Recursos Biológicos Alexander Von Humbolt.
dc.relation.referencesRuiz, A., & Rueda-Almonacid, J. V. (2008). Batrachochytrium dendrobatidis and Chytridiomycosis in Anuran Amphibians of Colombia. Ecohealth, 5(1), 27-33. https://doi.org/10.1007/s10393-008-0159-z
dc.relation.referencesSalamanca, G. G., Osorio, T. M. P., Vargas, G. E. F., & Gonzalez, V. (2022). Ecorregiones colombia. ResearchGate. 73 https://www.researchgate.net/publication/364844636_Ecorregiones_colombia?enrichId=rgreq-be326375faad124def33859e59a1cce5-XXX&enrichSource=Y292ZXJQYWdlOzM2NDg0NDYzNjtBUzoxMTQzMTI4MTA5Mjk2ODkxMkAxNjY3MDY4MDYxNDc0&el=1_x_2&_esc=publicationCoverPdf
dc.relation.referencesSánchez-Carvajal, M. J., Reyes-Ortega, G. C., Cisneros-Heredia, D. F., & Ortega-Andrade, H. M. (2021). Rediscovery of Laura’s glassfrog Nymphargus laurae (Anura: Centrolenidae) with new data on its morphology, colouration, phylogenetic position and conservation in Ecuador. PeerJ, 9, e12644. https://doi.org/10.7717/peerj.12644
dc.relation.referencesThompson, J. N. (1994). The coevolutionary process. https://doi.org/10.7208/chicago/9780226797670.001.0001
dc.relation.referencesTobar-Suárez, C., Urbina-Cardona, N., Villalobos, F., & Pineda, E. (2021). Amphibian species richness and endemism in tropical montane cloud forests across the Neotropics. Biodiversity And Conservation, 31(1), 295-313. https://doi.org/10.1007/s10531-021-02335-z
dc.relation.referencesUrban, M. C. (2018). Escalator to extinction. Proceedings Of The National Academy Of Sciences Of The United States Of America, 115(47), 11871-11873. https://doi.org/10.1073/pnas.1817416115
dc.relation.referencesValavi, R., Guillera‐Arroita, G., Lahoz‐Monfort, J. J., & Elith, J. (2021). Predictive performance of presence‐only species distribution models: a benchmark study with reproducible code. Ecological Monographs, 92(1). https://doi.org/10.1002/ecm.1486
dc.relation.referencesWarren, D. L., & Seifert, S. N. (2011). Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecological Applications, 21(2), 335-342. https://doi.org/10.1890/10-1171.1
dc.relation.referencesYadav, E. (2022). Climate change and biodiversity. ResearchGate. https://www.researchgate.net/publication/377766897
dc.relation.referencesZhong, L., & Wang, J. (2017). Evaluation on effect of land consolidation on habitat quality based on InVEST model[J]. Transactions Of The Chinese Society Of Agricultural Engineering (Transactions Of The CSAE), 33(1), 250-255. https://doi.org/10.11975/j.issn.1002-6819.2017.01.034
dc.rights.accesoAbierto (Texto Completo)
dc.rights.accessrightsOpenAccess
dc.subjectEspecie Endémica
dc.subjectModelos de Nicho ecológico
dc.subjectMaxEnt
dc.subjectPrecipitación
dc.subjectTemperatura
dc.subject.keywordEndemic Species
dc.subject.keywordEcological Niche models
dc.subject.keywordMaxEnt
dc.subject.keywordPrecipitation
dc.subject.keywordTemperature
dc.subject.lembLicenciatura en Biología -- Tesis y disertaciones académicas
dc.subject.lembCambio climático y biodiversidad
dc.subject.lembDistribución de especies y efectos del cambio climático
dc.subject.lembConservación de especies endémicas
dc.subject.lembImpacto del cambio climático en los anfibios
dc.titleUna evaluación de los potenciales efectos del cambio climático sobre la Distribución Nymphargus Ignotus (Lynch, 1990) (Amphibia, Anura, Centrolenidae)
dc.title.titleenglishAn assessment of the potential effects of climate change on the Distribution of Nymphargus ignotus (Lynch, 1990) (Amphibia, Anura, Centrolenidae)
dc.typebachelorThesis
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.degreeInvestigación-Innovación
dc.type.driverinfo:eu-repo/semantics/bachelorThesis

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
Trabajo de grado
Tamaño:
1.13 MB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
Licencia de uso y autorización
Tamaño:
213.55 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
7 KB
Formato:
Item-specific license agreed upon to submission
Descripción: