Automation of functional annotation of genomes and transcriptomes

dc.contributor.authorCadavid Gutiérrez, Luis Fernandospa
dc.contributor.authorPérez Castillo, José Nelsonspa
dc.contributor.authorRojas Quintero, Cristian Alejandrospa
dc.contributor.authorVera Parra, Nelson Enriquespa
dc.date2014-12-01
dc.date.accessioned2019-09-19T21:44:48Z
dc.date.available2019-09-19T21:44:48Z
dc.descriptionFunctional annotation represents a means to investigate and classify genes and transcripts according to their function within a given organism.This paper presents Massive Automatic Functional Annotation (MAFA - Web), which is an online free bioinformatics tool that allows automation, unification and optimization of functional annotation processes when dealing with large volumes of sequences. MAFA includes tools for categorization and statistical analysis of associations between sequences. We have evaluated the performance of MAFA with a set of data taken from Diploria-Strigosatranscriptome (using an 8-core computer, namely E7450 @ 2,40GHZ with 256GB RAM), processing rates of 2,7 seconds per sequence (using Uniprot database) and 50,0 seconds per sequence (using Non-redundant from NCBI database) were found together with particular RAM usage patterns that depend on the database being processed (1GB for Uniprot database and 9GB for Non-redundant database).. Aviability: https://github.com/BioinfUD/MAFA. en-US
dc.descriptionFunctional annotation represents a means to investigate and classify genes and transcripts according to their function within a given organism.This paper presents Massive Automatic Functional Annotation (MAFA - Web), which is an online free bioinformatics tool that allows automation, unification and optimization of functional annotation processes when dealing with large volumes of sequences. MAFA includes tools for categorization and statistical analysis of associations between sequences. We have evaluated the performance of MAFA with a set of data taken from Diploria-Strigosatranscriptome (using an 8-core computer, namely E7450 @ 2,40GHZ with 256GB RAM), processing rates of 2,7 seconds per sequence (using Uniprot database) and 50,0 seconds per sequence (using Non-redundant from NCBI database) were found together with particular RAM usage patterns that depend on the database being processed (1GB for Uniprot database and 9GB for Non-redundant database). Aviability: https://github.com/BioinfUD/MAFA. es-ES
dc.formatapplication/pdf
dc.identifierhttps://revistas.udistrital.edu.co/index.php/Tecnura/article/view/9246
dc.identifier10.14483/22487638.9246
dc.identifier.urihttp://hdl.handle.net/11349/20854
dc.languageeng
dc.publisherUniversidad Distrital Francisco José de Caldas. Colombiaes-ES
dc.relationhttps://revistas.udistrital.edu.co/index.php/Tecnura/article/view/9246/10498
dc.rightsDerechos de autor 2015 Revista Tecnuraes-ES
dc.sourceTecnura Journal; Vol 18 (2014): Special Edition Doctorate; 90-96en-US
dc.sourceTecnura; Vol. 18 (2014): Special Edition Doctorate; 90-96es-ES
dc.source2248-7638
dc.source0123-921X
dc.subjectAnnotatoren-US
dc.subjectFunctional annotationen-US
dc.subjectGene ontologyen-US
dc.subjectHigh Throughput Sequencing.en-US
dc.subjectAnnotatores-ES
dc.subjectFunctional annotationes-ES
dc.subjectGene ontologyes-ES
dc.subjectHigh Throughput Sequencing.es-ES
dc.titleAutomation of functional annotation of genomes and transcriptomesen-US
dc.titleAutomation of functional annotation of genomes and transcriptomeses-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.type.coarhttp://purl.org/coar/resource_type/c_6501

Archivos

Colecciones