Predicción de la incidencia epidemiológica del dengue en Colombia utilizando una Red Neuronal Recurrente a partir de información captada por sensores remotos

dc.contributor.advisorMedina Daza, Ruben Javier
dc.contributor.authorSilva Avila, Daniel Fernando
dc.contributor.orcidMedina Daza, Ruben Javier [0000-0002-9851-9761]
dc.date.accessioned2025-04-08T16:20:52Z
dc.date.available2025-04-08T16:20:52Z
dc.date.created2024-11-13
dc.descriptionEl dengue es una enfermedad vírica endémica (confinada a zonas tropicales y subtropicales) transmitida por el mosquito Aedes aegypti y es una preocupación sanitaria mundial debido a su rápida propagación y a la creciente gravedad de los brotes. En este estudio se aprovecha la capacidad de los algoritmos de aprendizaje automático para construir un modelo de regresión robusto a partir de una red neuronal recurrente, incorporando datos históricos del dengue en Colombia y variables medioambientales derivadas de medidas obtenidas por sensores remotos. Con ello se pretende mejorar la precisión de las previsiones de casos de dicha enfermedad, así como complementar el estado del arte para este tipo de modelos epidemiológicos. En total se crearon 4 modelos usando datos provenientes de diferentes departamentos de Colombia históricamente afectados (Antioquia, Norte de Santander, Santander y Valle del Cauca), los modelos presentaron un RMSE de 12, 46, 20 y 15 unidades y un r2 de 0.89, 0.97, 0.97 y 0.88 respectivamente. Al comparar el RMSE con el rango central más representativo de los datos (entre los percentiles 25 y 75), se encontró que, para el modelo con mejor desempeño, las predicciones se alejan entre un 11% y un 30% de los valores reales, lo que es relativamente poco en el contexto de los datos. Este es un resultado prometedor ya que las predicciones precisas son cruciales para la planificación y respuesta de la salud pública permitiendo intervenciones específicas en zonas de alto riesgo, lo que puede reducir la propagación de la enfermedad y prevenir brotes, salvando vidas y reduciendo la carga de los sistemas sanitarios.
dc.description.abstractDengue is an endemic viral disease (confined to tropical and subtropical areas) transmitted by the Aedes aegypti mosquito and is a global health concern due to its rapid spread and the increasing severity of outbreaks. This study exploits the power of machine learning algorithms to build a robust regression model from a recurrent neural network, incorporating historical data on dengue in Colombia and environmental variables derived from remotely sensed measurements. This is intended to improve the accuracy of forecasts of dengue cases, as well as to complement the state of the art for this type of epidemiological models. A total of 4 models were created using data from different historically affected departments of Colombia (Antioquia, Norte de Santander, Santander and Valle del Cauca). The models presented an RMSE of 12, 46, 20 and 15 units and an r2 of 0.89, 0.97, 0.97 and 0.88 respectively. Comparing the RMSE with the most representative central range of the data (between the 25th and 75th percentiles), it was found that, for the best performing model, the predictions are between 11% and 30% away from the real values, which is relatively small in the context of the data. This is a promising result as accurate predictions are crucial for public health planning and response allowing targeted interventions in high-risk areas, which can reduce the spread of disease and prevent outbreaks, saving lives and reducing the burden on health systems.
dc.format.mimetypepdf
dc.identifier.urihttp://hdl.handle.net/11349/94746
dc.relation.referencesAlpaydın, E. (2014). Introduction to Machine Learning. The MIT Press. Obtenido de https://dl.matlabyar.com/siavash/ML/Book/Ethem%20Alpaydin-Introduction%20to%20Machine%20Learning-The%20MIT%20Press%20(2014).pdf
dc.relation.referencesBarrales, L., Peña, I., & Fernandez de la Reguera, P. (2004). VALIDACIÓN DE MODELOS: UN ENFOQUE APLICADO. Agricultura Técnica, 64(1). doi:http://dx.doi.org/10.4067/S0365-28072004000100008
dc.relation.referencesBeatty, M. E., Stone, A., FitzSimons, D., Hanna, J. N., Lam, S., Vong, S., . . . Margolis, H. S. (2010). Best Practices in Dengue Surveillance: A Report from the Asia-Pacific and Americas Dengue Prevention Boards. PLOS Neglected Tropical Diseases, 4(11). Recuperado el 2 de 9 de 2024, de https://ncbi.nlm.nih.gov/pmc/articles/pmc2982842
dc.relation.referencesBello, S., Diaz, E., Malagón-Rojas, J., Romero, M., & Salazar, V. (2011). Medición del impacto económico del dengue en Colombia: una aproximación a los costos médicos directos en el periodo 2000-2010. Biomédica. Obtenido de https://www.semanticscholar.org/paper/Medici%C3%B3n-del-impacto-econ%C3%B3mico-del-dengue-en-una-a-Bello-D%C3%ADaz/0363af78e75599efc3b6a82aa892a7f5ed40c6ef
dc.relation.referencesBishop, C. (2006). Pattern recognition and machine learning. Springer
dc.relation.referencesCastrillón, J., Castaño, J., & Urcuqui, S. (2015). Dengue en Colombia: diez años de evolución. Revista chilena de infectología, 32(2). doi:http://dx.doi.org/10.4067/S0716-10182015000300002
dc.relation.referencesCeccato, P., Bell, M., Blumenthal, M. B., Connor, S. J., Dinku, T., Grover-Kopec, E. K., . . . Thomson, M. C. (2006). Use of Remote Sensing for Monitoring Climate Variability for Integrated Early Warning Systems: Applications for Human Diseases and Desert Locust Management. Recuperado el 8 de 9 de 2024, de https://academiccommons.columbia.edu/doi/10.7916/d83x8grz
dc.relation.referencesCerda, J., Valdivia, G., Valenzuela, T., & Venegas, J. (2008). Cambio climático y enfermedades infecciosas. Un nuevo escenario epidemiológico. Revista chilena de infectología, 25(6), 447-452. doi:http://dx.doi.org/10.4067/S0716-10182008000600006
dc.relation.referencesChaturvedi, D. (2008). Soft Computing. Techniques and its Applications in Electrical Engineering. Springer Berlin, Heidelberg. doi:https://doi.org/10.1007/978-3-540-77481-5
dc.relation.referencesChuvieco, E., & Huete, A. (2006). Fundamentals of Satellite Remote Sensing
dc.relation.referencesCosta, J. V., Donalisio, R. M., & Vaz de Arruda Silveira, L. (2013). Spatial distribution of dengue incidence and socio-environmental conditions in Campinas, São Paulo State, Brazil, 2007. Cadernos de saude publica, 29(8). doi:10.1590/0102-311x00110912
dc.relation.referencesda Silva-Voorham, J., Tami, A., Amadu, J., Rodhenuis-Zybert, I., Wilschut, J., & Smit, J. (2009). Dengue: a growing risk to travellers to tropical and sub-tropical regions. Ned Tijdschr Geneeskd, 153(A778). Obtenido de https://www.ntvg.nl/artikelen/dengue-een-toenemend-risico-voor-reizigers-naar-tropische-en-subtropische-landen
dc.relation.referencesde Almeida Filho, N., Ayres, J. R., & Castiel, L. D. (2009). Riesgo: concepto básico de la epidemiología. Salud colectiva, 5(3), 323-344. Obtenido de https://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S1851-82652009000300003&lng=es&tlng=es
dc.relation.referencesDégallier, N., Favier, C., Menkès, C. E., Lengaigne, M., Ramalho, W. M., Souza, R., . . . Boulanger, J.-P. (2010). Toward an early warning system for dengue prevention: modeling climate impact on dengue transmission. Climatic Change, 98(3), 581-592. Recuperado el 2 de 9 de 2024, de https://link.springer.com/article/10.1007/s10584-009-9747-3
dc.relation.referencesDepartamento administrativo nacional de estadística. (2024). Índice de precios al consumidor (IPC). Obtenido de Banco de la República Colombia: https://www.banrep.gov.co/es/estadisticas/indice-precios-consumidor-ipc
dc.relation.referencesDetels, R., Beaglehole, R., Lansing, M. A., & Gulliford, M. (2009). Epidemiology: the foundation of public health. Recuperado el 15 de 9 de 2024, de http://ph.ucla.edu/epi/faculty/detels/ph150/detels_epidemiology.pdf
dc.relation.referencesEpidemiology. (s.f.). Recuperado el 15 de 9 de 2024, de Extension Toxicology Network: http://pmep.cce.cornell.edu/profiles/extoxnet/TIB/epidemiology.html
dc.relation.referencesEspinola, M. (2014). Clasificación de imágenes de satélite mediante autómatas celulares. Obtenido de http://hdl.handle.net/10835/5297
dc.relation.referencesFeng, W., Guan, N., Li, Y., Zhang, X., & Luo, Z. (2017). Audio visual speech recognition with multimodal recurrent neural networks. 2017 International Joint Conference on Neural Networks (IJCNN), (págs. 681-688). doi:10.1109/IJCNN.2017.7965918
dc.relation.referencesFernandez, S., Diaz, S., & Valdez, F. (2004). Medidas de frecuencia de enfermedad. Cuadernos de atención primaria, 11(2), 101-105
dc.relation.referencesFood and agriculture organization of the united nations FAO. (2015). Technical Report on Cost – Effectiveness of Remote Sensing for Agricultural Statistics in Developing and Emerging Economies. Obtenido de https://openknowledge.fao.org/server/api/core/bitstreams/42d9b92b-9e31-4c6e-b436-1d6389cc1be1/content
dc.relation.referencesGlobal Strategy For Dengue Prevention And Control. (2012). World Health Organization. Recuperado el 2 de 9 de 2024, de http://apps.who.int/iris/bitstream/10665/75303/1/9789241504034_eng.pdf
dc.relation.referencesGoodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press. Obtenido de https://www.deeplearningbook.org
dc.relation.referencesGorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sensing of Environment, 202, 18-27. Recuperado el 2 de 9 de 2024, de https://sciencedirect.com/science/article/pii/s0034425717302900
dc.relation.referencesGovernment of Canada. (2015). Digital Image Processing. Obtenido de Natural Resources Canada: https://natural-resources.canada.ca/maps-tools-and-publications/satellite-imagery-elevation-data-and-air-photos/tutorial-fundamentals-remote-sensing/image-interpretation-analysis/digital-image-processing/9279
dc.relation.referencesGuo, P., Liu, T., Zhang , Q., Wang , L., Xiao , J., Zhang , Q., . . . Ma, W. (2017). Developing a dengue forecast model using machine learning: A case study in China. PLOS Neglected Tropical Diseases, 11(10). doi:https://doi.org/10.1371/journal.pntd.0005973
dc.relation.referencesGutierrez, B. H., Medina, M. S., Zapata, J., & Chua, J. (2020). Dengue Infections in Colombia: Epidemiological Trends of a Hyperendemic Country. Tropical medicine and infectious disease, 5(4), 156. doi:10.3390/tropicalmed5040156
dc.relation.referencesGuzmán, M. G., & Kourí, G. (2004). Dengue diagnosis, advances and challenges. International Journal of Infectious Diseases, 8(2), 69-80. Recuperado el 15 de 9 de 2024, de https://sciencedirect.com/science/article/pii/s1201971203000390
dc.relation.referencesHawkins, D. M. (2004). The Problem of Overfitting. Journal of Chemical Information and Computer Sciences, 44(1), 1-12. Recuperado el 5 de 9 de 2024, de https://pubs.acs.org/doi/10.1021/ci0342472
dc.relation.referencesHoltz, T. S. (2007). Introductory Digital Image Processing: A Remote Sensing Perspective, Third Edition. Environmental & Engineering Geoscience, 13(1), 89-90. Recuperado el 3 de 9 de 2024, de https://pubs.geoscienceworld.org/aeg/eeg/article/13/1/89/136798/introductory-digital-image-processing-a-remote
dc.relation.referencesInstituto Nacional de Salud. (2024). Protocolo de vigilancia en salud pública. Dengue. doi:https://doi.org/10.33610/JQVP8800
dc.relation.referencesJain, L., & Medsker, L. (1999). Recurrent Neural Networks: Design and Applications. CRC Press, Inc.
dc.relation.referencesJoiner associates. (1995). Data Collection: Plain & Simple: Learning and Application Guide . Oriel Inc.
dc.relation.referencesKalluri, S., Gilruth, P. T., Rogers, D., & Szczur, M. (2007). Surveillance of arthropod vector-borne infectious diseases using remote sensing techniques: a review. PLOS Pathogens, 3(10), 1361-1371. Recuperado el 4 de 9 de 2024, de https://ncbi.nlm.nih.gov/pmc/articles/pmc2042005
dc.relation.referencesKratsios, A. (2019). Universal Approximation Theorems. arXiv: Machine Learning. Recuperado el 6 de 9 de 2024, de https://arxiv.org/abs/1910.03344
dc.relation.referencesKyle, J. L., & Harris, E. (2008). Global Spread and Persistence of Dengue. Annual Review of Microbiology, 62(1), 71-92. Recuperado el 3 de 9 de 2024, de https://ncbi.nlm.nih.gov/pubmed/18429680
dc.relation.referencesLeung, X. Y., Islam, R. M., Adhami, M., Ilic, D., McDonald, L., Palawaththa, S., . . . Karim, M. N. (2023). A systematic review of dengue outbreak prediction models: Current scenario and future directions. PLoS neglected tropical diseases, 17(2). doi:10.1371/journal.pntd.0010631
dc.relation.referencesMajeed, M., Shafri, H., Wayayok, A., & Zulkafli, Z. (2023). Prediction of dengue cases using the attention-based long short-term memory (LSTM) approach. Geospatial health, 18(1). doi:10.4081/gh.2023.1176
dc.relation.referencesMeshesha, K. S., Shifaw , E., Kassaye, A. Y., Tsehayu , M. A., Eshetu, A. A., & Wondemagegnehu, H. (2024). Evaluating the relationship of vegetation dynamics with rainfall and land surface temperature using geospatial techniques in South Wollo zone, Ethiopia. Environmental Challenges, 15. doi:https://doi.org/10.1016/j.envc.2024.100895
dc.relation.referencesMinisterio de Salud y Protección Social. (2022). Malaria. Obtenido de Minsalud: https://www.minsalud.gov.co/salud/publica/PET/Paginas/malaria.aspx
dc.relation.referencesMitchell, T. M. (1997). Machine Learning. The Mc-Graw-Hill Companies, Inc. Recuperado el 15 de 9 de 2024, de https://www.cs.cmu.edu/~tom/mlbook.html
dc.relation.referencesMoreno-Madriñán, M., Crosson, W., Eisen, L., Estes, S., Estes Jr, M., Hayden, M., . . . Zielinski-Gutierrez, E. (2014). Correlating Remote Sensing Data with the Abundance of Pupae of the Dengue Virus Mosquito Vector, Aedes aegypti, in Central Mexico. ISPRS International Journal of Geo-Information, 3(2), 732-749. Obtenido de https://hdl.handle.net/1805/4469
dc.relation.referencesMutanga, O., Timothy, D., & Fethi, A. (2016). Progress in remote sensing: vegetation monitoring in South Africa. South African Geographical Journa, 98(3), 1-11. doi:10.1080/03736245.2016.1208586
dc.relation.referencesNaish, S., Dale, P. E., Mackenzie, J. S., McBride, J., Mengersen, K., & Tong, S. (2014). Climate change and dengue: a critical and systematic review of quantitative modelling approaches. BMC Infectious Diseases, 14(1), 167-167. Recuperado el 2 de 9 de 2024, de https://bmcinfectdis.biomedcentral.com/articles/10.1186/1471-2334-14-167
dc.relation.referencesNational Aeronautics and Space Administration. (2024). Moderate Resolution Imaging Spectroradiometer. Obtenido de https://modis.gsfc.nasa.gov/about/
dc.relation.referencesNational Aeronautics and Space Administration. (2024). MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V061 . Obtenido de Data.gov: https://catalog.data.gov/dataset/modis-terra-vegetation-indices-16-day-l3-global-250m-sin-grid-v061-5576a
dc.relation.referencesNational Aeronautics and Space Administration. (s.f.). The Electromagnetic Spectrum. Recuperado el 3 de 09 de 2024, de Nasa Science: https://science.nasa.gov/ems
dc.relation.referencesNnadi, E. N., Mark, O., Onyedibe, K., & Nimzing, L. (2011). Landscape epidemiology: An emerging perspective in the mapping and modelling of disease and disease risk factors. Asian Pacific Journal of Tropical Disease, 1(3). doi:10.1016/S2222-1808(11)60041-8
dc.relation.referencesOlah, C. (27 de August de 2015). Understanding LSTM Networks. Obtenido de colah's blog: https://colah.github.io/posts/2015-08-Understanding-LSTMs/
dc.relation.referencesPadilla, J. C., Rojas, D. P., & Saenz-Gomez, R. (2012). Dengue en Colombia: epidemiología de la reemergencia a la hiperendemia. Bogotá: Guías de impresión Ltda.
dc.relation.referencesPadilla, J., Lizarazo, F., Murillo, O., Mendigaña, F., Pachon, E., & Vera, M. (2017). Epidemiología de las principales enfermedades transmitidas por vectores en Colombia, 1990-2016. Biomédica, 27(2), 27-40. doi:https://doi.org/10.7705/biomedica.v34i2.3769
dc.relation.referencesPalaniyandi, M. (2012). The role of Remote Sensing and GIS for spatial prediction of vector-borne diseases transmission: A systematic review. Journal of vector borne diseases, 49(4), 197-204. doi:10.4103/0972-9062.213498
dc.relation.referencesParra-Henao, G. (2010). Sistemas de información geográfica y sensores remotos. Aplicaciones en enfermedades transmitidas por vectores. CES Med, 24(2), 75-90. Obtenido de http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-87052010000200007
dc.relation.referencesPoole, D., Mackworth, A., & Goebel, R. (1998). Computational Intelligence: A Logical Approach. Oxford University Press.
dc.relation.referencesPoznyak, T., Poznyak, A., & Chairez, I. (2019). Ozonation and biodegradation in environmental engineering. Elsevier. doi:https://linkinghub.elsevier.com/retrieve/pii/C20160038652
dc.relation.referencesRacloz, V., Ramsey, R., Tong, S., & Hu, W. (2012). Surveillance of Dengue Fever Virus: A Review of Epidemiological Models and Early Warning Systems. PLOS Neglected Tropical Diseases, 6(5). Recuperado el 2 de 9 de 2024, de https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0001648
dc.relation.referencesRodriguez-Morales, A. (2005). Ecoepidemiología y epidemiología satelital. Nuevas herramientas en el manejo de problemas de salud pública. Revista Peruana de Medicina Experimental y Salud Pública, 22(1), 54-63. Obtenido de https://www.redalyc.org/articulo.oa?id=36322109
dc.relation.referencesRotela, C. (2012). Desarrollo de modelos e indicadores remotos de riesgo epidemiológico de Dengue en Argentina. Córdoba, Argentina: Instituto de Altos Estudios Espaciales “Mario Gulich” Comisión Nacional de Actividades Espaciales Universidad Nacional de Córdoba. Obtenido de http://hdl.handle.net/11086/11609
dc.relation.referencesRussell, S. J., & Norvig, P. (2010). Artificial Intelligence: A Modern Approach. Pearson Education, Inc. Recuperado el 15 de 9 de 2024, de http://aima.cs.berkeley.edu/
dc.relation.referencesSafa, M., Zarkesh, M. K., Ejlali, F., & Farsad, F. (2021). The Spatial Autocorrelation between Precipitation and Vegetation. International Journal of Scientific Research and Management, 9(12), 199-214. doi:10.18535/ijsrm/v9i12.fe1
dc.relation.referencesŞatır, O., & Berberoglu, S. (2012). Land Use/Cover Classification Techniques Using Optical Remotely Sensed Data in Landscape Planning. Recuperado el 4 de 9 de 2024, de https://intechopen.com/books/landscape-planning/land-use-cover-classification-techniques-using-optical-remotely-sensed-data-in-landscape-plannin
dc.relation.referencesScavuzzo, J., Trucco, F., Espinosa, M., Tauro, C., Abril, M., Scavuzzo, C., & Frery, A. (2018). Modeling Dengue vector population using remotely sensed data and machine learning. Acta Tropica, 185, 167-175. doi:https://doi.org/10.1016/j.actatropica.2018.05.003
dc.relation.referencesSuperintendencia financiera de Colombia. (2024). Tasa de Cambio Representativa del Mercado -Historico. Obtenido de Datos abiertos: https://www.datos.gov.co/Econom-a-y-Finanzas/Tasa-de-Cambio-Representativa-del-Mercado-Historic/mcec-87by/about_data
dc.relation.referencesTewari, U. (2021). Regularization — Understanding L1 and L2 regularization for Deep Learning. Obtenido de medium: https://medium.com/analytics-vidhya/regularization-understanding-l1-and-l2-regularization-for-deep-learning-a7b9e4a409bf
dc.relation.referencesTomlinson, C. J., Chapman, L., Thornes, J. E., & Baker, C. (2011). Remote sensing land surface temperature for meteorology and climatology: a review. Meteorological Applications, 18(3), 296-306. Recuperado el 8 de 9 de 2024, de https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/met.287
dc.relation.referencesUsali, N., & Ismail, M. (2010). Use of Remote Sensing and GIS in Monitoring Water Quality. Journal of Sustainable Development, 3(3). doi:10.5539/jsd.v3n3p228
dc.relation.referencesVoPham, T., Hart, J., Laden, F., & Chiang, Y.-Y. (2018). Emerging trends in geospatial artificial intelligence (geoAI): potential applications for environmental epidemiology. Environmental Health volume, 17(40). doi:https://doi.org/10.1186/s12940-018-0386-x
dc.relation.referencesWang, S.-C. (2003). Interdisciplinary Computing in Java Programming. Springer Science & Business Media.
dc.relation.referencesWei, D. (2024). Demystifying the Adam Optimizer in Machine Learning. Obtenido de Medium: https://medium.com/@weidagang/demystifying-the-adam-optimizer-in-machine-learning-4401d162cb9e
dc.relation.referencesWoon, Y. L., Hor, C. P., Lee, K. Y., Anuar, S. F., Mudin, R. N., Ahmad, M. K., . . . Lim, T. O. (2018). Estimating dengue incidence and hospitalization in Malaysia, 2001 to 2013. BMC Public Health, 18(1), 946. Recuperado el 2 de 9 de 2024, de https://bmcpublichealth.biomedcentral.com/articles/10.1186/s12889-018-5849-z
dc.relation.referencesXang, X. (2023). Remote Sensing Applications to Climate Change. Remote Sensing, 15(3). doi:https://doi.org/10.3390/rs15030747
dc.relation.referencesYadav, D. (5 de December de 2018). Beginner’s Guide to RNN & LSTMs. Obtenido de Medium: https://medium.com/@humble_bee/rnn-recurrent-neural-networks-lstm-842ba7205bbf
dc.relation.referencesZellweger, R., Cano, J., Mangeas, M., Taglioni, F., Mercier, A., Despinoy, M., . . . Teurlai, M. (2017). Socioeconomic and environmental determinants of dengue transmission in an urban setting: An ecological study in Nouméa, New Caledonia. PLoS neglected tropical diseases, 11(4). doi:10.1371/journal.pntd.0005471
dc.relation.referencesZhengming, W., Yi, Z., Zhang, Q., & Zhao-Liang, L. (2004). Quality assessment and validation of the MODIS global land surface temperature. International Journal of Remote Sensing, 25(1), 261–274. doi:https://doi.org/10.1080/0143116031000116417
dc.rights.accesoAbierto (Texto Completo)
dc.rights.accessrightsOpenAccess
dc.subjectTeledetección
dc.subjectInteligencia artificial
dc.subjectEpidemiología
dc.subjectDengue
dc.subjectAlgoritmo
dc.subject.keywordRemote sensing
dc.subject.keywordArtificial intelligence
dc.subject.keywordEpidemiology
dc.subject.keywordDengue fever
dc.subject.keywordAlgorithm
dc.subject.lembMaestría en Ciencias de la Información y las Comunicaciones -- Tesis y disertaciones académicas
dc.subject.lembEpidemiología -- Procesamiento electrónico de datos
dc.subject.lembDengue -- Prevención y control
dc.subject.lembRedes neurales (Computadores)
dc.subject.lembCiencia y tecnología
dc.titlePredicción de la incidencia epidemiológica del dengue en Colombia utilizando una Red Neuronal Recurrente a partir de información captada por sensores remotos
dc.title.titleenglishPrediction of the epidemiological incidence of dengue fever in Colombia using a Recurrent Neural Network from remotely sensed information
dc.typemasterThesis
dc.type.degreeInvestigación-Innovación

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
SilvaAvilaDanielFernando2024.pdf
Tamaño:
1.98 MB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
Licencia de uso y publicacion.pdf
Tamaño:
207.09 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
7 KB
Formato:
Item-specific license agreed upon to submission
Descripción: