Regulación de tensión en convertidores Dc-Dc clásicos de segundo orden mediante la aplicación del control óptimo inverso con acción proporcional-integral
Fecha
Autor corporativo
Título de la revista
ISSN de la revista
Título del volumen
Editor
Compartir
Director
Altmetric
Resumen
This article addresses the problem regarding power regulation in classical DC-DC second-order converters by means of a nonlinear control technique based on inverse optimal control theory. There are few papers that describe inverse optimal control for DC-DC converters in the literature. Therefore, this study constitutes a contribution to the state of the art on nonlinear control techniques for DC-DC converters. In this vein, the main objective of this research was to implement inverse optimal control theory with integral action to the typical DC-DC conversion topologies for power regulation, regardless of the load variations and the application. The converter topologies analyzed were: (i) Buck; (ii) Boost; (iii) Buck-Boost; and (iv) Non-Inverting Buck-Boost. A dynamical model was proposed as a function of the state variable error, which helped to demonstrate that the inverse optimal control law with proportional-integral action implemented in the different converters ensures stability in each closed-loop operation via Lyapunov’s theorem. Numerical validations were carried out by means of simulations in the PSIM software, comparing the established control law, the passivity-based PI control law, and an open-loop control. As a conclusion, it was possible to determine that the proposed model is easier to implement and has a better dynamical behavior than the PI-PBC, ensuring asymptotic stability from the closed-loop control design.