Estudio de la respuesta óptica de sólidos mediante las Transformaciones de Hilbert: Aplicación de las reglas de Kramers-Krönig
| dc.contributor.advisor | Avilán Vargas , Nicolás Guillermo | |
| dc.contributor.advisor | Herreño Fierro, César Aurelio | |
| dc.contributor.author | Rodríguez Delgadillo, Reinel Iván | |
| dc.contributor.orcid | Herreño Fierro César Aurelio [0000-0003-2394-4322] | |
| dc.date.accessioned | 2025-08-19T19:04:36Z | |
| dc.date.available | 2025-08-19T19:04:36Z | |
| dc.date.created | 2024-10-31 | |
| dc.description | El presente trabajo tiene como objetivo desarrollar un catálogo que consolide los modelos de dispersión óptica de materiales, poniendo especial énfasis en la naturaleza intrínseca de cada material y su relación con la respuesta óptica. Los materiales conductores y dieléctricos exhiben comportamientos diferenciados en términos de absorción y dispersión de la luz, debido a sus propiedades de conducción eléctrica. Estas diferencias en la conductividad influyen directamente en la interacción del material con la radiación electromagnética, afectando los procesos de absorción, reflexión y transmisión, y, por ende, su respuesta óptica global. La caracterización de la respuesta de un sistema físico ante una perturbación implica necesariamente una relación de causalidad. En este contexto, el trabajo se fundamenta teóricamente en el estudio de las transformaciones de Hilbert, y específicamente en las reglas de Kramers-Krönig, las cuales proporcionan un marco riguroso para comprender las relaciones causales espacio-temporales mediante la respuesta óptica de los materiales. Estas reglas permiten derivar la parte real de la función respuesta a partir de su componente imaginaria y, a su vez, establecen de manera explícita la relación causa-efecto entre la perturbación aplicada y la respuesta del sistema. Esta relación es fundamental tanto para la validación de modelos teóricos como para la interpretación precisa de resultados experimentales. Este trabajo, desarrollado bajo la modalidad de pasantía, representa una experiencia formativa integral que ha permitido al futuro licenciado en Física fortalecer sus capacidades, habilidades y competencias profesionales. A través del abordaje de un problema real y pertinente dentro del campo de la óptica física, se propicia no solo la aplicación efectiva de conocimientos teóricos y prácticos, sino también el desarrollo de competencias investigativas, analíticas y comunicativas esenciales para el ejercicio profesional y académico. | |
| dc.description.abstract | This work aims to develop a comprehensive catalog that consolidates optical dispersion models of materials, with particular emphasis on the intrinsic nature of each material and its relationship with optical response. Conductive and dielectric materials exhibit distinct behaviors in terms of light absorption and scattering due to their electrical conduction properties. These differences in conductivity significantly influence the interaction between the material and electromagnetic radiation, affecting absorption, reflection, and transmission processes, and consequently shaping the material’s overall optical response. The characterization of a physical system’s response to an external perturbation inherently involves a causal relationship. In this context, the theoretical foundation of this study is based on the Hilbert transforms, specifically the Kramers-Krönig relations, which provide a rigorous framework for understanding space-time causality through the optical response of materials. These relations allow the derivation of the real part of the response function from its imaginary component and explicitly define the cause-effect relationship between the applied perturbation and the system's response. This connection is essential for both the validation of theoretical models and the accurate interpretation of experimental data. Developed as a professional internship, this project represents a comprehensive learning experience that has enabled the prospective Bachelor of Physics to strengthen their skills, competencies, and practical and theoretical knowledge. By addressing a real and relevant problem in the field of physical optics, this work fosters not only the effective application of academic knowledge but also the development of essential research, analytical, and scientific writing abilities. | |
| dc.format.mimetype | ||
| dc.identifier.uri | http://hdl.handle.net/11349/98493 | |
| dc.language.iso | spa | |
| dc.publisher | Universidad Distrital Francisco José de Caldas | |
| dc.relation.references | [1] G. B. Arfken, H. J. Weber, and F. E. Harris, Mathematical Methods for Physicists: A Comprehensive Guide. Oxford, UK: Academic Press, 7th ed., 2012. | |
| dc.relation.references | [2] N. W. Ashcroft and N. D. Mermin, Solid State Physics. New York: Holt, Rinehart and Winston, 1976. | |
| dc.relation.references | [3] J. Bechhoefer, “Kramers-Krönig, bode, and the meaning of zero,” American Journal of Physics, vol. 78, no. 6, pp. 610–622, 2010. | |
| dc.relation.references | [4] J. Bechhoefer, “Kramers–Krönig, bode, and the meaning of zero,” American Journal of Physics, vol. 79, pp. 1053–1059, Sept. 2011. | |
| dc.relation.references | [5] R. L. Boylestad and L. Nashelsky, Electrónica: Teoría de Circuitos y Dispositivos Electrónicos. México: Pearson Educación, 10th ed., 2009. | |
| dc.relation.references | [6] R. N. Bracewell, La transformada de Fourier y sus aplicaciones. New York: McGraw-Hill, 1978. | |
| dc.relation.references | [7] M. Carcione and e. al., “The kramers-Krönig relations and the analogy between electromagnetic and mechanical waves,” 2022. | |
| dc.relation.references | [8] U. D. ChemWiki, “El espectro electromagnÉtico,” 2014. Imagen tomada de la ChemWiki de UC Davis (Universidad de California en Davis), CC-BY-NC-SA 3.0. | |
| dc.relation.references | [9] D. J. Griffiths, Introduction to Electrodynamics. Upper Saddle River, NJ: Pearson, 4th ed., 2013. | |
| dc.relation.references | [10] W. Research, “Hartmann dispersion formula,” 2024. Recuperado de: https://scienceworld. wolfram.com/physics/HartmannDispersionFormula.html. | |
| dc.relation.references | [11] W. H. Hayt, Teoría Electromagnética. McGraw-Hill, 1st ed., 1988. | |
| dc.relation.references | [12] E. Hecht, Optics Fourth Edition, Hardcover. Addison-Wesley, 2003. p. 69. | |
| dc.relation.references | [13] J. N. Hilfiker and T. Tiwald, “Dielectric function modeling,” in Springer Series in Optical Sciences, pp. 115–153, Springer, 2018. | |
| dc.relation.references | [14] J. D. Jackson, Classical Electrodynamics. New York: Wiley, 3rd ed., 1999. | |
| dc.relation.references | [15] F. W. King, Hilbert Transforms, Volume 1. Encyclopedia of Mathematics and its Applications, Cambridge, UK: Cambridge University Press, 2009. | |
| dc.relation.references | [16] F. W. King, Hilbert Transforms, Volume 2. Encyclopedia of Mathematics and its Applications, Cambridge, UK: Cambridge University Press, 2009. | |
| dc.relation.references | [17] F. W. King, “Some basic properties of the hilbert transform,” in Hilbert Transforms, vol. vol. 2 of Encyclopedia of Mathematics and its Applications, ch. 4, pp. 145–251, Cambridge University Press, 2009. | |
| dc.relation.references | [18] F. W. King, “Linear systems and causality,” in Hilbert Transforms, vol. vol. 1 of Encyclopedia of Mathematics and its Applications, ch. 17, pp. 73–118, Cambridge University Press, 2009. | |
| dc.relation.references | [19] H. A. Kramers, “La diffusion de la lumiére par les atomes,” vol. 2, pp. 545–557, 1927. | |
| dc.relation.references | [20] R. de L. Krönig, “On the theory of dispersion of x-rays,” Journal of the Optical Society of America, vol. 12, pp. 547–557, 1926. | |
| dc.relation.references | [21] J. P. McKelvey, Física del Estado Sólido y de Semiconductores. México: Limusa Noriega Editores, 1996. | |
| dc.relation.references | [22] H. M. Nussenzveig, “Causality and dispersion relations,” 1972. | |
| dc.relation.references | [23] A. B. Pippard, Response and Stability. Cambridge: Cambridge University Press, 1985. | |
| dc.relation.references | [24] J. A. Reyes Vega, “Tópicos de óptica física y su implementación en la elipsometría,” 2019. Recuperado de: http://hdl.handle.net/11349/16114. | |
| dc.relation.references | [25] Schott AG, “Schott glass catalog,” 2014. p. 69. | |
| dc.relation.references | [26] Schott AG, “Optical glass - datasheet collection,” 2023. Recuperado de: https://www.schott. com/en-us/products/optical-glass-p1000267/downloads. | |
| dc.relation.references | [27] A. Srivastava, “Causality and passivity: from electromagnetism and network theory to metamaterials,” 2024. Department of Mechanical, Materials, and Aerospace Engineering, Illinois Institute of Technology, Chicago, IL, 60616 USA. | |
| dc.relation.references | [28] Unicoos, “Electromagnetic waves,” 2020. Recuperado de: https://www.unicoos.com/blog/ wp-content/uploads/2020/01/1024px-Electromagnetic_waves.png. | |
| dc.relation.references | [29] U. de Sevilla, “Oscilaciones amortiguadas y forzadas (cmr),” 2024. Recuperado de: https:// acortar.link/ghrxiy. | |
| dc.relation.references | [30] O. Stenzel, “Chapter 14,” in Light–Matter Interaction: A Crash Course for Students of Optics, Photonics and Materials Science, ch. 14, Cham: Springer, 2021. | |
| dc.relation.references | [31] J. S. Toll, “Causality and the dispersion relation: Logical foundations,” Physical Review, vol. 104, pp. 1453–1460, dec 1956. Received January 31, 1956; revised manuscript received August 24, 1956. | |
| dc.relation.references | [32] M. R. Spiegel, S. Lipschutz, J. J. Schiller, and D. Spellman, Variable Compleja. Schaum’s Outline Series, New York: McGraw-Hill Education, 2nd ed., 2013. Revisión técnica: Natella Antonyan, Instituto Tecnológico y de Estudios Superiores de Monterrey | |
| dc.relation.references | [33] C. F. Bohren, "What did kramers and Krönig do and how did they do it?," European Journal of Physics, vol. 31, no. 3, pp. 573–582, 2010. | |
| dc.relation.references | [34] A. T. Cantero, Óptica electromagnética. Alqua.org, 2004. | |
| dc.relation.references | [35] H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications. Chichester, England: John Wiley & Sons, 1st ed., 2007. | |
| dc.relation.references | [36] A. R. Forouhi and I. Bloomer, "Optical dispersion relations for amorphous semiconductors and amorphous dielectrics," Physical Review B, vol. 34, no. 10, pp. 7018–7026, 1986. | |
| dc.relation.references | [37] A. R. Forouhi and I. Bloomer, "Optical properties of crystalline semiconductors and dielectrics," Physical Review B, vol. 38, no. 3, pp. 1865–1874, 1988. | |
| dc.relation.references | [38] A. E. Conrady, Applied Optics and Optical Design. New York: Dover Publications, 1960. Introducción al modelo de Conrady para la dispersión en materiales transparentes como vidrios e aislantes. | |
| dc.relation.references | [39] C. Briot, Essais sur la théorie mathématique de la lumiére. Paris: Mallet-Bachelier, 1864. Modelo de dispersión basado en la serie de Laurent, aplicado al cuarzo y materiales ópticos. | |
| dc.relation.references | [40] S. AG, Optical Glass Catalog. 1990. Catálogo técnico que describe el modelo de dispersión de Schott y su aplicación en vidrios ópticos. | |
| dc.relation.references | [41] C. Tanguy, “Optical dispersion by wannier excitons,” Physical Review Letters, vol. 75, no. 22, pp. 4090–4093, 1995. Estudio sobre la dispersión óptica en semiconductores mediante excitones de Wannier. | |
| dc.relation.references | [42] R. Zimmermann, “Continuum contributions to complex susceptibility,” Japanese Journal of Applied Physics Supplement, vol. 34, no. 1, pp. 228–230, 1995. Estudio complementario sobre las contribuciones continuas en sistemas excitónicos. | |
| dc.relation.references | [43] O. Madelung, Introduction to Solid-State Theory. Berlin: Springer, 1981. Fundamentos teóricos sobre la física del estado sólido, aplicados a modelos de dispersión óptica. | |
| dc.relation.references | [44] M. Cardona, Modulation Spectroscopy: Solid State Physics Supplement. New York: Academic Press, 1969. Discusión sobre métodos espectroscópicos aplicados a semiconductores y dispersión óptica. | |
| dc.relation.references | [45] R. J. Elliott, “Intensity of optical absorption by excitons,” Physical Review, vol. 108, no. 6, pp. 1384–1389, 1957. Trabajo pionero sobre los efectos excitónicos en semiconductores, relevante para el modelo de Tanguy. | |
| dc.rights.acceso | Abierto (Texto Completo) | |
| dc.rights.accessrights | OpenAccess | |
| dc.subject | Kramers-Krönig | |
| dc.subject | Transformaciones de Hilbert | |
| dc.subject | Respuesta óptica | |
| dc.subject | Teoría electromagnética | |
| dc.subject.keyword | Kramers-Krönig | |
| dc.subject.keyword | Hilbert transformations | |
| dc.subject.keyword | Optical response | |
| dc.subject.keyword | Electromagnetic theory | |
| dc.subject.lemb | Licenciatura en Física -- Tesis y disertaciones académicas | |
| dc.title | Estudio de la respuesta óptica de sólidos mediante las Transformaciones de Hilbert: Aplicación de las reglas de Kramers-Krönig | |
| dc.title.titleenglish | Study of the optical response of solids through Hilbert transformations: Application of the Kramers-Krönig relations | |
| dc.type | bachelorThesis | |
| dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
| dc.type.degree | Pasantía | |
| dc.type.driver | info:eu-repo/semantics/bachelorThesis |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 7 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:
