Sistema de localización automático de fallas por el método de ondas viajeras
| dc.contributor.advisor | Espinel Ortega, Alvaro | |
| dc.contributor.author | Ladino Pérez, John Alexis | |
| dc.contributor.orcid | Espinel Ortega Alvaro [0000-0002-7747-7718] | |
| dc.date.accessioned | 2025-09-10T17:27:18Z | |
| dc.date.available | 2025-09-10T17:27:18Z | |
| dc.date.created | 2025-08-28 | |
| dc.description | Esta investigación desarrolla una metodología para la localización de fallas en líneas de transmisión de alta tensión, mediante la combinación del análisis de ondas viajeras con modelos de aprendizaje profundo. El enfoque propuesto integra simulaciones electromagnéticas realizadas en ATPDraw, generación automatizada de eventos usando Python, y un procesamiento robusto de señales que incluye filtrado de alta frecuencia y transformación modal. Las formas de onda de corriente resultantes extraídas de ambos terminales de la línea de transmisión alimentan una red neuronal profunda compuesta por capas convolucionales y recurrentes (CNN-LSTM), entrenada para clasificar la ubicación de la falla a lo largo de la línea con granularidad del uno por ciento. Se desarrollaron trece configuraciones distintas de arquitectura de redes neuronales, combinando capas convolucionales CNN y LSTM con diversas profundidades, con el objetivo de identificar la estructura más adecuada para el problema de localización de fallas. Cada modelo fue entrenado bajo condiciones idénticas utilizando un extenso conjunto de datos de eventos de falla simulados que abarcó diferentes tipos de falla, ubicaciones e impedancias. Métricas como la precisión global, el F1-Score y recall se utilizaron para orientar la selección del modelo. La arquitectura final del modelo, incluye una capa convolucional seguida de dos capas LSTM y neuronas densas de salida, alcanzó una precisión de validación cercana al 99%. El conjunto de datos de entrenamiento se generó con una frecuencia de muestreo de 1 MHz y una ventana temporal de 1.5 milisegundos, suficiente para capturar tanto los frentes de onda iniciales como las reflexiones relevantes en los terminales remotos. Se aplicó filtrado pasa-altos con respuesta Butterworth para preservar los componentes transitorios de interés, mientras que la transformación de Clarke facilitó el desacoplamiento de las interacciones de fase proyectando las señales al marco α–β. Estas señales preprocesadas fueron luego normalizadas y utilizadas para entrenar el modelo de manera supervisada. El rendimiento del modelo se analizó detalladamente, en términos de métricas generales, a través de la inspección de la matriz de confusión y errores específicos por clase. El análisis reveló que la mayoría de las clasificaciones erróneas ocurrieron entre clases vecinas, típicamente dentro de un margen de error de ±2%, lo cual permanece operacionalmente aceptable en la mayoría de los escenarios de localización de fallas. Estas dificultades se atribuyen a la similitud intrínseca de las formas de onda y la proximidad física entre puntos de falla adyacentes. La metodología propuesta demostró comportamiento consistente a lo largo de todo el dominio de clasificación para el modelo de línea analizado. Sin embargo, para la generalización de su aplicación en diferentes tipos de líneas en cuanto a sus características técnicas, se debe continuar su estudio, dado que el modelo al ser entrenado solo con datos de una línea de transmisión particular está condicionado para el análisis exclusivo de eventos de esa línea para obtener el nivel de precisión requerido en la operación de sistemas de transmisión. El diseño del modelo y la metodología desarrollada permite extensiones futuras, como la incorporación de señales de voltaje, la adaptación del enfoque a topologías de red más complejas, o el despliegue del modelo entrenado en hardware embebido para aplicaciones en tiempo real. En general, el estudio proporciona una solución confiable y escalable para la localización automatizada de fallas en sistemas de transmisión, aprovechando las fortalezas tanto del modelado físico como del aprendizaje basado en datos. | |
| dc.description.abstract | This research presents a methodology for the fault location in high-voltage transmission lines, combining traveling wave analysis with deep learning models. The proposed approach integrates electromagnetic simulations performed in ATPDraw, automated event generation using Python, and a robust signal processing pipeline that includes high-frequency filtering and modal transformation. The resulting current waveforms—extracted from both terminals of the transmission line—serve as input to a deep neural network composed of convolutional and recurrent layers (CNN-LSTM), trained to classify the fault position along the line with one-percent granularity. To evaluate the effectiveness of different model configurations, a comparative study was conducted involving eight architectures with varying levels of complexity. Each model was trained under identical conditions using a large dataset of simulated fault events spanning a wide range of fault types, positions, and impedances. Metrics such as global accuracy, macro-averaged F1-score, and per-class performance were used to guide the model selection. The final architecture, which includes one convolutional layer followed by two LSTM layers and dense output neurons, achieved a validation accuracy close to 99%. The training dataset was generated with a sampling rate of 1 MHz and a temporal window of 1.5 milliseconds, sufficient to capture both the initial wavefronts and relevant reflections at the remote terminals. High-pass filtering with a Butterworth response was applied to preserve the transient components of interest, while the Clarke transformation facilitated the decoupling of phase interactions by projecting the signals into the α–β frame. These preprocessed signals were then standardized and used to train the model in a supervised manner. Model performance was analyzed in detail, not only in terms of overall metrics, but also through the inspection of the confusion matrix and class-specific errors. The analysis revealed that most misclassifications occurred between neighboring classes, typically within a ±2% error margin, which remains operationally acceptable in most fault location scenarios. Nonetheless, a group of underperforming classes—mostly located in the central portion of the line was identified and examined in a reduced confusion matrix. These difficulties are attributed to the intrinsic similarity of the waveforms and the physical proximity between adjacent fault points. The proposed methodology demonstrated strong generalization capabilities and consistent behavior throughout the entire classification domain. Its design allows for future extensions, such as incorporating voltage signals, adapting the approach to more complex network topologies, or deploying the trained model on embedded hardware for real-time applications. Overall, the study provides a reliable and scalable solution for automated fault location in transmission systems, leveraging the strengths of both physical modeling and data-driven learning. | |
| dc.format.mimetype | ||
| dc.identifier.uri | http://hdl.handle.net/11349/98873 | |
| dc.language.iso | spa | |
| dc.publisher | Universidad Distrital Francisco José de Caldas | |
| dc.relation.references | Bai, S., Kolter, J. Z., & Koltun, V. (2018). An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling. https://doi.org/10.48550/arXiv.1803.01271 Bewley, L. V. (1931). Traveling waves on transmission systems. Transactions of the American Institute of Electrical Engineers, 50(2), 532–550. Bouraya, S., & Belangour, A. (2024). A comparative analysis of activation functions in neural networks: unveiling categories. Bulletin of Electrical Engineering and Informatics, 13(5), 3301–3308. Chen, S., Xie, J., Bi, G., Zhang, J., Zhang, W., & Gao, C. (2015). A novel two terminal fault location method used ANN for UHVDC transmission line. Diangong Jishu Xuebao Transactions of China Electrotechnical Society, 30(4), 257–264. Chengjun, R., Yuhui, P., Yingpu, X., Min, W., Mengfei, L., Lin, Z., Yadi, Z., Zhuowen, L., Haonan, Z., & Yongzeng, J. (2024). Research on Fast Fault Identification Method for Transmission Line Traveling Wave Data Based on Machine Learning Algorithms. 2024 IEEE 3rd International Conference on Electrical Engineering Big Data and Algorithms Eebda 2024, 449–456. https://doi.org/10.1109/EEBDA60612.2024.10485761 Clarke, E. (1943). Circuit analysis of AC power systems: symmetrical and related components (Vol. 1). Wiley. Comisión de Regulación de Energía y Gas. (2009). Resolución CREG 11 de 2009. Committee, P. S. R., & others. (2014). IEEE Guide for Determining Fault Location on AC Transmission and Distribution Lines. 2014. IEEE Std C, 37, 114. Das, S., Santoso, S., Gaikwad, A., & Patel, M. (2014). Impedance-based fault location in transmission networks: theory and application. IEEE Access, 2, 537–557. Eriksson, L., Saha, M. M., & Rockefeller, G. D. (1985). An accurate fault locator with compensation for apparent reactance in the fault resistance resulting from remore-end infeed. IEEE Transactions on Power Apparatus and Systems, 2, 423–436. Ferrer, H. J. A., Schweitzer, E. O., & others. (2010). Modern solutions for protection, control, and monitoring of electric power systems. Schweitzer Engineering Laboratories Pullman, WA, USA. Gong, Y., Mynam, M., Guzmán, A., Benmouyal, G., & Shulim, B. (2012). Automated fault location system for nonhomogeneous transmission networks. 2012 65th Annual Conference for Protective Relay Engineers, 374–381. Karim, F., Majumdar, S., Darabi, H., & Chen, S. (2018). LSTM Fully Convolutional Networks for Time Series Classification. IEEE Access, 6, 1662–1669. https://doi.org/10.1109/ACCESS.2017.2779939 Khoudry, E., Belfqih, A., Boukherouaa, J., & Elmariami, F. (2020). Traveling wave based fault location for power transmission lines using morphological filters and clarke modal components. International Journal of Electrical & Computer Engineering (2088-8708), 10(2). https://doi.org/10.11591/ijece.v10i2.pp1122-1134 Li, R., Li, Q., & Yu, D. (2023). Study on Fault Identification Method of Transmission Lines Based on an Improved CNN. Proceedings of 2023 IEEE 12th Data Driven Control and Learning Systems Conference Ddcls 2023, 1997–2002. https://doi.org/10.1109/DDCLS58216.2023.10167032 Lopes, F. V., Lima, P., Ribeiro, J. P. G., Honorato, T. R., Silva, K. M., Leite, E. J. S., Neves, W. L. A., & Rocha, G. (2019). Practical Methodology for Two-Terminal Traveling Wave-Based Fault Location Eliminating the Need for Line Parameters and Time Synchronization. IEEE Transactions on Power Delivery, 34(6), 2123–2134. https://doi.org/10.1109/TPWRD.2019.2891538 Lopes, F. V., Reis, R., Facina, D., Melo, K., Dantas, K., & Costa, F. (2022). How much “villain” is the anti-aliasing filter for traveling wave-based fault location methods? Electric Power Systems Research, 212, 108369. https://doi.org/10.1016/J.EPSR.2022.108369 Marti, J. R. (1982). Accurate modelling of frequency-dependent transmission lines in electromagnetic transient simulations. IEEE Transactions on Power Apparatus and Systems, 1, 147–157. Minsky, M., & Papert, S. (1969). Perceptrons cambridge. MA: MIT Press. ZbMATH. Paulter, N. G. (2001). An assessment on the accuracy of time-domain reflectometry for measuring the characteristic impedance of transmission lines. IEEE Transactions on Instrumentation and Measurement, 50(5), 1381–1388. https://doi.org/10.1109/19.963214 Phadke, A. G., & Xavier, M. A. (1993). Limits to fault location accuracy. Seventh Annual Conference for Fault and Disturbance Analysis, Texas A&M University, College Station, Texas. Powers, D. M. W. (2020). Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation. https://doi.org/https://doi.org/10.48550/arXiv.2010.16061 Rezaee Ravesh, N., Ramezani, N., Ahmadi, I., & Nouri, H. (2022). A hybrid artificial neural network and wavelet packet transform approach for fault location in hybrid transmission lines. Electric Power Systems Research, 204. https://doi.org/10.1016/j.epsr.2021.107721 Rocha, S. A., de Mattos, T. G., & da Silveira, E. G. (2025). A Practical Approach for Fault Location in Transmission Lines with Series Compensation Using Artificial Neural Networks: Results with Field Data. Energies, 18(1). https://doi.org/10.3390/en18010145 Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Information Processing & Management, 45(4), 427–437. https://doi.org/10.1016/J.IPM.2009.03.002 Superintendencia de servicios públicos domiciliarios. (2022). Informe de Diagnostico-de-Transmision 2021. Takagi, T., Yamakoshi, Y., Yamaura, M., Kondow, R., & Matsushima, T. (1982). Development of a new type fault locator using the one-terminal voltage and current data. IEEE Transactions on Power Apparatus and Systems, 8, 2892–2898. Tawfik, M. M., & Morcos, M. M. (2001). ANN-based techniques for estimating fault location on transmission lines using prony method. IEEE Transactions on Power Delivery, 16(2), 219–224. https://doi.org/10.1109/61.915486 Tian, X., Liu, Z., Liu, J., Shan, J., Song, J., & Shu, H. (2023). Identification of overhead line fault traveling wave and interference clutter based on convolution neural network and random forest fusion. Energy Reports, 9, 1531–1545. https://doi.org/10.1016/j.egyr.2023.04.130 Tîrnovan, R. A., & Cristea, M. (2019). Advanced techniques for fault detection and classification in electrical power transmission systems: An overview. Proceedings of 2019 8th International Conference on Modern Power Systems, MPS 2019. https://doi.org/10.1109/MPS.2019.8759695 van Cortlandt Warrington, A. R. (1962). Protective relays: their theory and practice (Vol. 1). Chapman & Hall. Wang, Y., Xie, J., Chen, S., & Zhao, X. (2024). Single end location of asymmetric grounding fault for high voltage transmission lines based on modulus amplitude ratio; [基于模量幅值比的高压交流输电线不对称接地故障单端定位]. Dianji Yu Kongzhi Xuebao/Electric Machines and Control, 28(12), 129 – 147. https://doi.org/10.15938/j.emc.2024.12.013 Wright, A., & Christopoulos, C. (2012). Electrical power system protection. Springer Science & Business Media. XM - Expertos en mercados. (2022). Reporte integral de sostenibilidad, operación y mercado 2022. Zhang, D. J., Wu, Q. H., Bo, Z. Q., & Caunce, B. (2003). Transient positional protection of transmission lines using complex wavelets analysis. IEEE Transactions on Power Delivery, 18(3), 705–710. https://doi.org/10.1109/TPWRD.2003.813803 Zimmerman, K., & Costello, D. (2006). Impedance-based fault location experience. 2006 IEEE Rural Electric Power Conference, 1–16. Zou Jinming and Han, Y. and S. S.-S. (2009). Overview of Artificial Neural Networks. In D. J. Livingstone (Ed.), Artificial Neural Networks: Methods and Applications (pp. 14–22). Humana Press. https://doi.org/10.1007/978-1-60327-101-1_2 | |
| dc.rights.acceso | Abierto (Texto Completo) | |
| dc.rights.accessrights | OpenAccess | |
| dc.subject | Ondas Viajeras | |
| dc.subject | CNN | |
| dc.subject | LSTM | |
| dc.subject | ATP | |
| dc.subject.keyword | Traveling wave | |
| dc.subject.keyword | CNN, | |
| dc.subject.keyword | LSTM | |
| dc.subject.keyword | ATP | |
| dc.subject.lemb | Maestría en Ingeniería - Énfasis en Ingeniería Electrónica -- Tesis y disertaciones académicas | |
| dc.title | Sistema de localización automático de fallas por el método de ondas viajeras | |
| dc.title.titleenglish | Automatic fault location system using the traveling wave method | |
| dc.type | masterThesis | |
| dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
| dc.type.degree | Investigación-Innovación | |
| dc.type.driver | info:eu-repo/semantics/bachelorThesis |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 7 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:
