Estudio del efecto de la temperatura en la carbonización hidrotermal de la pulpa del café arábigo
| dc.contributor.advisor | Romero Ariza, Carlos Andrés | |
| dc.contributor.author | Camacho Rangel, Kevin Yovanni | |
| dc.contributor.author | Pinzón Avila, Marlon Kleyn | |
| dc.date.accessioned | 2025-03-05T21:31:30Z | |
| dc.date.available | 2025-03-05T21:31:30Z | |
| dc.date.created | 2025-02-05 | |
| dc.description | La presente investigación se concentró en la evaluación del proceso de carbonización hidrotermal aplicado a la pulpa de café arábigo, esto con el propósito de analizar su viabilidad como combustible sólido sostenible. La metodología de desarrollo de esta investigación consistió en el planteamiento inicial del diseño experimental, donde se varió como parámetro fundamental la temperatura, y se mantuvieron constantes variables como los tiempos de residencia y a una relación de agua biomasa determinada experimentalmente, con el fin de determinar la influencia de la temperatura durante el proceso y cómo se ve reflejado esto en las propiedades del hidrocarbón obtenido. Para este proceso, se prepararon muestras de la pulpa de café, las cuales se sometieron a un proceso de limpieza, estas muestras luego fueron procesadas en un reactor presurizado bajo condiciones controladas entre 180 °C a 260 °C a una presión autógena. El proceso metodológico se dividió fundamentalmente en tres tiempos o fases principales, la preparación de la materia prima, configuración y operación del reactor y la separación de los productos generados. Los análisis realizados posteriormente incluyeron la caracterización del hidrocarbón y la materia prima, mediante análisis próximo, y pruebas de densidad energética y poder calorífico superior (PCS). Dentro de los resultados obtenidos se puedo inferir que un aumento de la temperatura reduce el rendimiento másico del carbón, pero mejora el contenido de carbono fijo y eleva considerablemente el poder calorífico superior (PCS). A temperaturas mayores también se pudo observar un menor contenido de material volátil, lo cual favorece su uso en aplicaciones energéticas. La investigación concluye que la carbonización hidrotermal es una tecnología prometedora para poder asignar un valor a los residuos proveniente del café como la pulpa, enseñando un hidrocarbón con propiedades energéticas con aplicaciones potenciales para la remediación ambiental, haciendo de esta una energía sostenible. | |
| dc.description.abstract | This research focused on the evaluation of the hydrothermal carbonization process applied to Arabica coffee pulp, with the aim of analyzing its viability as a sustainable solid fuel. The development methodology of this research consisted of the initial formulation of the experimental design, where temperature was varied as a fundamental parameter, and variables such as residence times and a water-biomass ratio were kept constant, determined experimentally, in order to determine the influence of temperature during the process and how this is reflected in the properties of the obtained hydrochar. For this process, samples of coffee pulp were prepared and subjected to a cleaning process; these samples were then processed in a pressurized reactor under controlled conditions between 180 °C to 260 °C at autogenous pressure. The methodological process was fundamentally divided into three main phases: the preparation of the raw material, configuration and operation of the reactor, and the separation of the generated products. Subsequent analyses included the characterization of the hydrochar and the raw material through proximate analysis, and tests for energy density and higher heating value (HHV). From the obtained results, it can be inferred that an increase in temperature reduces the mass yield of the char but improves the fixed carbon content and significantly raises the higher heating value (HHV). At higher temperatures, a lower volatile material content was also observed, which favors its use in energy applications. The research concludes that hydrothermal carbonization is a promising technology for assigning value to coffee waste such as pulp, producing hydrochar with potential applications for environmental remediation, making it a sustainable energy source. | |
| dc.format.mimetype | ||
| dc.identifier.uri | http://hdl.handle.net/11349/93316 | |
| dc.language.iso | spa | |
| dc.publisher | Universidad Distrital Francisco José de Caldas | |
| dc.relation.references | Alberto Lázaro Legarre Directores, D. J., Dña Isabel Suelves Laiglesia Daniel Torres Gamarra D Saúl de Llobet Cucalón Ponente, D. D., & Ma Isabel Ángeles Teruel Maicas, D. (2010). CATALIZADORES BASADOS EN HIERRO. | |
| dc.relation.references | Alvarez-Murillo, A., Libra, J. A., & Ro, K. S. (2022). Theoretical framework for estimating design reactor pressure for water-based hydrothermal carbonization (HTC) systems. Thermal Science and Engineering Progress, 30. https://doi.org/10.1016/j.tsep.2022.101241 | |
| dc.relation.references | Antero, R. V. P., Alves, A. C. F., de Oliveira, S. B., Ojala, S. A., & Brum, S. S. (2020). Challenges and alternatives for the adequacy of hydrothermal carbonization of lignocellulosic biomass in cleaner production systems: A review. En Journal of Cleaner Production (Vol. 252). Elsevier Ltd. https://doi.org/10.1016/j.jclepro.2019.119899 | |
| dc.relation.references | Barbosa-Cánovas, G. V, Hartel, R. W., Peleg, M., & Rahman, S. (s. f.). Food Engineering Series Series Editors Advisory Board. http://www.springer.com/series/5996 | |
| dc.relation.references | Buencafé, C., & Almacafé, P. (s. f.). EDITORIAL ESTRATEGIA ECONÓMICO Balance mundial cafetero Producción nacional Valor de la cosecha. | |
| dc.relation.references | Buranasiri, B., Lai, P. L., Woo, S., & Piboonrungroj, P. (2024). Impact of sustainable development goal orientation on supply chain collaboration and sustained competitive advantage: Evidence from the tea and coffee industry. Asian Journal of Shipping and Logistics. https://doi.org/10.1016/j.ajsl.2024.01.004 | |
| dc.relation.references | Cärdenas Gutiérrez, J. (s. f.). La Industria del Cafe " en Colombia*. https://doi.org/10.38141/10788/009-1-1 | |
| dc.relation.references | Centro Nacional de Investigaciones de Café, F. N. D. C. C. N. D. I. D. C. (2012, junio 25). WEBMASTER CENICAFE. PROCESAMIENTO; BENEFICIO; COSECHA. | |
| dc.relation.references | Chala, B., Oechsner, H., Latif, S., & Müller, J. (2018). Biogas potential of coffee processing waste in Ethiopia. Sustainability (Switzerland), 10(8). https://doi.org/10.3390/su10082678 | |
| dc.relation.references | Chu, Q., Xue, L., Singh, B. P., Yu, S., Müller, K., Wang, H., Feng, Y., Pan, G., Zheng, X., & Yang, L. (2020). Sewage sludge-derived hydrochar that inhibits ammonia volatilization, improves soil nitrogen retention and rice nitrogen utilization. Chemosphere, 245. https://doi.org/10.1016/j.chemosphere.2019.125558 | |
| dc.relation.references | De, D., Municipio, S., & Velez, D. E. (2004). REPUBLICA DE COLOMBIA. | |
| dc.relation.references | Demir, İ., & Doğan, C. (2020). Physical and Mechanical Properties of Hempcrete. The Open Waste Management Journal, 13(1), 26-34. https://doi.org/10.2174/1874312902014010026 | |
| dc.relation.references | Emilio, S., & Otálvaro, J. (2015). Estimación de la emisión y fijación de gases efecto invernadero en la producción de café en el departamento de Antioquia. | |
| dc.relation.references | Enrique J. Martinez, J. Sánchez-Oneto, M. Belén Garcia, & J.R. Portela. (2008). 08.GasificacinBiomasa. ResearcheGate. | |
| dc.relation.references | Erdogan, E., Atila, B., Mumme, J., Reza, M. T., Toptas, A., Elibol, M., & Yanik, J. (2015). Characterization of products from hydrothermal carbonization of orange pomace including anaerobic digestibility of process liquor. Bioresource Technology, 196, 35-42. https://doi.org/10.1016/j.biortech.2015.06.115 | |
| dc.relation.references | FABIOLA RAMIREZ MADRIZ. (2022). TFIA Fabiola Ramírez Madriz. Ciudad Universitaria Rodrigo Facio, Costa Rica. | |
| dc.relation.references | Fan, H., Liao, J., Abass, O. K., Liu, L., Huang, X., Wei, L., Li, J., Xie, W., & Liu, C. (2019). Effects of compost characteristics on nutrient retention and simultaneous pollutant immobilization and degradation during co-composting process. Bioresource Technology, 275, 61-69. https://doi.org/10.1016/j.biortech.2018.12.049 | |
| dc.relation.references | Francois Le Goadec. (2021, marzo 5). El secado del café: 3 métodos. CHUAPA. | |
| dc.relation.references | Funke, A., & Ziegler, F. (2010). Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering. En Biofuels, Bioproducts and Biorefining (Vol. 4, Número 2, pp. 160-177). https://doi.org/10.1002/bbb.198 | |
| dc.relation.references | Garba, A. (s. f.). Biomass Conversion Technologies for Bioenergy Generation: An Introduction. www.intechopen.com | |
| dc.relation.references | Genanaw, W., Kanno, G. G., Derese, D., & Aregu, M. B. (2021). Effect of Wastewater Discharge From Coffee Processing Plant on River Water Quality, Sidama Region, South Ethiopia. Environmental Health Insights, 15. https://doi.org/10.1177/11786302211061047 | |
| dc.relation.references | Gilberto Andrés Vargas Ortega. (2022). “SISTEMA DE CONTROL DE MANUFACTURA Y GESTIÓN DE PRODUCCIÓN DEL BOCADILLO (BOCATA) POR MEDIO DE UN PROCESO DE AUTOMATIZACIÓN E INSTRUMENTACIÓN INDUSTRIAL. | |
| dc.relation.references | Heidari, M., Salaudeen, S., Dutta, A., & Acharya, B. (2018). Effects of Process Water Recycling and Particle Sizes on Hydrothermal Carbonization of Biomass. Energy and Fuels, 32(11), 11576-11586. https://doi.org/10.1021/acs.energyfuels.8b02684 | |
| dc.relation.references | Hernández Soto, M. C. (2019). Resumen castellano. Repositorio Institucional UPV, RiuNet. | |
| dc.relation.references | Hien, T. T. (2018). OPTIMIZING THE PROCESS OF TRANSFORMING COFFEE HUSKS INTO BIOCHAR BY MEANS OF HYDROTHERMAL CARBONIZATION. Vietnam Journal of Science and Technology, 54(4B), 138. https://doi.org/10.15625/2525-2518/54/4b/12034 | |
| dc.relation.references | Hu, Y., Gallant, R., Salaudeen, S., Farooque, A. A., & He, S. (2022). Hydrothermal Carbonization of Spent Coffee Grounds for Producing Solid Fuel. Sustainability (Switzerland), 14(14). https://doi.org/10.3390/su14148818 | |
| dc.relation.references | Inés Puerta-Quintero, G. (s. f.). Gerencia Técnica / Programa de Investigación Científica / Junio de 2000 BENEFICIE CORRECTAMENTE SU CAFÉ Y CONSERVE LA CALIDAD DE LA BEBIDA. | |
| dc.relation.references | Kambo, H. S., & Dutta, A. (2015). Comparative evaluation of torrefaction and hydrothermal carbonization of lignocellulosic biomass for the production of solid biofuel. Energy Conversion and Management, 105, 746-755. https://doi.org/10.1016/j.enconman.2015.08.031 | |
| dc.relation.references | Kantakanit, P., Tippayawong, N., Koonaphapdeelert, S., & Pattiya, A. (2018). Hydrochar Generation from Hydrothermal Carbonization of Organic Wastes. IOP Conference Series: Earth and Environmental Science, 159(1). https://doi.org/10.1088/1755-1315/159/1/012001 | |
| dc.relation.references | Kim, D., Lee, K., Bae, D., & Park, K. Y. (2017). Characterizations of biochar from hydrothermal carbonization of exhausted coffee residue. Journal of Material Cycles and Waste Management, 19(3), 1036-1043. https://doi.org/10.1007/s10163-016-0572-2 | |
| dc.relation.references | Král, E., Rukov, J. L., & Mendes, A. C. (2024). Coffee Cherry on the Top: Disserting Valorization of Coffee Pulp and Husk. En Food Engineering Reviews (Vol. 16, Número 1, pp. 146-162). Springer. https://doi.org/10.1007/s12393-023-09352-4 | |
| dc.relation.references | Kumar, N., Weldon, R., & Lynam, J. G. (2021). Hydrothermal carbonization of coffee silverskins. Biocatalysis and Agricultural Biotechnology, 36. https://doi.org/10.1016/j.bcab.2021.102145 | |
| dc.relation.references | Lu, X., Jordan, B., & Berge, N. D. (2012). Thermal conversion of municipal solid waste via hydrothermal carbonization: Comparison of carbonization products to products from current waste management techniques. Waste Management, 32(7), 1353-1365. https://doi.org/10.1016/j.wasman.2012.02.012 | |
| dc.relation.references | Maniscalco, M. P., Volpe, M., & Messineo, A. (2020). Hydrothermal carbonization as a valuable tool for energy and environmental applications: A review. En Energies (Vol. 13, Número 15). MDPI AG. https://doi.org/10.3390/en13164098 | |
| dc.relation.references | Maria Alejandra Niño Castro. (2021). PROPUESTA DE PLAN DE EFICIENCIA ENERGÉTICA PARA LA FÁBRICA DE “BOCADILLOS EL PRÍNCIPE” PARA EL PROCESO DE PRODUCCIÓN DE BOCADILLO. | |
| dc.relation.references | Mendoza Martinez, C. L., Saari, J., Melo, Y., Cardoso, M., de Almeida, G. M., & Vakkilainen, E. (2021). Evaluation of thermochemical routes for the valorization of solid coffee residues to produce biofuels: A Brazilian case. En Renewable and Sustainable Energy Reviews (Vol. 137). Elsevier Ltd. https://doi.org/10.1016/j.rser.2020.110585 | |
| dc.relation.references | Mendoza Martinez, C. L., Sermyagina, E., Saari, J., Silva de Jesus, M., Cardoso, M., Matheus de Almeida, G., & Vakkilainen, E. (2021). Hydrothermal carbonization of lignocellulosic agro-forest based biomass residues. Biomass and Bioenergy, 147. https://doi.org/10.1016/j.biombioe.2021.106004 | |
| dc.relation.references | Murthy, P. S., & Madhava Naidu, M. (2012). Sustainable management of coffee industry by-products and value addition - A review. En Resources, Conservation and Recycling (Vol. 66, pp. 45-58). https://doi.org/10.1016/j.resconrec.2012.06.005 | |
| dc.relation.references | Nizamuddin, S., Baloch, H. A., Griffin, G. J., Mubarak, N. M., Bhutto, A. W., Abro, R., Mazari, S. A., & Ali, B. S. (2017). An overview of effect of process parameters on hydrothermal carbonization of biomass. En Renewable and Sustainable Energy Reviews (Vol. 73, pp. 1289-1299). Elsevier Ltd. https://doi.org/10.1016/j.rser.2016.12.122 | |
| dc.relation.references | Oktaviananda, C., Rahmawati, R. F., Prasetya, A., Purnomo, C. W., Yuliansyah, A. T., & Cahyono, R. B. (2017). Effect of temperature and biomass-water ratio to yield and product characteristics of hydrothermal treatment of biomass. AIP Conference Proceedings, 1823. https://doi.org/10.1063/1.4978102 | |
| dc.relation.references | Remón, J., Ravaglio-Pasquini, F., Pedraza-Segura, L., Arcelus-Arrillaga, P., Suelves, I., & Pinilla, J. L. (2021). Caffeinating the biofuels market: Effect of the processing conditions during the production of biofuels and high-value chemicals by hydrothermal treatment of residual coffee pulp. Journal of Cleaner Production, 302. https://doi.org/10.1016/j.jclepro.2021.127008 | |
| dc.relation.references | Rocío, L., & Castro, O. (s. f.). PREPARACIÓN DE CARBÓN ACTIVADO CONFORMADO A PARTIR DE HYDROCHAR DE BORRA DE CAFÉ (Preparation shaped activated carbon from hydrochar to spend coffee ground). | |
| dc.relation.references | Salamanca Jiménez, A., Siavosh, ;, & Khalajabadi, S. (s. f.). Cenicafé, 56(4): LA DENSIDAD APARENTE Y SU RELACIÓN CON OTRAS PROPIEDADES EN SUELOS DE LA ZONA CAFETERA COLOMBIANA. | |
| dc.relation.references | Sandile Fakudze, & Jianqiang Chen. (2023). A critical review on co-hydrothermal carbonization of biomass and fossil-based feedstocks for cleaner solid fuel production: Synergistic effects and environmental benefits. ScienceDirect. | |
| dc.relation.references | Sharma, H. B., Sarmah, A. K., & Dubey, B. (2020a). Hydrothermal carbonization of renewable waste biomass for solid biofuel production: A discussion on process mechanism, the influence of process parameters, environmental performance and fuel properties of hydrochar. En Renewable and Sustainable Energy Reviews (Vol. 123). Elsevier Ltd. https://doi.org/10.1016/j.rser.2020.109761 | |
| dc.relation.references | Sharma, H. B., Sarmah, A. K., & Dubey, B. (2020b). Hydrothermal carbonization of renewable waste biomass for solid biofuel production: A discussion on process mechanism, the influence of process parameters, environmental performance and fuel properties of hydrochar. En Renewable and Sustainable Energy Reviews (Vol. 123). Elsevier Ltd. https://doi.org/10.1016/j.rser.2020.109761 | |
| dc.relation.references | Tito, E., Marcolongo, C. A., Pipitone, G., Monteverde, A. H. A., Bensaid, S., & Pirone, R. (2024). Understanding the effect of heating rate on hydrothermal liquefaction: A comprehensive investigation from model compounds to a real food waste. Bioresource Technology, 396. https://doi.org/10.1016/j.biortech.2024.130446 | |
| dc.relation.references | Torres-Valenzuela, L. S., Martínez, K. G., Serna-Jimenez, J. A., & Hernández, M. C. (2019). Drying of coffee pulp: Process parameters, mathematical model and its effect over physicochemical properties. Informacion Tecnologica, 30(2), 189-200. https://doi.org/10.4067/S0718-07642019000200189 | |
| dc.relation.references | Wang, T., Zhai, Y., Zhu, Y., Li, C., & Zeng, G. (2018). A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties. En Renewable and Sustainable Energy Reviews (Vol. 90, pp. 223-247). Elsevier Ltd. https://doi.org/10.1016/j.rser.2018.03.071 | |
| dc.relation.references | Wang, Y., & Wu, J. J. (2023). Thermochemical conversion of biomass: Potential future prospects. En Renewable and Sustainable Energy Reviews (Vol. 187). Elsevier Ltd. https://doi.org/10.1016/j.rser.2023.113754 | |
| dc.relation.references | Xiao, L. P., Shi, Z. J., Xu, F., & Sun, R. C. (2012). Hydrothermal carbonization of lignocellulosic biomass. Bioresource Technology, 118, 619-623. https://doi.org/10.1016/j.biortech.2012.05.060 | |
| dc.relation.references | Zheng, Y., Zhao, J., Xu, F., & Li, Y. (2014). Pretreatment of lignocellulosic biomass for enhanced biogas production. En Progress in Energy and Combustion Science (Vol. 42, Número 1, pp. 35-53). Elsevier Ltd. https://doi.org/10.1016/j.pecs.2014.01.001 | |
| dc.rights.acceso | Abierto (Texto Completo) | |
| dc.rights.accessrights | OpenAccess | |
| dc.subject | Carbonización hidrotermal | |
| dc.subject | Biomasa | |
| dc.subject | Residuos de café | |
| dc.subject | Conversión termoquímica | |
| dc.subject | Pulpa de café arábigo | |
| dc.subject.keyword | Hydrothermal carbonization | |
| dc.subject.keyword | Arabica coffee pulp | |
| dc.subject.keyword | Biomass | |
| dc.subject.keyword | Coffee waste | |
| dc.subject.keyword | Thermochemical conversion | |
| dc.subject.lemb | Ingeniería Mecánica -- Tesis y Disertaciones Académicas | |
| dc.subject.lemb | Ingeniería mecánica | |
| dc.subject.lemb | Dinámica | |
| dc.subject.lemb | Mecánica aplicada | |
| dc.title | Estudio del efecto de la temperatura en la carbonización hidrotermal de la pulpa del café arábigo | |
| dc.title.titleenglish | Study of the effect of temperature on the hydrothermal carbonization of arabica coffee pulp | |
| dc.type | bachelorThesis | |
| dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
| dc.type.degree | Monografía | |
| dc.type.driver | info:eu-repo/semantics/bachelorThesis |
Archivos
Bloque original
1 - 2 de 2
Cargando...
- Nombre:
- CamachoRangelKevinYovanni2025.pdf
- Tamaño:
- 4.04 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Trabajo de grado
No hay miniatura disponible
- Nombre:
- Licencia de uso y publicacion.pdf
- Tamaño:
- 213.09 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Licencia de uso y publicación
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 7 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:
