Estudio del comportamiento de un fluido multifásico mediante análisis por elementos finitos para una t de mezcla en una planta térmica
| dc.contributor.advisor | Muñoz Bello, Nicolás Gabriel | |
| dc.contributor.author | Sabogal Oviedo, Julián Alejandro | |
| dc.contributor.author | Bravo Suárez , Juan Camilo | |
| dc.date.accessioned | 2025-05-27T02:22:48Z | |
| dc.date.available | 2025-05-27T02:22:48Z | |
| dc.date.created | 2025-05-08 | |
| dc.description | Este trabajo de grado tiene como propósito estudiar el comportamiento de un fluido multifásico al unirse en una T de mezclado de una planta térmica mediante análisis por elementos finitos, donde se produce la mezcla de agua en estado líquido y de aire. Para este estudio se utilizan herramientas computacionales especializadas que sirven para evaluar tanto el comportamiento del fluido multifásico como los gradientes térmicos generados en el componente. El desarrollo de este documento se estructura a través de las siguientes etapas. Inicialmente, se realiza una exhaustiva revisión bibliográfica sobre análisis por elementos finitos, especialmente aplicados a T de mezclado, con énfasis en análisis térmicos y de fluidos. Posteriormente, se define un caso de estudio específico basado en condiciones reales de operación para una mezcla agua-aire, estableciendo los parámetros operativos que delimitaron el alcance del proyecto. El diseño y modelado de la T de mezclado para la planta térmica se realiza aplicando las normas ASME B16.9, ASME B31.1 y B36.10, utilizando Autodesk Inventor Professional 2024. El modelo se exporta a AnsysWorkbench para realizar los análisis correspondientes. Se ejecutan las simulaciones mediante el módulo CFD para estudiar el comportamiento de la mezcla de fluidos, y se emplea el módulo Ansys Fluent para evaluar los gradientes térmicos a estudiar. El análisis de resultados se centra en el comportamiento de los fluidos cuándo se mezclan, para identificar las variaciones del flujo y sus gradientes térmicos, lo que proporciona información valiosa para la comprensión del comportamiento termomecánico de la T de mezclado con relación a su integridad en aplicaciones de plantas térmicas. | |
| dc.description.abstract | The purpose of this thesis is to study the behavior of a multiphase fluid when joined in a mixing tee of a thermal plant using finite element analysis, where the mixing of water in liquid state and air occurs. For this study, specialized computational tools are used to evaluate both the behavior of the multiphase fluid and the thermal gradients generated in the component. The development of this document is structured through the following stages: initially, an exhaustive bibliographic review is carried out on finite element analysis especially applied to mixing tees, with an emphasis on thermal and fluid analysis. Subsequently, a specific case study is defined based on real operating conditions for a water-air mixture, establishing the operating parameters that delimited the scope of the project. The design and modeling of the mixing tee for the thermal plant is carried out applying ASME B16.9, ASME B31.1 and B36.10 standards, using Autodesk Inventor Professional 2024. The model is exported to Ansys Workbench to perform the corresponding analyses. Simulations are run using the CFD module to study the behavior of the fluid mixture, and the Ansys Fluent module is used to evaluate the thermal gradients under study. The results analysis focuses on the behavior of the fluids when mixed, identifying flow variations and their thermal gradients. This provides valuable information for understanding the thermomechanical behavior of the mixing tee in relation to its integrity in thermal power plant applications. | |
| dc.format.mimetype | ||
| dc.identifier.uri | http://hdl.handle.net/11349/95708 | |
| dc.relation.references | Ayhan, H., & Sökmen, C. N. (2012). CFD modeling of thermal mixing in a Tjunction geometry using les model. Nuclear Engineering and Design, 253, 183–191. https://doi.org/10.1016/j.nucengdes.2012.08.010 | |
| dc.relation.references | Gauder, P., Karthick Selvam, P., Kulenovic, R., & Laurien, E. (2016). Large eddy simulation studies on the influence of turbulent inlet conditions on the flow behavior in a mixing tee. Nuclear Engineering and Design, 298, 51–63. https://doi.org/10.1016/j.nucengdes.2015.12.001 | |
| dc.relation.references | Grbčić, L., Kranjčević, L., Lučin, I., & Sikirica, A. (2021). Large Eddy Simulation of turbulent fluid mixing in double-tee junctions. Ain Shams Engineering Journal, 12(1), 789–797. https://doi.org/10.1016/j.asej.2020.06.004 | |
| dc.relation.references | Jhung, M. J. (2013). Assessment of thermal fatigue in mixing tee by FSI analysis. Nuclear Engineering and Technology, 45(1), 99–106. https://doi.org/10.5516/NET.09.2012.026 | |
| dc.relation.references | Kamaya, M., & Nakamura, A. (2011). Thermal stress analysis for fatigue damage evaluation at a mixing tee. Nuclear Engineering and Design, 241(8), 2674–2687. https://doi.org/10.1016/j.nucengdes.2011.05.029 | |
| dc.relation.references | Li, S. Q., Wang, P., & Lu, T. (2015). CFD based approach for modeling steamwater direct contact condensation in subcooled water flow in a tee junction. Progress in Nuclear Energy, 85, 729–746. https://doi.org/10.1016/j.pnucene.2015.09.007 | |
| dc.relation.references | Naik-Nimbalkar, V. S., Patwardhan, A. W., Banerjee, I., Padmakumar, G., & Vaidyanathan, G. (2010). Thermal mixing in T-junctions. Chemical Engineering Science, 65(22), 5901–5911. https://doi.org/https://doi.org/10.1016/j.ces.2010.08.017 | |
| dc.relation.references | Nuruzzaman, M., Pao, W., Ya, H., Islam, M. R., Adar, M. A., & Ejaz, F. (2021). Simulation analysis of thermal mixing characteristics of fluids flowing through a converging t- junction. CFD Letters, 13(9), 28–41. https://doi.org/10.37934/cfdl.13.9.2841 | |
| dc.relation.references | Rimza, S., Chaudhuri, P., Yadav, B. K., & Mukherjee, S. (2023). A case study of thermal mixing behavior of hot and cold fluid in T-junction with/without mixing jets. Case Studies in Thermal Engineering, 50. https://doi.org/10.1016/j.csite.2023.103417 | |
| dc.relation.references | Su, Z. C., Inaba, K., Karmakar, A., & Das, A. (2021). Fluid structure interaction simulation of thermal striping in a t-junction pipe made of functionally graded material. International Journal of Mechanics and Materials in Design, 18, 98 461–473. https://api.semanticscholar.org/CorpusID:239566217 | |
| dc.relation.references | Utanohara, Y., Nakamura, A., Miyoshi, K., & Kasahara, N. (2016). Numerical simulation of long-period fluid temperature fluctuation at a mixing tee for the thermal fatigue problem. Nuclear Engineering and Design, 305, 639–652. https://doi.org/10.1016/j.nucengdes.2016.06.024 | |
| dc.relation.references | Zhang, J. X., Bai, Y. Q., Kang, J., & Wu, X. (2017). Failure analysis and erosion prediction of tee junction in fracturing operation. Journal of Loss Prevention in the Process Industries, 46, 94–107. https://doi.org/https://doi.org/10.1016/j.jlp.2017.01.023 | |
| dc.relation.references | Zhou, M., Li, J., Qiu, Z., & Zhang, N. (2024). Numerical investigation of thermal-mixing characteristics at vertically oriented T-junction pipelines. International Journal of Heat and Fluid Flow, 106,109292. https://doi.org/https://doi.org/10.1016/j.ijheatfluidflow.2024.109292 | |
| dc.relation.references | Braillard, Olivier, Richard Howard, Kristian Angele, Afaque Shams, and Nicolas Edh. 2018. “Thermal Mixing in a T-Junction: Novel CFD-Grade Measurements of the Fluctuating Temperature in the Solid Wall.” Nuclear Engineering and Design 330:377–90. doi: 10.1016/j.nucengdes.2018.02.020. | |
| dc.relation.references | Hu, Lin Wen, and Mujid S. Kazimi. 2006. “LES Benchmark Study of High Cycle Temperature Fluctuations Caused by Thermal Striping in a Mixing Tee.” International Journal of Heat and Fluid Flow 27(1):54–64. doi: 10.1016/j.ijheatfluidflow.2005.08.001. | |
| dc.relation.references | Kang, Dong Gu, Hanbee Na, and Chi Young Lee. 2019. “Detached Eddy Simulation of Turbulent and Thermal Mixing in a T-Junction.” Annals of Nuclear Energy 124:245–56. doi: 10.1016/j.anucene.2018.10.006 | |
| dc.relation.references | Kristian, Angele, Howard Richard, Veber Pascal, Olivier Braillard, Annalisa Manera, and Victor Petrov. 2024. “An NEA/OECD Benchmark-Experiment for the Validation of CFD for Mixing and Thermal Fatigue in T-Junction Dead Leg Flows.” Nuclear Engineering and Design 417. doi: 10.1016/j.nucengdes.2023.112813. | |
| dc.relation.references | Lu, T., D. Attinger, and S. M. Liu. 2013. “Large-Eddy Simulations of Velocity and Temperature Fluctuations in Hot and Cold Fluids Mixing in a Tee Junction with an Upstream Straight or Elbow Main Pipe.” Nuclear Engineering and Design 263:32–41. doi: 10.1016/j.nucengdes.2013.04.002 | |
| dc.relation.references | Lu, Tao, Yue Zhang, Kaili Xu, Yinqiang Chen, and Jinqiang Zou. 2019. “Investigation on Mixing Behavior and Heat Transfer in a Horizontally Arranged Tee Pipe under Turbulent Mixing of Hot and Cold Fluid.” Annals of Nuclear Energy 127:139–55. doi: 10.1016/j.anucene.2018.11.040. | |
| dc.relation.references | Wang, Yongwei, Tao Lu, and Kuisheng Wang. 2012. “Effect of Particle Diameter of Porous Media on Flow and Heat Transfer in a Mixing Tee.” Annals of Nuclear Energy 49:122–30. doi: 10.1016/j.anucene.2012.05.031 | |
| dc.relation.references | GILBERT WELSFORD JR. (2024, July 23). Nueve aspectos cruciales para el diseño de un sistema de tuberías de proceso. Plant Engineering. https://www.plantengineering.com/articles/nine-crucialaspects-for-designing-a-process- piping-system/ | |
| dc.relation.references | Metzner, K.-J., & Wilke, U. (2005). European THERFAT project—thermal fatigue evaluation of piping system “Tee”-connections. Nuclear Engineering and Design, 235(2), 473–484. https://doi.org/https://doi.org/10.1016/j.nucengdes.2004.08.041 | |
| dc.relation.references | American Society of Mechanical Engineers. (2004). By authority of the United States of America legally binding document | |
| dc.relation.references | Swartz, B., et al. (2002). LANL engineering standards manual STD-342- 100 ASME B31.3 process piping guide record of revisions (AS REF-3) document history. Initial issue in Section 200 of LANL Engineering Manual Mechanical Chapter, based on SRS guide | |
| dc.relation.references | Petroleum and Natural Gas Industries. (2022). Drilling and production equipment— Wellhead and tree equipment. Standards.iTeh.ai | |
| dc.relation.references | ASTM International. (2005). Standard test method for determining specific heat capacity by differential scanning calorimetry 1. https://doi.org/10.1520/E1269- 05 | |
| dc.relation.references | American Petroleum Institute. (2016). Piping inspection code: In-service 100 inspection, rating, repair, and alteration of piping systems | |
| dc.relation.references | ASME. (2014). ASME B31G-2012 Manual para la determinación de la resistencia remanente de tuberías corroídas. Retrieved from http://cstools.asme.org/ | |
| dc.relation.references | ASTM International. (2015). Standard terminology relating to wear and erosion (ASTM G40-15). | |
| dc.relation.references | ASTM International. (2013). Standard test method for conducting erosion tests by solid particle impingement using gas jets (ASTM G76-13) | |
| dc.relation.references | ASME. (2023). Boiler and pressure vessel code, Section VIII: Rules for construction of pressure vessels | |
| dc.relation.references | ASTM International. (2019). Standard specification for piping fittings of wrought carbon steel and alloy steel for moderate and high temperature service (ASTM A234/A234M-19) | |
| dc.relation.references | International Organization for Standardization. (2010). ISO 21457:2010 - Petroleum, petrochemical, and natural gas industries—Materials selection and corrosion control for oil and gas production systems | |
| dc.relation.references | NACE International. (2015). Materials for use in H2S-containing environments in oil and gas production (NACE MR0175/ISO 15156) | |
| dc.relation.references | ASTM International. (2020). Standard test methods for specific heat of liquids and solids (ASTM D5965-20) | |
| dc.relation.references | Chenqi, T., Zhongjun, Y., Jia, F., Juntan, Y., & Hao, J. (2025). Temperature field analysis of an air-water composite cooling high-speed generator. Case Studies in Thermal Engineering, 65. https://doi.org/10.1016/j.csite.2024.105646 | |
| dc.relation.references | Geete, A., & Khandwawala, A. I. (2013). Thermodynamic analysis of 120 MW thermal power plant with combined effect of constant inlet pressure (124.61 bar) 101 and different inlet temperatures. Case Studies in Thermal Engineering, 1(1), 17– 25. https://doi.org/10.1016/j.csite.2013.08.001 | |
| dc.relation.references | Optimization of Operational Temperature, Pressure, Mass Flow Rate and Power Output of a Steam Thermal Plant for Performance Improvement. (n.d.). www.ijrpr.com | |
| dc.relation.references | Power Piping ASME Code for Pressure Piping, B31. (2024) | |
| dc.relation.references | Factory-Made Wrought Buttwelding Fittings. ASME B16.9. (2003) | |
| dc.relation.references | Códigos y normas para tuberías de procesos industriales — Soluciones industriales SEFA. (n.d.). Retrieved March 23, 2025, from https://sefasolutions.com/newsletterarticles/2021/2/24/process-piping-standards | |
| dc.rights.acceso | Abierto (Texto Completo) | |
| dc.rights.accessrights | OpenAccess | |
| dc.subject | Tee de mezcla | |
| dc.subject | Fluido multifásico | |
| dc.subject | Gradiente térmico | |
| dc.subject | CFD | |
| dc.subject | Elementos finitos | |
| dc.subject | Planta térmica | |
| dc.subject.keyword | Mixing tee | |
| dc.subject.keyword | Multiphase fluid | |
| dc.subject.keyword | Thermal gradient | |
| dc.subject.keyword | CFD | |
| dc.subject.keyword | Finite elements | |
| dc.subject.keyword | Thermal power plant | |
| dc.subject.lemb | Ingeniería Mecánica -- Tesis y disertaciones académicas | |
| dc.subject.lemb | Flujo multifásico | |
| dc.subject.lemb | Plantas térmicas | |
| dc.subject.lemb | Fluidos | |
| dc.subject.lemb | Ingeniería Mecánica | |
| dc.title | Estudio del comportamiento de un fluido multifásico mediante análisis por elementos finitos para una t de mezcla en una planta térmica | |
| dc.title.titleenglish | Study of multiphase fluid behavior using finite element analysis for a mixing tee in a thermal plant | |
| dc.type | bachelorThesis | |
| dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
| dc.type.degree | Monografía |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 7 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:
