Propuesta de un modelo para la predicción de ruido por tráfico rodado a partir de aprendizaje automático que ofrezca información potencialmente útil en los procesos de gestión ambiental del ruido en entornos urbanos de Bogotá

dc.contributor.advisorMontenegro Marín, Carlos Enrrique
dc.contributor.authorAcosta Agudelo, Óscar Esneider
dc.date.accessioned2024-10-29T21:01:53Z
dc.date.available2024-10-29T21:01:53Z
dc.date.created2024-09-06
dc.descriptionEn la presente investigación se propuso un modelo basado en aprendizaje automático para la predicción de ruido por tráfico rodado en Bogotá. En su planteamiento, se consideran condiciones propias del tránsito vehicular de la ciudad. Las variables de entrada del modelo fueron: aforos vehiculares, rapidez, tipo de flujo y número de carriles. La obtención de los datos de entrada se realizó a través de campañas de medición en las cuales se tomaron grabaciones de audio y video. Las capturas de audio, efectuadas con un micrófono de medición calibrado a 4 metros de altura, permitieron calcular los niveles de ruido mediante el procesamiento por software. Por otro lado, con los datos de video se organizó el conteo y la clasificación del aforo vehicular en cuatro categorías: motos, vehículos livianos, medianos y pesados. El mencionado proceso se llevó a cabo empleando un clasificador entrenado con imágenes de vehículos tomados en campo y de bases de datos libres. Asimismo, con los datos de video se estimó la rapidez vehicular con un algoritmo de procesamiento basado en clasificador de imágenes. Luego, se analizaron las mediciones para unos puntos de medición caracterizando la emisión de ruido de las categorías vehiculares, las vías arterias e intermedias, las situaciones de tránsito y los pavimentos. Posteriormente, con el análisis exploratorio de los datos se encontraron las correlaciones y se hizo un estudio de regresión entre el nivel de ruido y las variables predictoras. Asimismo, con el objetivo de establecer el algoritmo de aprendizaje automático a usar, se compararon cinco modelos que fueron configurados con sus respectivos hiperparámetros, logrados a través de búsqueda de malla. Los resultados determinaron que la regresión basada en perceptrón multicapa (MLP) presentó el mejor ajuste, con un MAE de 0,86 dB para los datos de prueba. Finalmente, el regresor MLP propuesto fue comparado con algunos modelos estadísticos clásicos utilizados para la predicción de ruido por tráfico rodado. Como conclusión principal se destaca que el regresor MLP obtuvo los mejores indicadores de error y ajuste con respecto a los modelos estadísticos.
dc.description.abstractThis research proposed a model based on machine learning for predicting road traffic noise for the city of Bogota. The model considers conditions typical of vehicular traffic in the city. The input variables of the model were: vehicle capacity, speed, type of flow and number of lanes. Measurement campaigns involving audio and video recordings were carried out to obtain the input data. The audio recordings allowed the calculation of the noise levels through software processing, since they were taken with a measuring microphone calibrated at a height of 4 meters. On the other hand, the video data were used to count and classify the number of vehicles in four categories: motorcycles, light, medium and heavy vehicles. This process was done using a classifier trained with images of vehicles taken in the field and from free databases. Similarly, a processing algorithm based on an image classifier was used to estimate the speed of the vehicles from the video data. Then, the analysis of the measurements was carried out for some measuring points characterizing the noise emission of vehicle categories, arterial and secondary roads, traffic situations and pavements. Then, through exploratory data analysis, correlations were found, and a regression study was performed between noise levels and predictor variables. To determine the machine learning algorithm to be used, five models were compared, configured with their respective hyperparameters obtained through mesh search. The results showed that the Multilayer Perceptron (MLP) regression had the best fit with MAE = 0,86 dB for the test dataset. Finally, the proposed MLP regressor was compared with classical statistical models for traffic noise prediction. In conclusion, the MLP regressor obtained the best error and fit indicators with respect to statistical models.
dc.format.mimetypepdf
dc.identifier.urihttp://hdl.handle.net/11349/42510
dc.language.isospa
dc.relation.referencesAbbott, P. G. y Nelson, P. M. (2002). Converting the UK traffic noise index LA10, 18h to EU noise indices for noise mapping. Transport Research Laboratory UK. https://programmeofficers.co.uk/Aylesbury/CD/CD%209.11.pdf
dc.relation.referencesAcosta, O. (2021, 30 de septiembre). Vehicle counting (Contador de vehículos Bogotá) [Video]. YouTube. https://www.youtube.com/watch?v=ZTT1gsLUGvo&ab_channel=OscarAcosta
dc.relation.referencesAcosta, O., Montenegro, C., y Gaona, P. (2020). Condiciones de tránsito vehicular y uso de un modelo para la predicción de ruido por tráfico rodado en un entorno local de la ciudad de Bogotá-Colombia. Iberian Journal of Information Systems and Technologies, 27, 605-614. http://www.risti.xyz/issues/ristie27.pdf
dc.relation.referencesAlberts, W., Faber, N. y Roebben, M. (2016). Road traffic noise exposure in Europe in 2012 based on END data. 1236- 1247. https://www.semanticscholar.org/paper/Road-traffic-noise-exposure-in-Europe-in-2012-based-AlbertsFaber/5813d3a3f96f053dab983ff1b714b8594c81c7f1
dc.relation.referencesAli Khalil, M., Hamad, K. y Shanableh, A. (2019). Developing Machine Learning Models to Predict Roadway Traffic Noise: An Opportunity to Escape Conventional Techniques. Transportation Research Record, 2673(4), 158-172. https://doi.org/10.1177/0361198119838514
dc.relation.referencesAscari, E., Cerchiai, M., Fredianelli, L. y Licitra, G. (2022). Statistical Pass-By for Unattended Road Traffic Noise Measurement in an Urban Environment. Sensors, 22(22), 8767. https://doi.org/10.3390/s22228767
dc.relation.referencesAlsina-Pagès, R. M., Alías, F., Socoró, J. C. y Orga, F. (2018). Detection of anomalous noise events on low-capacity acoustic nodes for dynamic road traffic noise mapping within an hybrid WASN. Sensors (Switzerland), 18(4), 1272. https://doi.org/10.3390/s18041272
dc.relation.referencesAsociación Europea de Fabricantes de Automóviles [ACEA]. (2023, 2 de mayo). Average age of the EU vehicle fleet, by country. ACEA. https://www.acea.auto/figure/average-age-of-eu-vehicle-fleet-by-country/
dc.relation.referencesAsociación Nacional de Industriales [ANDI] y Federación Nacional de Comerciantes [Fenalco]. (2021, febrero). Informe de matrículas de motos enero de 2021. https://www.andi.com.co/Uploads/INFORME%20DE%20MATR%C3%8DCULAS%20DE%20MOTOS%20A%20ENE RO%20DE%202021%20(4)%20(1)%20(4).pdf
dc.relation.referencesAsociación Nacional de Movilidad Sostenible [Andemos]. (2022). Anuario del sector Automotor 2022. Andemos. https://www.andemos.org/_files/ugd/d1a7a0_07a05a53825b402b9b332a7869aeb69d.pdf
dc.relation.referencesBarrero, K. (2023, 14 de marzo). Histórico: Bogotá tiene operadora de transporte público y 1.485 buses eléctricos. Mi Ciudad. Portal de Noticias de la Alcaldía Mayor de Bogotá. https://bogota.gov.co/mi-ciudad/movilidad/la-rolitay-1485-buses-electricos-mejoran-la-movilidad-enbogota#:~:text=Hist%C3%B3rico%3A%20Bogot%C3%A1%20tiene%20operadora%20de%20transporte%20p%C3 %BAblico%20y%201.485%20buses%20el%C3%A9ctricos,-Foto%3A%20Alcald%C3%ADa%20de
dc.relation.referencesBarry, T. M. y Reagan, J. A. (1978). FHWA highway traffic noise prediction model. United States. Federal HIghway Administration. Office of Research and Developmenthttps. https://rosap.ntl.bts.gov/view/dot/30259/dot_30259_DS1.pdf
dc.relation.referencesBasner, M., Babisch, W., Davis, A., Brink, M., Clark, C., Janssen, S. y Stansfeld, S. (2014). Auditory and non-auditory effects of noise on health. The Lancet, 383(9925), 1325-1332. https://doi.org/10.1016/S0140-6736(13)61613-X
dc.relation.referencesBeck, M. W. (2018). NeuralNetTools: Visualization and Analysis Tools for Neural Networks. Journal of Statistical Software, 85(11), 1-20. https://doi.org/10.18637/jss.v085.i11
dc.relation.referencesBeltrán, C. (2018, 5 de octubre). ¡A bajar los decibeles! Cada mes se reportan 300 quejas por ruido en Bogotá. Conexión Capital. https://conexioncapital.co/bogota-quejas-por-ruido/
dc.relation.referencesBendtsen, H. (1999). The Nordic prediction method for road traffic noise. The Science of the Total Environment, 235, 331-338. https://zero.sci-hub.se/1746/d1bb8d13b82a728956f25cd6709b4452/bendtsen1999.pdf
dc.relation.referencesBielza de Ory, V., Escolano, S., Gorría, A. e Ibarra, P. (2010). De la ordenación a la planificación territorial estratégica en el ámbito regional-comarcal. Prensas de la Universidad de Zaragoza.
dc.relation.referencesBirgitta, B., Thomas, L. y Dietrich, H. S. (1999). Guidelines for Community Noise. World Health Organization. https://iris.who.int/handle/10665/66217
dc.relation.referencesBochkovskiy, A., Wang, C.-Y. y Liao, H.-Y. M. (2020). YOLOv4: Optimal Speed and Accuracy of Object Detection. https://doi.org/10.48550/arXiv.2004.10934
dc.relation.referencesBragdon, C. R. (2016). Noise pollution: The unquiet crisis. University of Pennsylvania Press
dc.relation.referencesCammarata, G., Cavalieri, S. y Fichera, A. (1995). A neural network architecture for noise prediction. Neural Networks, 8(6), 963-973. https://doi.org/10.1016/0893-6080(95)00016-S
dc.relation.referencesCampbell, D. T. y Stanley, J. C. (1966). Experimental and quasi-experimental designs for research. Ravenio Books.
dc.relation.referencesCampello-Vicente, H., Peral-Orts, R., Campillo-Davo, N., y Velasco-Sanchez, E. (2017). The effect of electric vehicles on urban noise maps. Applied Acoustics, 116, 59-64. https://doi.org/10.1016/j.apacoust.2016.09.018
dc.relation.referencesCan, A., Leclercq, L., Lelong, J., y Botteldooren, D. (2010). Traffic noise spectrum analysis: Dynamic modeling vs. experimental observations. Applied Acoustics, 71(8), 764-770. https://doi.org/10.1016/j.apacoust.2010.04.002
dc.relation.referencesCentre d'Etudes des Transports Urbains [CETUR]. (1980). Guide du Bruit des Transports Terrestres. Prévision des Niveaux Sonores. CETUR. https://trid.trb.org/View/1042552
dc.relation.referencesChen, L., Tang, B., Liu, T., Xiang, H., Sheng, Q. y Gong, H. (2020). Modeling traffic noise in a mountainous city using artificial neural networks and gradient correction. Transportation Research Part D: Transport and Environment, 78, 102196. https://doi.org/10.1016/j.trd.2019.11.025
dc.relation.referencesCohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences. Lawrence Erlbaum Associates Publishers. https://www.utstat.toronto.edu/~brunner/oldclass/378f16/readings/CohenPower.pdf
dc.relation.referencesCohen, J. (1992). A Power Primer. Psychol Bull, 112(1). 155-159. DOI: 10.1037//0033-2909.112.1.155
dc.relation.referencesConferencia Europea de Aviación Civil [ECAC]. (2016). 29: Report on Standard Method of Computing Noise Contours around Civil Airports. Volume 3, Part 1. Reference Cases and Verification Framework. ECAC. https://www.ecacceac.org/images/documents/ECAC-Doc_29_4th_edition_Dec_2016_Volume_3_Part_1.pdf
dc.relation.referencesCowan, J. P. (1993). Handbook of Environmental Acoustics. John Wiley & Sons.
dc.relation.referencesCreswell, J. W. (2017). Research Design: Qualitative, Quantitative, and Mixed Methods Approaches. Sage Publications.
dc.relation.referencesCrocker, M. J. y Arenas, J. P. (2021). Engineering Acoustics: Noise and Vibration Control. John Wiley & Sons
dc.relation.referencesCrotty, M. (1998). The foundations of social research: Meaning and perspective in the research process. Sage Publications Ltd.
dc.relation.referencesDepartment of Transport UK. (1988). Calculation of Road Traffic Noise. Departament of Transport and The Welsh Office. https://www.bradford.gov.uk/Documents/Hard%20Ings%20Road%20improvement%20scheme/2b%20Compuls ory%20Purchase%20Order%20and%20Side%20Road%20Order/5%20Supporting%20documents/Calculation%20 of%20Road%20Traffic%20Noise%201988.pdf
dc.relation.referencesDer Bundesminister für Verkehr. (1990). Richtlinien für den Lärmschutz an Strassen RLS-90. Ausgabe. https://www.gesund-am-stienitzsee.de/wp-content/uploads/RLS90-opt..pdf
dc.relation.referencesDijkink, J. H. y van Keulen, W. (2004). SilentTransport-An innovative silent road concept of heavy vehicles. INTERNOISE and NOISE-CON Congress and Conference Proceedings, 2004(3), 3987-3993. https://www.ingentaconnect.com/contentone/ince/incecp/2004/00002004/00000003/art00048;jsessionid=uv bta8eou0m5.x-ic-live-02
dc.relation.referencesDu, C., Qiu, X., Li, F. y Cai, M. (2021). A simulation of traffic noise emissions at a roundabout based on a cellular automaton model. Acta Acustica, 5, 1-14. https://doi.org/10.1051/aacus/2021037
dc.relation.referencesDutilleux, G., Defrance, J., Ecotière, D., Gauvreau, B., Bérengier, M., Besnard, F. y Duc, E. Le. (2010). NMPB-ROUTES2008: The Revision of the French Method for Road Traffic Noise Prediction. Acta Acustica, 96(3), 452-462. http://dx.doi.org/10.3813/AAA.918298
dc.relation.referencesDutilleux, G., Defrance, J., Gauvreau, B. y Besnard, F. (2008). The revision of the French Method for Road Traffic Noise Prediction.The Journal of the Acoustical Society of America, 123, 3150. https://doi.org/10.1121/1.2933163
dc.relation.referencesEuropean Commission Working Group Assessment of Exposure to Noise [WG-AEN]. (2006). Good Practice Guide for Strategic Noise Mapping and the Production of Associated Data on Noise Exposure. https://sicaweb.cedex.es/docs/documentacion/Good-Practice-Guide-for-Strategic-Noise-Mapping.pdf
dc.relation.referencesEuropean Environmental Agency. (2020, 23 de noviembre). Road traffic remains biggest source of noise pollution in Europe. EEA. https://www.eea.europa.eu/highlights/road-traffic-remains-biggest-source
dc.relation.referencesEuropean Environmental Agency. (2014). Noise in Europe 2014. Publications Office European Environmental Agency. https://doi.org/10.2800/763331
dc.relation.referencesFávero, L. P. y Belfiore, P. (2019). Data Science for Business and Decision Making. Elsevier.
dc.relation.referencesFischer, A. (2015). How to determine the unique contributions of input-variables to the nonlinear regression function of a multilayer perceptron. Ecological Modelling, 309-310(10-14), 60-63. https://doi.org/10.1016/j.ecolmodel.2015.04.015
dc.relation.referencesFederal Highway Administration [FHWA]. (2023). Technical Manual Traffic Noise Model 3.2. U.S. Department of Transportation - Office of Natural Environment. https://www.fhwa.dot.gov/environment/noise/traffic_noise_model/tnm_v32/tnm32-technical-manual2023.pdf
dc.relation.referencesFletcher, H. y Munson, W. A. (1933). Loudness, its Definition, Measurement and Calculation. Bell System Technical Journal, 12(4), 377-430. https://doi.org/10.1002/j.1538-7305.1933.tb00403.x
dc.relation.referencesFwa, T. F. (Ed.). (2005). The Handbook of Highway Engineering. CRC Press.
dc.relation.referencesGallo, M. (2020). A piecewise-defined function for modelling traffic noise on urban roads. Infrastructures, 5(8), 63. https://doi.org/10.3390/INFRASTRUCTURES5080063
dc.relation.referencesGarson, G. D. (1991). Interpreting neural-network connection weights. AI Expert, 6(4), 46-51. https://www.scirp.org/reference/referencespapers?referenceid=1275048
dc.relation.referencesGenaro, N., Torija, A., Ramos, A., Requena, I., Ruiz, D. P. y Zamorano, M. (2009). Modeling environmental noise using artificial neural networks. ISDA 2009. 9th International Conference on Intelligent Systems Design and Applications, 215-219. https://doi.org/10.1109/ISDA.2009.179
dc.relation.referencesGiam, X. y Olden, J. D. (2015). A new R2 -based metric to shed greater insight on variable importance in artificial neural networks. Ecological Modelling, 313, 307-313. https://doi.org/10.1016/j.ecolmodel.2015.06.034
dc.relation.referencesGitHub Inc. (2024a). wsh122333/Multi-type_vehicles_flow_statistics. https://github.com/wsh122333/Multitype_vehicles_flow_statistics
dc.relation.referencesGitHub Inc. (2024b). opendatalabcz/car-speed-estimator. https://github.com/opendatalabcz/car-speed-estimator
dc.relation.referencesGitHub Inc. (2024c). jzliu-100/visualize-neural-network. https://github.com/jzliu-100/visualize-neuralnetwork?tab=readme-ov-file#just-give-me-the-code
dc.relation.referencesGivargis, S. y Karimi, H. (2010). A asic neural traffic noise prediction model for ehran’s roads Journal of Environmental Management, 91(12), 2529-2534. https://doi.org/10.1016/j.jenvman.2010.07.011
dc.relation.referencesGobierno Federal de los Estados Unidos. (2021). Código de los Estados Unidos. Title 23-Highways. https://www.govinfo.gov/content/pkg/USCODE-2021-title23/pdf/USCODE-2021-title23-chap1-sec109.pdf
dc.relation.referencesGobierno Federal de los Estados Unidos. (1970). Ley de Carreteras de Ayuda Federal. Public Law 91-605-Dec. 31, 1970. https://www.govinfo.gov/content/pkg/STATUTE-84/pdf/STATUTE-84-Pg1713.pdf
dc.relation.referencesGoh, A. T. C. (1995). Back-propagation neural networks for modeling complex systems. Artificial Intelligence in Engineering, 9(3), 143-151. https://doi.org/10.1016/0954-1810(94)00011-S
dc.relation.referencesGoogle. (2020). Open Images Dataset. https://storage.googleapis.com/openimages/web/index.html
dc.relation.referencesGuarnaccia, C. y Quartieri, J. (2012). Analysis of Road Traffic Noise Propagation. International Journal of Mathematical Models and Methods in Applied Sciences, 6(8), 926-933. https://www.researchgate.net/publication/285942490_Analysis_of_road_traffic_noise_propagation
dc.relation.referencesGutiérrez, A. (2022, 13 de junio). Edad promedio del parque automotor está creciendo: vehículos tienen 17,5 años. La República. https://www.larepublica.co/empresas/edad-promedio-del-parque-automotor-esta-creciendovehiculos-tienen-17-5-anos-3382797
dc.relation.referencesHaider, M. y Descornet, G. (2006). Noise Classification Methods for Urban Road Surfaces. Classification Methodology. Silence. Integrated Project. European Commission DG Research. https://www.divaportal.org/smash/get/diva2:674008/FULLTEXT01.pdf
dc.relation.referencesHamad, K., Ali Khalil, M. y Shanableh, A. (2017). Modeling roadway traffic noise in a hot climate using artificial neural networks. Transportation Research Part D: Transport and Environment, 53, 161-177. https://doi.org/10.1016/j.trd.2017.04.014
dc.relation.referencesHernández, R., Fernández, C. y Baptista, P. (2010). Metodología de la investigación (Vol. 3). McGraw-Hill.
dc.relation.referencesHuang, K., Fan, Y. y Dai, L. (2020). A nested ensemble filtering approach for parameter estimation and uncertainty quantification of traffic noise models. Applied Sciences (Switzerland), 10(1). 204. https://doi.org/10.3390/app10010204
dc.relation.referencesInfraestructura de Datos Espaciales de Bogotá [Ideca]. (2024a, 31 de mayo). Calzada. Bogotá D. C. Ideca y Unidad Administrativa Especial de Catastro Distrital. https://www.ideca.gov.co/recursos/mapas/calzada-bogota-dc
dc.relation.referencesInfraestructura de Datos Espaciales de Bogotá [Ideca]. (2024b, 1 de junio). Mapa Híbrido. https://www.ideca.gov.co/recursos/mapas/mapa-hibrido
dc.relation.referencesInstituto Colombiano de Normas Técnicas y Certificación [Icontec]. (2012). NTC 5375:2012. Revisión técnico-mecánica y de emisiones contaminantes en vehículos automotores (4° Edición). Icontec. https://tienda.icontec.org/gprevision-tecnico-mecanica-y-de-emisiones-contaminantes-en-vehiculos-automotores-ntc5375-2012.html
dc.relation.referencesInstituto Colombiano de Normas Técnicas y Certificación [Icontec]. (2011). NTC 5385:2011. Centros de diagnóstico automotor. Especificaciones del servicio (4° Edición). Icontec. https://tienda.icontec.org/gp-centros-dediagnostico-automotor-especificaciones-del-servicio-ntc5385-2011.html
dc.relation.referencesInstituto de Desarrollo Urbano [IDU]. (2019). Especificaciones técnicas generales de materiales de construcción para proyectos de infraestructura vial y espacio público para Bogotá D. C. del Instituto de Desarrollo Urbano (V. 4.0). https://www.idu.gov.co/page/especificaciones-tecnicas-generales-de-materiales
dc.relation.referencesInternational Electrotechnical Commission [IEC]. (2014). IEC 61260-1. Octave-band and fractional-octave-band filters. Part 1: Specifications. https://webstore.iec.ch/publication/5063
dc.relation.referencesInternational Electrotechnical Commission [IEC]. (2013a). IEC 61672-1. Electroacoustics-Sound level meters. Part 1: Specifications. https://webstore.iec.ch/preview/info_iec61672-1%7Bed1.0%7Den_d.pdf
dc.relation.referencesInternational Electrotechnical Commission [IEC]. (2013b). IEC 61672-1:2013. Electroacoustics-Sound level meters. Part 1: Specifications. https://webstore.iec.ch/publication/5708
dc.relation.referencesInternational Standard Organization [ISO]. (2021). ISO 10844. Specification of test tracks for measuring sound emitted by road vehicles and their tyres. https://www.iso.org/standard/80557.html
dc.relation.referencesInternational Standard Organization [ISO]. (2017a). ISO 11819-2. Measurement of the influence of road surfaces on traffic noise . Part 2: The close-proximity method. https://www.iso.org/standard/39675.html
dc.relation.referencesInternational Standard Organization [ISO]. (2017b). ISO 1996-2. Attenuation of sound during propagation outdoors. Part 2: General Method of Calculation. https://www.iso.org/standard/20649.html
dc.relation.referencesInternational Standard Organization [ISO]. (2016a). ISO 16254. Measurement of sound emitted by road vehicles of category M and N at standstill and low speed operation. Engineering method. https://www.iso.org/standard/56019.html
dc.relation.referencesInternational Standard Organization [ISO]. (2016b). ISO 1996-1. Description, measurement and assessment of environmental noise. Part 1: Basic quantities and assessment procedures. https://www.iso.org/standard/59765.html
dc.relation.referencesInternational Standard Organization [ISO]. (2015). ISO 362-1. Measurement of noise emitted by accelerating road vehicles. Engineering method. Part 1: M and N categories. https://www.iso.org/standard/59760.html
dc.relation.referencesInternational Standard Organization [ISO]. (2013). ISO 11819-4. Method for measuring the influence of road surfaces on traffic noise. Part 4: SPB method using backing board. https://www.iso.org/standard/61070.html
dc.relation.referencesInternational Standard Organization [ISO]. (2009). ISO 362-2. Measurement of noise emitted by accelerating road vehicles. Engineering method. Part 2: L category. https://www.iso.org/standard/42211.html
dc.relation.referencesInternational Standard Organization [ISO]. (2003). ISO 226. Normal equal-loudness-level contours. https://www.iso.org/standard/34222.html
dc.relation.referencesInternational Standard Organization [ISO]. (2002). ISO 11819-1. Measurement of the influence of road surfaces on traffic noise. Part 1: Statistical Pass-By method. https://www.iso.org/standard/77371.html
dc.relation.referencesiTeh, Inc. (1997). EN 1793-3:1997. Road traffic noise reducing devices. Test method for determining the acoustic performance. Part 3: Normalized traffic noise spectrum. https://standards.iteh.ai/catalog/standards/cen/50fb303f-c676-49c1-934d-0489c29a0021/en-1793-3-1997
dc.relation.referencesJarrín-Quintero, A., Solano, E., Rodriguez, W. y Quintero, C. (2021). Corredor logistico de la Calle 13: hallazgos y recomendaciones. Grupo de Investigación en Negocios, Economía y Finanzas y Universidad de La Sabana. http://www.andi.com.co/Uploads/Informe Final Calle 13_15062021_Marca V Final_637637996750902295.pdf
dc.relation.referencesJolly, K. (2018). Machine Learning with scikit-learn Quick Start Guide: Classification, regression, and clustering techniques in Python. Packt Publishing Ltd.
dc.relation.referencesJoseph Chet Redmon. (2024). YOLO: Real-Time Object Detection. https://pjreddie.com/darknet/yolo/
dc.relation.referencesKephalopoulos, S., Paviotti, M. y Anfosso-Lédée, F. (2012). Common Noise Assessment Methods in Europe (CNOSSOSEU). Publications Office of the European Union. https://publications.jrc.ec.europa.eu/repository/handle/JRC72550
dc.relation.referencesKephalopoulos, S., Paviotti, M., Anfosso-Lédée, F., Van Maercke, D., Shilton, S. y Jones, N. (2014). Advances in the development of common noise assessment methods in Europe: The CNOSSOS-EU framework for strategic environmental noise mapping. Science of The Total Environment, 482-483, 400-410. https://doi.org/10.1016/J.SCITOTENV.2014.02.031
dc.relation.referencesKhajehvand, M., Rassafi, A. A. y Mirbaha, B. (2021). Modeling traffic noise level near at-grade junctions: Roundabouts, T and cross intersections. Transportation Research Part D: Transport and Environment, 93, 102752. https://doi.org/10.1016/j.trd.2021.102752
dc.relation.referencesKing, R. P. y Davis, J. R. (2003). Community noise: Health effects and management. International Journal of Hygiene and Environmental Health, 206(2), 123-131. https://doi.org/10.1078/1438-4639-00202
dc.relation.referencesKumar, K., Ledoux, H., Commandeur, T. J. F. y Stoter, J. E. (2017). Modelling Urban Noise in CITYGML ADE: Case of the Netherlands. The International Society for Photogrammetry and Remote Sensing, 4, 73-81. https://doi.org/10.5194/isprs-annals-IV-4-W5-73-2017
dc.relation.referencesKumar, P., Nigam, S. P. y Kumar, N. (2014). Vehicular traffic noise modeling using artificial neural network approach. Transportation Research Part C: Emerging Technologies, 40, 111-122. https://doi.org/10.1016/j.trc.2014.01.006
dc.relation.referencesLek, S., Delacoste, M., Baran, P., Dimopoulos, I., Lauga, J. y Aulagnier, S. (1996). Application of neural networks to modelling nonlinear relationships in ecology. Ecological Modelling, 90(1), 39-52. https://doi.org/10.1016/0304- 3800(95)00142-5
dc.relation.referencesLelong, J. (2001). Passenger cars, power unit and tyre-road noise, driving behaviour: what are the stakes? Transportation Research Board, Inter-Noise 2001. Abstracts from International Congress and Exhibition on Noise Control Engineering, 135-138. https://trid.trb.org/View/721017
dc.relation.referencesLicitra, G. (Ed). (2012). Noise Mapping in the EU. Models and Procedures. CRC Press. https://doi.org/10.1201/b12885
dc.relation.referencesLin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P. y Zitnick, C. L. (2014). Microsoft COCO: Common Objects in Context. En D. Fleet, T. Pajdla, B. Schiele y T. Tuytelaars (Eds.), Computer Vision. ECCV 2014. Lecture Notes in Computer Science, 8693, 740-755. https://doi.org/10.1007/978-3-319-10602-1_48
dc.relation.referencesMansourkhaki, A., Berangi, M., Haghiri, M., y Haghani, M. (2018). A Neural Network Noise Prediction Model for Tehran Urban Roads. Journal of Environmental Engineering and Landscape Management, 26(2), 88-97. https://doi.org/10.3846/16486897.2017.1356327
dc.relation.referencesMiniDSP. (s. f.). UMIK-1 [Manual]. https://www.minidsp.com/images/documents/Product%20Brief%20- %20Umik.pdf
dc.relation.referencesMinisterio de Ambiente, Vivienda y Desarrollo Territorial. (2006). Resolución 627 del 7 de abril de 2006. Por la cual se establece la norma nacional de emisión de ruido y ruido ambiental. https://www.minambiente.gov.co/wpcontent/uploads/2021/10/Resolucion-0627-de-2006.pdf
dc.relation.referencesMinisterio de Salud. (1983). Resolución 8321 del 4 de agosto de 1983. https://www.alcaldiabogota.gov.co/sisjur/normas/Norma1.jsp?i=6305
dc.relation.referencesMinisterio de Transporte. (2022, 8 de junio). Colombia cerró mayo con 8.128 vehículos eléctricos matriculados en el Runt. Ministerio de Transporte. https://acortar.link/ic7NSg
dc.relation.referencesiodus ews i, P , E smont, J A , Gra ows i, J y arpińs i, 0 oise map alidation y continuous noise monitoring. Applied Acoustics, 72(8), 582-589. https://doi.org/10.1016/j.apacoust.2011.01.012
dc.relation.referencesMüller, A. C. y Guido, S. (2016). Introduction to Machine Learning with Python: A Guide for Data Scientists. O’Reilly Media, Inc
dc.relation.referencesMuñoz-Razo, C. (1998). Cómo elaborar y asesorar una investigación de tesis. Pearson Educación
dc.relation.referencesMurillo-Gómez, D. M., Gil-Carvajal, J. C., Zapata-Rodríguez, V. y Téllez-García, J. J. (2015). Evaluación del método de cálculo RLS 90 para la predicción de ruido automotor en condiciones colombianas. Revista de la Facultad de Ingeniería de la Universidad de Antioquia, 75, 175-188. http://www.scielo.org.co/pdf/rfiua/n75/n75a17.pdf
dc.relation.referencesMurphy, E. y King, E. A. (2014). Environmental Noise Pollution. En E. Murphy y E. A. King, Environmental Noise Pollution. Noise Mapping, Public Health, and Policy (pp. 1-7). https://doi.org/10.1016/B978-0-12-411595- 8.00001-X
dc.relation.referencesNedic, V., Despotovic, D., Cvetanovic, S., Despotovic, M. y Babic, S. (2014). Comparison of classical statistical methods and artificial neural network in traffic noise prediction. Environmental Impact Assessment Review, 49, 24-30. https://doi.org/10.1016/j.eiar.2014.06.004
dc.relation.referencesNormes Françaises et Européennes. (2000). NF S31-119-2: 2000. Acoustics-In situ Characterization of the Acoustic Qualities of Road Surfaces. Pass by Acoustic Measurement-Part 2: Controlled Pass-by Method. Afnor Éditions.
dc.relation.referencesOlden, J. D. y Jackson, D. A. (2002). Illuminating the “black box”: a randomization approach for understanding variable contributions in artificial neural networks, 154(1-2), 135-150. https://doi.org/10.1016/S0304-3800(02)00064-9
dc.relation.referencesOlden, J. D., Joy, M. K. y Death, R. G. (2004). An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data, 178(3-4), 389-397. https://doi.org/10.1016/j.ecolmodel.2004.03.013
dc.relation.referencesOmidvari, M. y Nouri, J. (2009). Effects of Noise Pollution on Traffic Policemen. International Journal of Environmental Research, 3(4), 645-652. https://www.bioline.org.br/request?er09070
dc.relation.referencesOpenCV. (2024). OpenCV-Open Computer Vision Library. https://opencv.org/
dc.relation.referencesOrganización de las Naciones Unidas [ONU]. (1997). Kyoto Protocol to the United Nations Framework Convention on Climate Change. ONU. https://legal.un.org/avl/pdf/ha/kpccc/kpccc_ph_s.pdf
dc.relation.referencesOrganización de las Naciones Unidas [ONU]. (1992). Agenda 21: Earth Summit: The United Nations Programme of Action from Rio. ONU. https://www.un.org/spanish/esa/sustdev/agenda21/index.htm
dc.relation.referencesOrganización de las Naciones Unidas [ONU]. (1972). Declaration of the United Nations conference on the Human Environment. ONU. https://www.un.org/en/conferences/environment/stockholm1972
dc.relation.referencesOrganización Mundial de la Salud [OMS]. (2020). Environmental noise guidelines for the European Region. OMS, Oficina Regional para Europa. https://www.who.int/europe/publications/i/item/9789289053563
dc.relation.referencesOuis, D. (2001). Annoyance from Road Traffic Noise: A Review. Journal of Environmental Psychology, 21(1), 101-120. https://doi.org/https://doi.org/10.1006/jevp.2000.0187
dc.relation.referencesÖzesmi, S. L. y Özesmi, U. (1999). An artificial neural network approach to spatial habitat modelling with interspecific interaction. Ecological Modelling, 116(1), 15-31. https://doi.org/10.1016/S0304-3800(98)00149-5
dc.relation.referencesPallas, M., Kennedy, J., Walker, I., Chatagnon, R., Bérengier, M. y Lelong, J. (2015). Noise emission of electric and hybrid electric vehicles: deliverable FOREVER. Conference of European Directors of Roads. https://www.researchgate.net/profile/Marie-Agnes-Pallas/publication/278629751_FOREVER_- _Noise_emission_of_electric_and_hybrid_electric_vehicles/links/5e19d24c92851c8364c61d54/FOREVERNoise-emission-of-electric-and-hybrid-electric-vehicles.pdf
dc.relation.referencesPark, S. H., Lee, P. J. y Jeong, J. H. (2018). Effects of noise sensitivity on psychophysiological responses to building noise. Building and Environment, 136, 302-311. https://doi.org/10.1016/j.buildenv.2018.03.061
dc.relation.referencesParlamento Europeo. (2015). Directiva (UE) 2015/996 de la Comisión del 19 de mayo de 2015, por la que se establecen métodos comunes de evaluación del ruido en virtud de la Directiva 2002/49/CE del Parlamento Europeo y del Consejo. EUR-Lex. https://eur-lex.europa.eu/legal-content/ES/TXT/?uri=CELEX%3A32015L0996
dc.relation.referencesParlamento Europeo. (2002). Directiva 2002/49/CE del Parlamento Europeo y del Consejo del 25 de junio de 2002 sobre Evaluación y Gestión del Ruido Ambiental. Agencia Estatal, Boletín Oficial del Estado. https://www.boe.es/buscar/doc.php?id=DOUE-L-2002-81289
dc.relation.referencesPeña-Gutiérrez, J. (2012). Algoritmo de predicción de ruido de tráfico rodado, aplicado a la Autopista Norte entre la Calle 127 hasta la Calle 168 [Tesis de Pregrado, Universidad de San Buenaventura]. Repositorio institucional. https://bibliotecadigital.usb.edu.co/entities/publication/785be22a-58af-4a7d-bd73-c89aac94faa9
dc.relation.referencesPirrera, S., De Valck, E. y Cluydts, R. (2010). Nocturnal road traffic noise: A review on its assessment and consequences on sleep and health. Environment International, 36(5), 492-498. https://doi.org/10.1016/j.envint.2010.03.007
dc.relation.referencesPlanche, B., y Andres, E. (2019). Hands-On Computer Vision with TensorFlow 2: Leverage deep learning to create powerful image processing apps with TensorFlow 2.0 and Keras. Packt Publishing Ltd.
dc.relation.referencesPozzer, T., Frías, J. y Holtz, M. (2018). Desafios de fazer mapas de ruído de grandes cidades brasileiras. Estudos realizados para elaboração do mapa piloto de São Paulo. XXVIII Encontro da Sobrac, Porto Alegre. Anais Eletrônicos. http://dx.doi.org/10.17648/sobrac-87050
dc.relation.referencesRadam, I. F. y Heriyatna, E. (2018). A Correlation Analysis of Noise Level and Traffic Flow: Case of One Way Road in Banjarmasin. Asian Journal of Applied Sciences, 6(2), 2321-0893. https://www.semanticscholar.org/paper/ACorrelation-Analysis-of-Noise-Level-and-Traffic-RadamHeriyatna/ea63ad62a2a362d6369789ec6f3ae3bda4349e37
dc.relation.referencesRamírez, A. (2012). Caracterización y modelación micro y macroscópica del ruido vehicular en la ciudad de Bogotá [Tesis de doctorado, Pontificia Universidad Javeriana]. Repositorio institucional. https://doi.org/10.11144/Javeriana.10554.7592
dc.relation.referencesRana, P. S. y Singh, D. (2018). Traffic noise prediction modelling using multi-level ensemble method. AIP Conference Proceedings, 1982, 020030. https://doi.org/10.1063/1.5045436
dc.relation.referencesRasmus Stahlfest Holck Skov. (2015). Noise from electric vehicles. Measurements. Vejdirektoratet, Austrian Energy Agency e Institute of Transport Economics Norwegian Centre for Transport Research. https://www.vejdirektoratet.dk/api/drupal/sites/default/files/publications/noise_from_electric_vehicles_0.pdf
dc.relation.referencesRecio, A., Linares, C., Banegas, J. R. y Díaz, J. (2016). Road traffic noise effects on cardiovascular, respiratory, and metabolic health: An integrative model of biological mechanisms. Environmental Research, 146, 359-370. https://doi.org/10.1016/j.envres.2015.12.036
dc.relation.referencesRecuero, M., Gil, C. y Grundman, J. (1997). Mapa de ruido de Segovia. Estudio de diferentes ambientes acústicos. Tecniacústica, 29-32. https://acortar.link/3S4RNu
dc.relation.referencesRecuero, M., Gil, C., y Grundman, J. (1996). Mapa de ruido de San Sebastián de los Reyes. Metodología de medidas y resultados. Revista de Acústica, Jornadas Nacionales de Acústica, 51-54.
dc.relation.referencesRedmon, J. (2016). Darknet: Open Source Neural Networks in C. Joseph Chet Redmon. https://pjreddie.com/darknet/
dc.relation.referencesRedmon, J., Divvala, S., Girshick, R. y Farhadi, A. (2016). You only look once: Unified, real-time object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 779-788. https://doi.org/10.1109/CVPR.2016.91
dc.relation.referencesRedmon, J. y Farhadi, A. (2018). Yolov3: An incremental improvement. https://doi.org/10.48550/arXiv.1804.02767
dc.relation.referencesRedmon, J. y Farhadi, A. (2016). YOLO9000: Better, Faster, Stronger. https://doi.org/10.48550/arXiv.1612.08242
dc.relation.referencesRegistro Único Nacional de Tránsito [RUNT]. (2024). Parque automotor registrado en RUNT [fecha de consulta: febrero de 2024]. https://www.runt.gov.co/runt-en-cifras/parque-automotor?fecha%5Bmin%5D=2024-01- 01&fecha%5Bmax%5D=2024-12-31
dc.relation.referencesResearch & Development Division. (1989). Guidance Notes on Road Testing. Highways Department. https://www.hyd.gov.hk/en/technical_references/technical_document/guidance_notes/pdf/gn009.pdf
dc.relation.referencesRibeiro, J. (2016). Assessment of the CNOSSOS-EU model for road traffic noise prediction. 1-15. https://acortar.link/idmcHX
dc.relation.referencesRomero, E. E., Camacho, C. D., Montenegro, C. E., Acosta, Ó. E., González, R., Gaona, E. E. y Herrera, M. (2022). Integration of DevOps Practices on a Noise Monitor System with CircleCI and Terraform. ACM Transactions on Management Information Systems, 13(4), 1-24. https://doi.org/10.1145/3505228
dc.relation.referencesSecretaría de Movilidad de Medellín. (2020). Sistema Inteligente de Movilidad de Medellín. https://www.medellin.gov.co/simm/
dc.relation.referencesSecretaría Distrital de Movilidad. (2024). Información de la restricción a la circulación de vehículos de carga. Alcaldía Mayor de Bogotá. https://bogota.gov.co/servicios/guia-de-tramites-y-servicios/informacion-de-la-restriccion-lacirculacion-de-vehiculos-de-carga-sdm-37129
dc.relation.referencesSecretaría Distrital de Movilidad. (2023). Diagnóstico Integral. Plan de Movilidad Sostenible y Segura (Documento Técnico de Soporte). Secretaría Distrital de Movilidad, Alcaldía Mayor de Bogotá. https://www.movilidadbogota.gov.co/web/sites/default/files/Paginas/02-11- 2023/2.1_documento_tecnico_de_soporte_del_pmss_de_bogota_d.cfirmas.pdf
dc.relation.referencesSecretaría Distrital de Movilidad. (2017). Observatorio de movilidad Bogotá D. C. Alcaldía Mayor de Bogotá. https://datosabiertos.bogota.gov.co/dataset/091b08e1-6657-42e3-a3eb-68964304f480/resource/166dd7e4- 527b-417d-83ab-a96a1efcf5a7/download/observatorio_de_movilidad_2017.pdf
dc.relation.referencesSecretaría Distrital de Movilidad. (2015). Movilidad en cifras 2015. Alcaldía Mayor de Bogotá. https://issuu.com/sdmbogota/docs/movilidad_cifras_2015_v4c-marzo2017
dc.relation.referencesSecretaría Distrital de Planeación [SPD]. (2019). Caracterización de vivienda y población de la zona rural de Bogotá D. C. Alcaldía Mayor de Bogotá. https://www.sdp.gov.co/sites/default/files/caracterizacion_ruralidad_vf.pdf
dc.relation.referencesSéneca. (2007). Epistulae Morales ad Lucilium. Letter 56. Harvard University Press. https://archive.org/details/adluciliumepistu01sene/page/n4/mode/1up
dc.relation.referencesService d'Etudes Sur les Transports, les Routes et Leurs Aménagements [Sétra]. (2009a). Road noise prediction. 1. Calculating sound emissions from road traffic (NMPB 2008). Cerema Infrastructures de Transport et Matériaux. https://doc.cerema.fr/Default/doc/SYRACUSE/17547/road-noise-prediction-1-calculating-sound-emissionsfrom-road-traffic?_lg=fr-FR
dc.relation.referencesService d'Etudes Sur les Transports, les Routes et Leurs Aménagements [Sétra]. (2009b). Road noise prediction. 2. Noise propagation computation method including meteorological effects (NMPB 2008). Cerema Infrastructures de Transport et Matériaux. 136 https://doc.cerema.fr/search.aspx?SC=DEFAULT&QUERY=Road+noise+prediction+%3A+2&QUERY_LABEL=#/Se arch/(query:(InitialSearch:!t,Page:0,PageRange:3,QueryString:'Road%20noise%20prediction%20:%202',ResultSiz e:-1,ScenarioCode:DEFAULT,SearchContext:0,SearchLabel:''))
dc.relation.referencesService d'Etudes Sur les Transports, les Routes et Leurs Aménagements [Sétra]. (1996). Bruit des infrastructures routières. Méthode de calcul incluant les effets météorologiques. Version expérimentale. NMPB-Routes-96. CERTU.Lyon. https://side.developpement-durable.gouv.fr/ACCIDR/doc/SYRACUSE/302624/bruit-desinfrastructures-routieres-methode-de-calcul-incluant-les-effets-meteorologiques-version-ex?_lg=fr-FR
dc.relation.referencesScikit-Learn Developers. (2024a). GridSearchCV. https://scikitlearn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
dc.relation.referencesScikit-Learn Developers. (2024b). 3.1. Cross-validation: evaluating estimator performance. https://scikitlearn.org/stable/modules/cross_validation.html
dc.relation.referencesScikit-Learn Developers. (2024c). StandardScaler. https://scikitlearn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
dc.relation.referencesScikit-Learn Developers. (2024d). SVC.https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
dc.relation.referencesScikit-Learn Developers. (2024e). DecisionTreeRegressor. https://scikitlearn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
dc.relation.referencesScikit-Learn Developers. (2024f). MLPRegressor. https://scikitlearn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html
dc.relation.referencesScikit-Learn Developers. (2024g). 4.2. Permutation feature importance. https://scikitlearn.org/stable/modules/permutation_importance.html#id2
dc.relation.referencesScikit-Learn Developers. (2024h). Permutation Importance with Multicollinear or Correlated Features. https://scikitlearn.org/stable/auto_examples/inspection/plot_permutation_importance_multicollinear.html#sphx-glr-autoexamples-inspection-plot-permutation-importance-multicollinear-py
dc.relation.referencesTorija, A. J., Ruiz, D. P., y Ramos-Ridao, A. F. (2012). Use of back-propagation neural networks to predict both level and temporal-spectral composition of sound pressure in urban sound environments. Building and Environment, 52, 45-56. https://doi.org/10.1016/j.buildenv.2011.12.024
dc.relation.referencesTorija, A. J., Ruiz, D. P. y Ramos-Ridao, Á. (2011). Required stabilization time, short-term variability and impulsiveness of the sound pressure level to characterize the temporal composition of urban soundscapes. Applied Acoustics, 72(2-3), 89-99. https://doi.org/10.1016/j.apacoust.2010.09.011
dc.relation.referencesTzutalin LabelImg Git code. (2018). byhqsr/tzutalin-labelImg. https://github.com/byhqsr/tzutalin-labelImg
dc.relation.referencesVan Blokland, G. y Peeters, B. (2009). Modeling the noise emission of road vehicles and results of recent experiments. 38th International Congress and Exposition on Noise Control Engineering 2009, INTER-NOISE, 4, 2274-2279. https://mp.nl/sites/default/files/publications/in09_895.pdf
dc.relation.referencesVerheijen, E. y Jabben, J. (2010). Effect of electric cars on traffic noise and safety. National Institute for Public Health and the Environment. http://www.rivm.nl/bibliotheek/rapporten/680300009.pdf
dc.relation.referencesVittorio, A. (2018). Toolkit to download and visualize single or multiple classes from the huge Open Images v4 dataset. https://github.com/EscVM/OIDv4_ToolKit
dc.relation.referencesWeinberg, S. L. y Abramowitz, S. K. (2016). Statistics Using Stata: An Integrative Approach. Cambridge University Press.
dc.relation.referencesYadav, A., Parida, M. y Kumar, B. (2023). Statistical modeling of traffic noise at intersections in a mid-sized city, India. Noise Mapping, 10(1). 20220164. https://doi.org/10.1515/noise-2022-0164
dc.relation.referencesYang, W., Cai, M. y Luo, P. (2020). The calculation of road traffic noise spectrum based on the noise spectral characteristics of single vehicles. Applied Acoustics, 160, 107128. https://doi.org/10.1016/j.apacoust.2019.107128
dc.rights.accesoAbierto (Texto Completo)
dc.rights.accessrightsOpenAccess
dc.subjectRuido
dc.subjectTrafico
dc.subjectRodado
dc.subjectAprendizaje
dc.subjectAutomatico
dc.subjectRegresión
dc.subjectRedes
dc.subjectNeuronales
dc.subjectArtificiales
dc.subject.keywordNoise
dc.subject.keywordRoad traffic
dc.subject.keywordMachine learning
dc.subject.keywordRegression
dc.subject.keywordArtificial Neural Networks
dc.subject.keywordLearning
dc.subject.keywordNetworks
dc.subject.lembDoctorado en Ingeniería -- Tesis y disertaciones académicas
dc.subject.lembPredicción de ruido por tráfico rodado
dc.subject.lembAprendizaje automático en gestión ambiental
dc.subject.lembModelos de regresión para predicción de ruido
dc.titlePropuesta de un modelo para la predicción de ruido por tráfico rodado a partir de aprendizaje automático que ofrezca información potencialmente útil en los procesos de gestión ambiental del ruido en entornos urbanos de Bogotá
dc.title.titleenglishProposal of a model for predicting road traffic noise through machine learning, providing potentially useful information in the processes of environmental management of noise in urban environments of Bogota
dc.typedoctoralThesis
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.degreeInvestigación-Innovación
dc.type.driverinfo:eu-repo/semantics/doctoralThesis

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
AcostaAgudeloÓscarEsneider2024.pdf
Tamaño:
9.14 MB
Formato:
Adobe Portable Document Format
Descripción:
Trabajo de doctorado
No hay miniatura disponible
Nombre:
LicenciaDeUsoyAutorizaciónAcostaAgudeloÓscarEsneider2024.pdf
Tamaño:
316.79 KB
Formato:
Adobe Portable Document Format
Descripción:
Licencia de uso y autorización

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
7 KB
Formato:
Item-specific license agreed upon to submission
Descripción: