Estudio del comportamiento de un fluido multifásico mediante análisis por elementos finitos para una t de mezcla en una planta térmica

dc.contributor.advisorMuñoz Bello, Nicolás Gabriel
dc.contributor.authorSabogal Oviedo, Julián Alejandro
dc.contributor.authorBravo Suárez , Juan Camilo
dc.date.accessioned2025-05-27T02:22:48Z
dc.date.available2025-05-27T02:22:48Z
dc.date.created2025-05-08
dc.descriptionEste trabajo de grado tiene como propósito estudiar el comportamiento de un fluido multifásico al unirse en una T de mezclado de una planta térmica mediante análisis por elementos finitos, donde se produce la mezcla de agua en estado líquido y de aire. Para este estudio se utilizan herramientas computacionales especializadas que sirven para evaluar tanto el comportamiento del fluido multifásico como los gradientes térmicos generados en el componente. El desarrollo de este documento se estructura a través de las siguientes etapas. Inicialmente, se realiza una exhaustiva revisión bibliográfica sobre análisis por elementos finitos, especialmente aplicados a T de mezclado, con énfasis en análisis térmicos y de fluidos. Posteriormente, se define un caso de estudio específico basado en condiciones reales de operación para una mezcla agua-aire, estableciendo los parámetros operativos que delimitaron el alcance del proyecto. El diseño y modelado de la T de mezclado para la planta térmica se realiza aplicando las normas ASME B16.9, ASME B31.1 y B36.10, utilizando Autodesk Inventor Professional 2024. El modelo se exporta a AnsysWorkbench para realizar los análisis correspondientes. Se ejecutan las simulaciones mediante el módulo CFD para estudiar el comportamiento de la mezcla de fluidos, y se emplea el módulo Ansys Fluent para evaluar los gradientes térmicos a estudiar. El análisis de resultados se centra en el comportamiento de los fluidos cuándo se mezclan, para identificar las variaciones del flujo y sus gradientes térmicos, lo que proporciona información valiosa para la comprensión del comportamiento termomecánico de la T de mezclado con relación a su integridad en aplicaciones de plantas térmicas.
dc.description.abstractThe purpose of this thesis is to study the behavior of a multiphase fluid when joined in a mixing tee of a thermal plant using finite element analysis, where the mixing of water in liquid state and air occurs. For this study, specialized computational tools are used to evaluate both the behavior of the multiphase fluid and the thermal gradients generated in the component. The development of this document is structured through the following stages: initially, an exhaustive bibliographic review is carried out on finite element analysis especially applied to mixing tees, with an emphasis on thermal and fluid analysis. Subsequently, a specific case study is defined based on real operating conditions for a water-air mixture, establishing the operating parameters that delimited the scope of the project. The design and modeling of the mixing tee for the thermal plant is carried out applying ASME B16.9, ASME B31.1 and B36.10 standards, using Autodesk Inventor Professional 2024. The model is exported to Ansys Workbench to perform the corresponding analyses. Simulations are run using the CFD module to study the behavior of the fluid mixture, and the Ansys Fluent module is used to evaluate the thermal gradients under study. The results analysis focuses on the behavior of the fluids when mixed, identifying flow variations and their thermal gradients. This provides valuable information for understanding the thermomechanical behavior of the mixing tee in relation to its integrity in thermal power plant applications.
dc.format.mimetypepdf
dc.identifier.urihttp://hdl.handle.net/11349/95708
dc.relation.referencesAyhan, H., & Sökmen, C. N. (2012). CFD modeling of thermal mixing in a Tjunction geometry using les model. Nuclear Engineering and Design, 253, 183–191. https://doi.org/10.1016/j.nucengdes.2012.08.010
dc.relation.referencesGauder, P., Karthick Selvam, P., Kulenovic, R., & Laurien, E. (2016). Large eddy simulation studies on the influence of turbulent inlet conditions on the flow behavior in a mixing tee. Nuclear Engineering and Design, 298, 51–63. https://doi.org/10.1016/j.nucengdes.2015.12.001
dc.relation.referencesGrbčić, L., Kranjčević, L., Lučin, I., & Sikirica, A. (2021). Large Eddy Simulation of turbulent fluid mixing in double-tee junctions. Ain Shams Engineering Journal, 12(1), 789–797. https://doi.org/10.1016/j.asej.2020.06.004
dc.relation.referencesJhung, M. J. (2013). Assessment of thermal fatigue in mixing tee by FSI analysis. Nuclear Engineering and Technology, 45(1), 99–106. https://doi.org/10.5516/NET.09.2012.026
dc.relation.referencesKamaya, M., & Nakamura, A. (2011). Thermal stress analysis for fatigue damage evaluation at a mixing tee. Nuclear Engineering and Design, 241(8), 2674–2687. https://doi.org/10.1016/j.nucengdes.2011.05.029
dc.relation.referencesLi, S. Q., Wang, P., & Lu, T. (2015). CFD based approach for modeling steamwater direct contact condensation in subcooled water flow in a tee junction. Progress in Nuclear Energy, 85, 729–746. https://doi.org/10.1016/j.pnucene.2015.09.007
dc.relation.referencesNaik-Nimbalkar, V. S., Patwardhan, A. W., Banerjee, I., Padmakumar, G., & Vaidyanathan, G. (2010). Thermal mixing in T-junctions. Chemical Engineering Science, 65(22), 5901–5911. https://doi.org/https://doi.org/10.1016/j.ces.2010.08.017
dc.relation.referencesNuruzzaman, M., Pao, W., Ya, H., Islam, M. R., Adar, M. A., & Ejaz, F. (2021). Simulation analysis of thermal mixing characteristics of fluids flowing through a converging t- junction. CFD Letters, 13(9), 28–41. https://doi.org/10.37934/cfdl.13.9.2841
dc.relation.referencesRimza, S., Chaudhuri, P., Yadav, B. K., & Mukherjee, S. (2023). A case study of thermal mixing behavior of hot and cold fluid in T-junction with/without mixing jets. Case Studies in Thermal Engineering, 50. https://doi.org/10.1016/j.csite.2023.103417
dc.relation.referencesSu, Z. C., Inaba, K., Karmakar, A., & Das, A. (2021). Fluid structure interaction simulation of thermal striping in a t-junction pipe made of functionally graded material. International Journal of Mechanics and Materials in Design, 18, 98 461–473. https://api.semanticscholar.org/CorpusID:239566217
dc.relation.referencesUtanohara, Y., Nakamura, A., Miyoshi, K., & Kasahara, N. (2016). Numerical simulation of long-period fluid temperature fluctuation at a mixing tee for the thermal fatigue problem. Nuclear Engineering and Design, 305, 639–652. https://doi.org/10.1016/j.nucengdes.2016.06.024
dc.relation.referencesZhang, J. X., Bai, Y. Q., Kang, J., & Wu, X. (2017). Failure analysis and erosion prediction of tee junction in fracturing operation. Journal of Loss Prevention in the Process Industries, 46, 94–107. https://doi.org/https://doi.org/10.1016/j.jlp.2017.01.023
dc.relation.referencesZhou, M., Li, J., Qiu, Z., & Zhang, N. (2024). Numerical investigation of thermal-mixing characteristics at vertically oriented T-junction pipelines. International Journal of Heat and Fluid Flow, 106,109292. https://doi.org/https://doi.org/10.1016/j.ijheatfluidflow.2024.109292
dc.relation.referencesBraillard, Olivier, Richard Howard, Kristian Angele, Afaque Shams, and Nicolas Edh. 2018. “Thermal Mixing in a T-Junction: Novel CFD-Grade Measurements of the Fluctuating Temperature in the Solid Wall.” Nuclear Engineering and Design 330:377–90. doi: 10.1016/j.nucengdes.2018.02.020.
dc.relation.referencesHu, Lin Wen, and Mujid S. Kazimi. 2006. “LES Benchmark Study of High Cycle Temperature Fluctuations Caused by Thermal Striping in a Mixing Tee.” International Journal of Heat and Fluid Flow 27(1):54–64. doi: 10.1016/j.ijheatfluidflow.2005.08.001.
dc.relation.referencesKang, Dong Gu, Hanbee Na, and Chi Young Lee. 2019. “Detached Eddy Simulation of Turbulent and Thermal Mixing in a T-Junction.” Annals of Nuclear Energy 124:245–56. doi: 10.1016/j.anucene.2018.10.006
dc.relation.referencesKristian, Angele, Howard Richard, Veber Pascal, Olivier Braillard, Annalisa Manera, and Victor Petrov. 2024. “An NEA/OECD Benchmark-Experiment for the Validation of CFD for Mixing and Thermal Fatigue in T-Junction Dead Leg Flows.” Nuclear Engineering and Design 417. doi: 10.1016/j.nucengdes.2023.112813.
dc.relation.referencesLu, T., D. Attinger, and S. M. Liu. 2013. “Large-Eddy Simulations of Velocity and Temperature Fluctuations in Hot and Cold Fluids Mixing in a Tee Junction with an Upstream Straight or Elbow Main Pipe.” Nuclear Engineering and Design 263:32–41. doi: 10.1016/j.nucengdes.2013.04.002
dc.relation.referencesLu, Tao, Yue Zhang, Kaili Xu, Yinqiang Chen, and Jinqiang Zou. 2019. “Investigation on Mixing Behavior and Heat Transfer in a Horizontally Arranged Tee Pipe under Turbulent Mixing of Hot and Cold Fluid.” Annals of Nuclear Energy 127:139–55. doi: 10.1016/j.anucene.2018.11.040.
dc.relation.referencesWang, Yongwei, Tao Lu, and Kuisheng Wang. 2012. “Effect of Particle Diameter of Porous Media on Flow and Heat Transfer in a Mixing Tee.” Annals of Nuclear Energy 49:122–30. doi: 10.1016/j.anucene.2012.05.031
dc.relation.referencesGILBERT WELSFORD JR. (2024, July 23). Nueve aspectos cruciales para el diseño de un sistema de tuberías de proceso. Plant Engineering. https://www.plantengineering.com/articles/nine-crucialaspects-for-designing-a-process- piping-system/
dc.relation.referencesMetzner, K.-J., & Wilke, U. (2005). European THERFAT project—thermal fatigue evaluation of piping system “Tee”-connections. Nuclear Engineering and Design, 235(2), 473–484. https://doi.org/https://doi.org/10.1016/j.nucengdes.2004.08.041
dc.relation.referencesAmerican Society of Mechanical Engineers. (2004). By authority of the United States of America legally binding document
dc.relation.referencesSwartz, B., et al. (2002). LANL engineering standards manual STD-342- 100 ASME B31.3 process piping guide record of revisions (AS REF-3) document history. Initial issue in Section 200 of LANL Engineering Manual Mechanical Chapter, based on SRS guide
dc.relation.referencesPetroleum and Natural Gas Industries. (2022). Drilling and production equipment— Wellhead and tree equipment. Standards.iTeh.ai
dc.relation.referencesASTM International. (2005). Standard test method for determining specific heat capacity by differential scanning calorimetry 1. https://doi.org/10.1520/E1269- 05
dc.relation.referencesAmerican Petroleum Institute. (2016). Piping inspection code: In-service 100 inspection, rating, repair, and alteration of piping systems
dc.relation.referencesASME. (2014). ASME B31G-2012 Manual para la determinación de la resistencia remanente de tuberías corroídas. Retrieved from http://cstools.asme.org/
dc.relation.referencesASTM International. (2015). Standard terminology relating to wear and erosion (ASTM G40-15).
dc.relation.referencesASTM International. (2013). Standard test method for conducting erosion tests by solid particle impingement using gas jets (ASTM G76-13)
dc.relation.referencesASME. (2023). Boiler and pressure vessel code, Section VIII: Rules for construction of pressure vessels
dc.relation.referencesASTM International. (2019). Standard specification for piping fittings of wrought carbon steel and alloy steel for moderate and high temperature service (ASTM A234/A234M-19)
dc.relation.referencesInternational Organization for Standardization. (2010). ISO 21457:2010 - Petroleum, petrochemical, and natural gas industries—Materials selection and corrosion control for oil and gas production systems
dc.relation.referencesNACE International. (2015). Materials for use in H2S-containing environments in oil and gas production (NACE MR0175/ISO 15156)
dc.relation.referencesASTM International. (2020). Standard test methods for specific heat of liquids and solids (ASTM D5965-20)
dc.relation.referencesChenqi, T., Zhongjun, Y., Jia, F., Juntan, Y., & Hao, J. (2025). Temperature field analysis of an air-water composite cooling high-speed generator. Case Studies in Thermal Engineering, 65. https://doi.org/10.1016/j.csite.2024.105646
dc.relation.referencesGeete, A., & Khandwawala, A. I. (2013). Thermodynamic analysis of 120 MW thermal power plant with combined effect of constant inlet pressure (124.61 bar) 101 and different inlet temperatures. Case Studies in Thermal Engineering, 1(1), 17– 25. https://doi.org/10.1016/j.csite.2013.08.001
dc.relation.referencesOptimization of Operational Temperature, Pressure, Mass Flow Rate and Power Output of a Steam Thermal Plant for Performance Improvement. (n.d.). www.ijrpr.com
dc.relation.referencesPower Piping ASME Code for Pressure Piping, B31. (2024)
dc.relation.referencesFactory-Made Wrought Buttwelding Fittings. ASME B16.9. (2003)
dc.relation.referencesCódigos y normas para tuberías de procesos industriales — Soluciones industriales SEFA. (n.d.). Retrieved March 23, 2025, from https://sefasolutions.com/newsletterarticles/2021/2/24/process-piping-standards
dc.rights.accesoAbierto (Texto Completo)
dc.rights.accessrightsOpenAccess
dc.subjectTee de mezcla
dc.subjectFluido multifásico
dc.subjectGradiente térmico
dc.subjectCFD
dc.subjectElementos finitos
dc.subjectPlanta térmica
dc.subject.keywordMixing tee
dc.subject.keywordMultiphase fluid
dc.subject.keywordThermal gradient
dc.subject.keywordCFD
dc.subject.keywordFinite elements
dc.subject.keywordThermal power plant
dc.subject.lembIngeniería Mecánica -- Tesis y disertaciones académicas
dc.subject.lembFlujo multifásico
dc.subject.lembPlantas térmicas
dc.subject.lembFluidos
dc.subject.lembIngeniería Mecánica
dc.titleEstudio del comportamiento de un fluido multifásico mediante análisis por elementos finitos para una t de mezcla en una planta térmica
dc.title.titleenglishStudy of multiphase fluid behavior using finite element analysis for a mixing tee in a thermal plant
dc.typebachelorThesis
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.degreeMonografía

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
SabogalOviedoJulianAlejandro2025.pdf
Tamaño:
5.15 MB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
Formato Licencia de Uso y Publicación.pdf
Tamaño:
822.47 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
7 KB
Formato:
Item-specific license agreed upon to submission
Descripción: