Diseño e implementación de un vehículo aéreo no tripulado UAV de bajo coste

dc.contributor.advisorAlzate Monroy, Marco Aurelio
dc.contributor.authorGuarín Ramos, Miguel Felipe
dc.contributor.authorGantiva Sanchez, Lorena
dc.contributor.otherGarcia Barreto, Germán Alberto (Catalogador)
dc.date.accessioned2025-03-29T11:21:49Z
dc.date.available2025-03-29T11:21:49Z
dc.date.created2025-02-12
dc.descriptionEste trabajo describe una metodología a partir de la cual se construye un vehículo aéreo no tripulado de bajo coste desde cero. Con la metodología propuesta en el documento, se pueden observar las distintas partes que compone un Vehículo aéreo no tripulado tipo cuadricóptero, las consideraciones y el método de diseño de cada elemento. Se muestra un diseño de un sistema de potencia para gestionar motores coreless y reducir la distorsión en las etapas de energía del UAV. También se explora un diseño de una PCB y chasis que permiten conectar los elementos del UAV. Observamos el uso de sensores básicos para conseguir medidas de orientación en 3 grados de libertad y la altitud relativa, a partir tanto de la información de dichos sensores fusionadas por medio de Filtro de Kalman y otras técnicas adicionales. Se explora la cinemática y la dinámica completa de un cuadricóptero y se realiza un modelo aproximado y linealizado para controlar la orientación y altitud del UAV cuadricóptero por medio del empuje de los pares motor-hélice, por medio de un controlador PID. Finalmente, se explora la implementación de un servidor web local por medio de la ESP32 por la cual habrá conexión directa entre un dispositivo (celular o computadora) y el UAV. Este trabajo brinda los elementos básicos con los cuales se puede iniciar la construcción de un UAV y explora distintas disciplinas desde sus fundamentos para comprender la base de diseño e implementación de vehículos aéreos no tripulados.
dc.description.abstractThis document describes a methodology to construct a low-cost unmanned aerial vehicle from scratch. With the methodology proposed in this document, we can identify the different parts that a quadcopter unmanned aerial vehicle is composed of, its considerations, and the design method of each element. We show a coreless motor power management circuit and how it helps to reduce the distortion in the power supply stage of the UAV. Additionally, we explore the design of a PCB and chassis that allows connecting every element of the UAV. We observe the use of basic sensors to obtain 3 degrees of freedom of orientation and relative altitude, with the information from these sensors fused using a Kalman Filter and other techniques. We explore the complete kinematics and dynamics of a quadcopter and create a rough linearized model to control the orientation and altitude of the quadcopter UAV through the thrust of the motor-propeller system with a PID controller. Finally, we explore the implementation of a local web server using the ESP32, which enables a direct connection between a device (such as a smartphone or computer) and the UAV. This document provides the basic elements to get started in constructing a UAV and explores the different disciplines, from the fundamentals to understanding the basics of design and implementation of unmanned aerial vehicles.
dc.format.mimetypepdf
dc.identifier.urihttp://hdl.handle.net/11349/94355
dc.language.isospa
dc.publisherUniversidad Distrital Francisco José de Caldas
dc.relation.referencesS. Chapman, Máquinas eléctricas. Mc Graw Hill, 2012.
dc.relation.referencesF. Fries, S. K. H. Win, E. Tang, J. E. Low, L. S. T. Win, P. V. y Alvarado, and S. Foong, “Design and implementation of a compact rotational speed and air flow sensor for unmanned aerial vehicles,” IEEE Sensors Journal, vol. 19, no. 22, pp. 10 298–10 307, 2019.
dc.relation.referencesF. Yu, Y. Liu, L. Fan, L. Li, Y. Han, and G. Chen, “Design and implementa- tion of atmospheric multi-parameter sensor for uav-based aerosol distribution detection,” Sensor Review, vol. 37, no. 2, pp. 196–210, 2017.
dc.relation.referencesH. Xiang and L. Tian, “Development of a low-cost agricultural remote sensing system based on an autonomous unmanned aerial vehicle (uav),” Biosystems engineering, vol. 108, no. 2, pp. 174–190, 2011.
dc.relation.referencesE. D’Amato, V. A. Nardi, I. Notaro, and V. Scordamaglia, “A particle filte- ring approach for fault detection and isolation of uav imu sensors: Design, implementation and sensitivity analysis,” Sensors, vol. 21, no. 9, p. 3066, 2021.
dc.relation.referencesB. Kada and Y. Ghazzawi, “Robust pid controller design for an uav flight control system,” in Proceedings of the World congress on Engineering and Computer Science, vol. 2, no. 1-6, 2011, pp. 1–6.
dc.relation.referencesJ.-H. Kim, S. Sukkarieh, and S. Wishart, “Real-time navigation, guidance, and control of a uav using low-cost sensors,” in Field and Service Robotics: Recent Advances in Reserch and Applications. Springer, 2006, pp. 299–309.
dc.relation.referencesH. X. Pham, H. M. La, D. Feil-Seifer, and L. V. Nguyen, “Autonomous uav navigation using reinforcement learning,” arXiv preprint arXiv:1801.05086, 2018.
dc.relation.referencesF. Jiang, F. Pourpanah, and Q. Hao, “Design, implementation, and evaluation of a neural-network-based quadcopter uav system,” IEEE Transactions on Industrial Electronics, vol. 67, no. 3, pp. 2076–2085, 2019.
dc.relation.referencesY.-C. Lai and W. O. Ting, “Design and implementation of an optimal energy control system for fixed-wing unmanned aerial vehicles,” Applied Sciences, vol. 6, no. 11, p. 369, 2016.
dc.relation.referencesH. B. Torabi, M. Sadi, and A. Y. Varjani, “Solar power system for experi- mental unmanned aerial vehicle (uav); design and fabrication,” in 2011 2nd Power Electronics, Drive Systems and Technologies Conference. IEEE, 2011, pp. 129–134.
dc.relation.referencesS. Zhang, Y. Zeng, and R. Zhang, “Cellular-enabled uav communica- tion: A connectivity-constrained trajectory optimization perspective,” IEEE Transactions on Communications, vol. 67, no. 3, pp. 2580–2604, 2018.
dc.relation.referencesR. Amorim, H. Nguyen, P. Mogensen, I. Z. Kovács, J. Wigard, and T. B. Sørensen, “Radio channel modeling for uav communication over cellular net- works,” IEEE Wireless Communications Letters, vol. 6, no. 4, pp. 514–517, 2017.
dc.relation.referencesB. Li, Z. Fei, and Y. Zhang, “Uav communications for 5g and beyond: Recent advances and future trends,” IEEE Internet of Things Journal, vol. 6, no. 2, pp. 2241–2263, 2018.
dc.relation.referencesO. Tatale, N. Anekar, S. Phatak, and S. Sarkale, “Quadcopter: design, cons- truction and testing,” International Journal for Research in Engineering Ap- plication & Management, vol. 4, pp. 1–7, 2018.
dc.relation.referencesM. Wierema, “Design, implementation and flight test of indoor navigation and control system for a quadrotor uav,” Master of Science in Aerospace Engineering at Delft University of Technology, 2008.
dc.relation.referencesQ. Quan, Introduction to multicopter design and control. Springer, 2017.
dc.relation.referencesH. Abyarjoo and R. al, “Implementing a sensor fusion algorithm for 3d orientation detection with inertial-magnetic sensors,” Re- searchGate, 2014. [Online]. Available: https://www.researchgate.net/ publication/264707640_Implementing_a_Sensor_Fusion_Algorithm_for_ 3D_Orientation_Detection_with_InertialMagnetic_Sensors
dc.relation.referencesC. Aeronautics, “Repositorio de carbon aeronautics en github,” 2024, consultado el 30 de enero de 2025. [Online]. Available: https://github.com/ CarbonAeronautics
dc.relation.referencesAdafruit, “Bmp180 barometer sensor datasheet,” 2024. [Online]. Available: https://cdn-shop.adafruit.com/datasheets/BST-BMP180-DS000-09.pdf
dc.relation.referencesC. A. Marín, Y. E. Gutiérrez et al., “Control and tridimensional simulation of the quanser qball 2 using ros and matlab,” in 2023 IEEE 6th Colombian Conference on Automatic Control (CCAC). IEEE, 2023, pp. 1–6.
dc.relation.referencesK. Ogata, Ingeniería de control moderna. Pearson educación, 2003.
dc.relation.referencesK. Ogata, Sistemas de control en tiempo discreto. Pearson educación, 1996.
dc.relation.referencesA. S. Tanenbaum, Redes de computadoras. Pearson educación, 2003.
dc.rights.accesoAbierto (Texto Completo)
dc.rights.accessrightsOpenAccess
dc.subjectUAV Cuadricoptero
dc.subjectBajo coste
dc.subjectServidor local
dc.subjectDiseño prototipo
dc.subjectControlador PID
dc.subjectFiltro Kalman
dc.subject.keywordUAV Quadcopter
dc.subject.keywordLow cost
dc.subject.keywordLocal server
dc.subject.keywordPID Controller
dc.subject.keywordKalman filter
dc.subject.keywordPrototype design
dc.subject.lembIngeniería Electrónica -- Tesis y disertaciones académicas
dc.subject.lembAparatos voladores
dc.subject.lembVuelos de entrenamiento
dc.subject.lembVehículos no tripulados
dc.subject.lembVehículos piloteados de forma remota
dc.subject.lembAvión teledirigido
dc.titleDiseño e implementación de un vehículo aéreo no tripulado UAV de bajo coste
dc.title.titleenglishDesign and Implementation of a low-cost Unmanned Aerial Vehicle (UAV)
dc.typebachelorThesis
dc.type.degreeMonografía
dc.type.driverinfo:eu-repo/semantics/bachelorThesis

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
DisImpVehAerNoTripUAVBajCost.pdf
Tamaño:
42.94 MB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
Licencia.pdf
Tamaño:
339.04 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
7 KB
Formato:
Item-specific license agreed upon to submission
Descripción: