Predicción de la incidencia epidemiológica del dengue en Colombia utilizando una Red Neuronal Recurrente a partir de información captada por sensores remotos
dc.contributor.advisor | Medina Daza, Ruben Javier | |
dc.contributor.author | Silva Avila, Daniel Fernando | |
dc.contributor.orcid | Medina Daza, Ruben Javier [0000-0002-9851-9761] | |
dc.date.accessioned | 2025-04-08T16:20:52Z | |
dc.date.available | 2025-04-08T16:20:52Z | |
dc.date.created | 2024-11-13 | |
dc.description | El dengue es una enfermedad vírica endémica (confinada a zonas tropicales y subtropicales) transmitida por el mosquito Aedes aegypti y es una preocupación sanitaria mundial debido a su rápida propagación y a la creciente gravedad de los brotes. En este estudio se aprovecha la capacidad de los algoritmos de aprendizaje automático para construir un modelo de regresión robusto a partir de una red neuronal recurrente, incorporando datos históricos del dengue en Colombia y variables medioambientales derivadas de medidas obtenidas por sensores remotos. Con ello se pretende mejorar la precisión de las previsiones de casos de dicha enfermedad, así como complementar el estado del arte para este tipo de modelos epidemiológicos. En total se crearon 4 modelos usando datos provenientes de diferentes departamentos de Colombia históricamente afectados (Antioquia, Norte de Santander, Santander y Valle del Cauca), los modelos presentaron un RMSE de 12, 46, 20 y 15 unidades y un r2 de 0.89, 0.97, 0.97 y 0.88 respectivamente. Al comparar el RMSE con el rango central más representativo de los datos (entre los percentiles 25 y 75), se encontró que, para el modelo con mejor desempeño, las predicciones se alejan entre un 11% y un 30% de los valores reales, lo que es relativamente poco en el contexto de los datos. Este es un resultado prometedor ya que las predicciones precisas son cruciales para la planificación y respuesta de la salud pública permitiendo intervenciones específicas en zonas de alto riesgo, lo que puede reducir la propagación de la enfermedad y prevenir brotes, salvando vidas y reduciendo la carga de los sistemas sanitarios. | |
dc.description.abstract | Dengue is an endemic viral disease (confined to tropical and subtropical areas) transmitted by the Aedes aegypti mosquito and is a global health concern due to its rapid spread and the increasing severity of outbreaks. This study exploits the power of machine learning algorithms to build a robust regression model from a recurrent neural network, incorporating historical data on dengue in Colombia and environmental variables derived from remotely sensed measurements. This is intended to improve the accuracy of forecasts of dengue cases, as well as to complement the state of the art for this type of epidemiological models. A total of 4 models were created using data from different historically affected departments of Colombia (Antioquia, Norte de Santander, Santander and Valle del Cauca). The models presented an RMSE of 12, 46, 20 and 15 units and an r2 of 0.89, 0.97, 0.97 and 0.88 respectively. Comparing the RMSE with the most representative central range of the data (between the 25th and 75th percentiles), it was found that, for the best performing model, the predictions are between 11% and 30% away from the real values, which is relatively small in the context of the data. This is a promising result as accurate predictions are crucial for public health planning and response allowing targeted interventions in high-risk areas, which can reduce the spread of disease and prevent outbreaks, saving lives and reducing the burden on health systems. | |
dc.format.mimetype | ||
dc.identifier.uri | http://hdl.handle.net/11349/94746 | |
dc.relation.references | Alpaydın, E. (2014). Introduction to Machine Learning. The MIT Press. Obtenido de https://dl.matlabyar.com/siavash/ML/Book/Ethem%20Alpaydin-Introduction%20to%20Machine%20Learning-The%20MIT%20Press%20(2014).pdf | |
dc.relation.references | Barrales, L., Peña, I., & Fernandez de la Reguera, P. (2004). VALIDACIÓN DE MODELOS: UN ENFOQUE APLICADO. Agricultura Técnica, 64(1). doi:http://dx.doi.org/10.4067/S0365-28072004000100008 | |
dc.relation.references | Beatty, M. E., Stone, A., FitzSimons, D., Hanna, J. N., Lam, S., Vong, S., . . . Margolis, H. S. (2010). Best Practices in Dengue Surveillance: A Report from the Asia-Pacific and Americas Dengue Prevention Boards. PLOS Neglected Tropical Diseases, 4(11). Recuperado el 2 de 9 de 2024, de https://ncbi.nlm.nih.gov/pmc/articles/pmc2982842 | |
dc.relation.references | Bello, S., Diaz, E., Malagón-Rojas, J., Romero, M., & Salazar, V. (2011). Medición del impacto económico del dengue en Colombia: una aproximación a los costos médicos directos en el periodo 2000-2010. Biomédica. Obtenido de https://www.semanticscholar.org/paper/Medici%C3%B3n-del-impacto-econ%C3%B3mico-del-dengue-en-una-a-Bello-D%C3%ADaz/0363af78e75599efc3b6a82aa892a7f5ed40c6ef | |
dc.relation.references | Bishop, C. (2006). Pattern recognition and machine learning. Springer | |
dc.relation.references | Castrillón, J., Castaño, J., & Urcuqui, S. (2015). Dengue en Colombia: diez años de evolución. Revista chilena de infectología, 32(2). doi:http://dx.doi.org/10.4067/S0716-10182015000300002 | |
dc.relation.references | Ceccato, P., Bell, M., Blumenthal, M. B., Connor, S. J., Dinku, T., Grover-Kopec, E. K., . . . Thomson, M. C. (2006). Use of Remote Sensing for Monitoring Climate Variability for Integrated Early Warning Systems: Applications for Human Diseases and Desert Locust Management. Recuperado el 8 de 9 de 2024, de https://academiccommons.columbia.edu/doi/10.7916/d83x8grz | |
dc.relation.references | Cerda, J., Valdivia, G., Valenzuela, T., & Venegas, J. (2008). Cambio climático y enfermedades infecciosas. Un nuevo escenario epidemiológico. Revista chilena de infectología, 25(6), 447-452. doi:http://dx.doi.org/10.4067/S0716-10182008000600006 | |
dc.relation.references | Chaturvedi, D. (2008). Soft Computing. Techniques and its Applications in Electrical Engineering. Springer Berlin, Heidelberg. doi:https://doi.org/10.1007/978-3-540-77481-5 | |
dc.relation.references | Chuvieco, E., & Huete, A. (2006). Fundamentals of Satellite Remote Sensing | |
dc.relation.references | Costa, J. V., Donalisio, R. M., & Vaz de Arruda Silveira, L. (2013). Spatial distribution of dengue incidence and socio-environmental conditions in Campinas, São Paulo State, Brazil, 2007. Cadernos de saude publica, 29(8). doi:10.1590/0102-311x00110912 | |
dc.relation.references | da Silva-Voorham, J., Tami, A., Amadu, J., Rodhenuis-Zybert, I., Wilschut, J., & Smit, J. (2009). Dengue: a growing risk to travellers to tropical and sub-tropical regions. Ned Tijdschr Geneeskd, 153(A778). Obtenido de https://www.ntvg.nl/artikelen/dengue-een-toenemend-risico-voor-reizigers-naar-tropische-en-subtropische-landen | |
dc.relation.references | de Almeida Filho, N., Ayres, J. R., & Castiel, L. D. (2009). Riesgo: concepto básico de la epidemiología. Salud colectiva, 5(3), 323-344. Obtenido de https://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S1851-82652009000300003&lng=es&tlng=es | |
dc.relation.references | Dégallier, N., Favier, C., Menkès, C. E., Lengaigne, M., Ramalho, W. M., Souza, R., . . . Boulanger, J.-P. (2010). Toward an early warning system for dengue prevention: modeling climate impact on dengue transmission. Climatic Change, 98(3), 581-592. Recuperado el 2 de 9 de 2024, de https://link.springer.com/article/10.1007/s10584-009-9747-3 | |
dc.relation.references | Departamento administrativo nacional de estadística. (2024). Índice de precios al consumidor (IPC). Obtenido de Banco de la República Colombia: https://www.banrep.gov.co/es/estadisticas/indice-precios-consumidor-ipc | |
dc.relation.references | Detels, R., Beaglehole, R., Lansing, M. A., & Gulliford, M. (2009). Epidemiology: the foundation of public health. Recuperado el 15 de 9 de 2024, de http://ph.ucla.edu/epi/faculty/detels/ph150/detels_epidemiology.pdf | |
dc.relation.references | Epidemiology. (s.f.). Recuperado el 15 de 9 de 2024, de Extension Toxicology Network: http://pmep.cce.cornell.edu/profiles/extoxnet/TIB/epidemiology.html | |
dc.relation.references | Espinola, M. (2014). Clasificación de imágenes de satélite mediante autómatas celulares. Obtenido de http://hdl.handle.net/10835/5297 | |
dc.relation.references | Feng, W., Guan, N., Li, Y., Zhang, X., & Luo, Z. (2017). Audio visual speech recognition with multimodal recurrent neural networks. 2017 International Joint Conference on Neural Networks (IJCNN), (págs. 681-688). doi:10.1109/IJCNN.2017.7965918 | |
dc.relation.references | Fernandez, S., Diaz, S., & Valdez, F. (2004). Medidas de frecuencia de enfermedad. Cuadernos de atención primaria, 11(2), 101-105 | |
dc.relation.references | Food and agriculture organization of the united nations FAO. (2015). Technical Report on Cost – Effectiveness of Remote Sensing for Agricultural Statistics in Developing and Emerging Economies. Obtenido de https://openknowledge.fao.org/server/api/core/bitstreams/42d9b92b-9e31-4c6e-b436-1d6389cc1be1/content | |
dc.relation.references | Global Strategy For Dengue Prevention And Control. (2012). World Health Organization. Recuperado el 2 de 9 de 2024, de http://apps.who.int/iris/bitstream/10665/75303/1/9789241504034_eng.pdf | |
dc.relation.references | Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press. Obtenido de https://www.deeplearningbook.org | |
dc.relation.references | Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sensing of Environment, 202, 18-27. Recuperado el 2 de 9 de 2024, de https://sciencedirect.com/science/article/pii/s0034425717302900 | |
dc.relation.references | Government of Canada. (2015). Digital Image Processing. Obtenido de Natural Resources Canada: https://natural-resources.canada.ca/maps-tools-and-publications/satellite-imagery-elevation-data-and-air-photos/tutorial-fundamentals-remote-sensing/image-interpretation-analysis/digital-image-processing/9279 | |
dc.relation.references | Guo, P., Liu, T., Zhang , Q., Wang , L., Xiao , J., Zhang , Q., . . . Ma, W. (2017). Developing a dengue forecast model using machine learning: A case study in China. PLOS Neglected Tropical Diseases, 11(10). doi:https://doi.org/10.1371/journal.pntd.0005973 | |
dc.relation.references | Gutierrez, B. H., Medina, M. S., Zapata, J., & Chua, J. (2020). Dengue Infections in Colombia: Epidemiological Trends of a Hyperendemic Country. Tropical medicine and infectious disease, 5(4), 156. doi:10.3390/tropicalmed5040156 | |
dc.relation.references | Guzmán, M. G., & Kourí, G. (2004). Dengue diagnosis, advances and challenges. International Journal of Infectious Diseases, 8(2), 69-80. Recuperado el 15 de 9 de 2024, de https://sciencedirect.com/science/article/pii/s1201971203000390 | |
dc.relation.references | Hawkins, D. M. (2004). The Problem of Overfitting. Journal of Chemical Information and Computer Sciences, 44(1), 1-12. Recuperado el 5 de 9 de 2024, de https://pubs.acs.org/doi/10.1021/ci0342472 | |
dc.relation.references | Holtz, T. S. (2007). Introductory Digital Image Processing: A Remote Sensing Perspective, Third Edition. Environmental & Engineering Geoscience, 13(1), 89-90. Recuperado el 3 de 9 de 2024, de https://pubs.geoscienceworld.org/aeg/eeg/article/13/1/89/136798/introductory-digital-image-processing-a-remote | |
dc.relation.references | Instituto Nacional de Salud. (2024). Protocolo de vigilancia en salud pública. Dengue. doi:https://doi.org/10.33610/JQVP8800 | |
dc.relation.references | Jain, L., & Medsker, L. (1999). Recurrent Neural Networks: Design and Applications. CRC Press, Inc. | |
dc.relation.references | Joiner associates. (1995). Data Collection: Plain & Simple: Learning and Application Guide . Oriel Inc. | |
dc.relation.references | Kalluri, S., Gilruth, P. T., Rogers, D., & Szczur, M. (2007). Surveillance of arthropod vector-borne infectious diseases using remote sensing techniques: a review. PLOS Pathogens, 3(10), 1361-1371. Recuperado el 4 de 9 de 2024, de https://ncbi.nlm.nih.gov/pmc/articles/pmc2042005 | |
dc.relation.references | Kratsios, A. (2019). Universal Approximation Theorems. arXiv: Machine Learning. Recuperado el 6 de 9 de 2024, de https://arxiv.org/abs/1910.03344 | |
dc.relation.references | Kyle, J. L., & Harris, E. (2008). Global Spread and Persistence of Dengue. Annual Review of Microbiology, 62(1), 71-92. Recuperado el 3 de 9 de 2024, de https://ncbi.nlm.nih.gov/pubmed/18429680 | |
dc.relation.references | Leung, X. Y., Islam, R. M., Adhami, M., Ilic, D., McDonald, L., Palawaththa, S., . . . Karim, M. N. (2023). A systematic review of dengue outbreak prediction models: Current scenario and future directions. PLoS neglected tropical diseases, 17(2). doi:10.1371/journal.pntd.0010631 | |
dc.relation.references | Majeed, M., Shafri, H., Wayayok, A., & Zulkafli, Z. (2023). Prediction of dengue cases using the attention-based long short-term memory (LSTM) approach. Geospatial health, 18(1). doi:10.4081/gh.2023.1176 | |
dc.relation.references | Meshesha, K. S., Shifaw , E., Kassaye, A. Y., Tsehayu , M. A., Eshetu, A. A., & Wondemagegnehu, H. (2024). Evaluating the relationship of vegetation dynamics with rainfall and land surface temperature using geospatial techniques in South Wollo zone, Ethiopia. Environmental Challenges, 15. doi:https://doi.org/10.1016/j.envc.2024.100895 | |
dc.relation.references | Ministerio de Salud y Protección Social. (2022). Malaria. Obtenido de Minsalud: https://www.minsalud.gov.co/salud/publica/PET/Paginas/malaria.aspx | |
dc.relation.references | Mitchell, T. M. (1997). Machine Learning. The Mc-Graw-Hill Companies, Inc. Recuperado el 15 de 9 de 2024, de https://www.cs.cmu.edu/~tom/mlbook.html | |
dc.relation.references | Moreno-Madriñán, M., Crosson, W., Eisen, L., Estes, S., Estes Jr, M., Hayden, M., . . . Zielinski-Gutierrez, E. (2014). Correlating Remote Sensing Data with the Abundance of Pupae of the Dengue Virus Mosquito Vector, Aedes aegypti, in Central Mexico. ISPRS International Journal of Geo-Information, 3(2), 732-749. Obtenido de https://hdl.handle.net/1805/4469 | |
dc.relation.references | Mutanga, O., Timothy, D., & Fethi, A. (2016). Progress in remote sensing: vegetation monitoring in South Africa. South African Geographical Journa, 98(3), 1-11. doi:10.1080/03736245.2016.1208586 | |
dc.relation.references | Naish, S., Dale, P. E., Mackenzie, J. S., McBride, J., Mengersen, K., & Tong, S. (2014). Climate change and dengue: a critical and systematic review of quantitative modelling approaches. BMC Infectious Diseases, 14(1), 167-167. Recuperado el 2 de 9 de 2024, de https://bmcinfectdis.biomedcentral.com/articles/10.1186/1471-2334-14-167 | |
dc.relation.references | National Aeronautics and Space Administration. (2024). Moderate Resolution Imaging Spectroradiometer. Obtenido de https://modis.gsfc.nasa.gov/about/ | |
dc.relation.references | National Aeronautics and Space Administration. (2024). MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V061 . Obtenido de Data.gov: https://catalog.data.gov/dataset/modis-terra-vegetation-indices-16-day-l3-global-250m-sin-grid-v061-5576a | |
dc.relation.references | National Aeronautics and Space Administration. (s.f.). The Electromagnetic Spectrum. Recuperado el 3 de 09 de 2024, de Nasa Science: https://science.nasa.gov/ems | |
dc.relation.references | Nnadi, E. N., Mark, O., Onyedibe, K., & Nimzing, L. (2011). Landscape epidemiology: An emerging perspective in the mapping and modelling of disease and disease risk factors. Asian Pacific Journal of Tropical Disease, 1(3). doi:10.1016/S2222-1808(11)60041-8 | |
dc.relation.references | Olah, C. (27 de August de 2015). Understanding LSTM Networks. Obtenido de colah's blog: https://colah.github.io/posts/2015-08-Understanding-LSTMs/ | |
dc.relation.references | Padilla, J. C., Rojas, D. P., & Saenz-Gomez, R. (2012). Dengue en Colombia: epidemiología de la reemergencia a la hiperendemia. Bogotá: Guías de impresión Ltda. | |
dc.relation.references | Padilla, J., Lizarazo, F., Murillo, O., Mendigaña, F., Pachon, E., & Vera, M. (2017). Epidemiología de las principales enfermedades transmitidas por vectores en Colombia, 1990-2016. Biomédica, 27(2), 27-40. doi:https://doi.org/10.7705/biomedica.v34i2.3769 | |
dc.relation.references | Palaniyandi, M. (2012). The role of Remote Sensing and GIS for spatial prediction of vector-borne diseases transmission: A systematic review. Journal of vector borne diseases, 49(4), 197-204. doi:10.4103/0972-9062.213498 | |
dc.relation.references | Parra-Henao, G. (2010). Sistemas de información geográfica y sensores remotos. Aplicaciones en enfermedades transmitidas por vectores. CES Med, 24(2), 75-90. Obtenido de http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-87052010000200007 | |
dc.relation.references | Poole, D., Mackworth, A., & Goebel, R. (1998). Computational Intelligence: A Logical Approach. Oxford University Press. | |
dc.relation.references | Poznyak, T., Poznyak, A., & Chairez, I. (2019). Ozonation and biodegradation in environmental engineering. Elsevier. doi:https://linkinghub.elsevier.com/retrieve/pii/C20160038652 | |
dc.relation.references | Racloz, V., Ramsey, R., Tong, S., & Hu, W. (2012). Surveillance of Dengue Fever Virus: A Review of Epidemiological Models and Early Warning Systems. PLOS Neglected Tropical Diseases, 6(5). Recuperado el 2 de 9 de 2024, de https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0001648 | |
dc.relation.references | Rodriguez-Morales, A. (2005). Ecoepidemiología y epidemiología satelital. Nuevas herramientas en el manejo de problemas de salud pública. Revista Peruana de Medicina Experimental y Salud Pública, 22(1), 54-63. Obtenido de https://www.redalyc.org/articulo.oa?id=36322109 | |
dc.relation.references | Rotela, C. (2012). Desarrollo de modelos e indicadores remotos de riesgo epidemiológico de Dengue en Argentina. Córdoba, Argentina: Instituto de Altos Estudios Espaciales “Mario Gulich” Comisión Nacional de Actividades Espaciales Universidad Nacional de Córdoba. Obtenido de http://hdl.handle.net/11086/11609 | |
dc.relation.references | Russell, S. J., & Norvig, P. (2010). Artificial Intelligence: A Modern Approach. Pearson Education, Inc. Recuperado el 15 de 9 de 2024, de http://aima.cs.berkeley.edu/ | |
dc.relation.references | Safa, M., Zarkesh, M. K., Ejlali, F., & Farsad, F. (2021). The Spatial Autocorrelation between Precipitation and Vegetation. International Journal of Scientific Research and Management, 9(12), 199-214. doi:10.18535/ijsrm/v9i12.fe1 | |
dc.relation.references | Şatır, O., & Berberoglu, S. (2012). Land Use/Cover Classification Techniques Using Optical Remotely Sensed Data in Landscape Planning. Recuperado el 4 de 9 de 2024, de https://intechopen.com/books/landscape-planning/land-use-cover-classification-techniques-using-optical-remotely-sensed-data-in-landscape-plannin | |
dc.relation.references | Scavuzzo, J., Trucco, F., Espinosa, M., Tauro, C., Abril, M., Scavuzzo, C., & Frery, A. (2018). Modeling Dengue vector population using remotely sensed data and machine learning. Acta Tropica, 185, 167-175. doi:https://doi.org/10.1016/j.actatropica.2018.05.003 | |
dc.relation.references | Superintendencia financiera de Colombia. (2024). Tasa de Cambio Representativa del Mercado -Historico. Obtenido de Datos abiertos: https://www.datos.gov.co/Econom-a-y-Finanzas/Tasa-de-Cambio-Representativa-del-Mercado-Historic/mcec-87by/about_data | |
dc.relation.references | Tewari, U. (2021). Regularization — Understanding L1 and L2 regularization for Deep Learning. Obtenido de medium: https://medium.com/analytics-vidhya/regularization-understanding-l1-and-l2-regularization-for-deep-learning-a7b9e4a409bf | |
dc.relation.references | Tomlinson, C. J., Chapman, L., Thornes, J. E., & Baker, C. (2011). Remote sensing land surface temperature for meteorology and climatology: a review. Meteorological Applications, 18(3), 296-306. Recuperado el 8 de 9 de 2024, de https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/met.287 | |
dc.relation.references | Usali, N., & Ismail, M. (2010). Use of Remote Sensing and GIS in Monitoring Water Quality. Journal of Sustainable Development, 3(3). doi:10.5539/jsd.v3n3p228 | |
dc.relation.references | VoPham, T., Hart, J., Laden, F., & Chiang, Y.-Y. (2018). Emerging trends in geospatial artificial intelligence (geoAI): potential applications for environmental epidemiology. Environmental Health volume, 17(40). doi:https://doi.org/10.1186/s12940-018-0386-x | |
dc.relation.references | Wang, S.-C. (2003). Interdisciplinary Computing in Java Programming. Springer Science & Business Media. | |
dc.relation.references | Wei, D. (2024). Demystifying the Adam Optimizer in Machine Learning. Obtenido de Medium: https://medium.com/@weidagang/demystifying-the-adam-optimizer-in-machine-learning-4401d162cb9e | |
dc.relation.references | Woon, Y. L., Hor, C. P., Lee, K. Y., Anuar, S. F., Mudin, R. N., Ahmad, M. K., . . . Lim, T. O. (2018). Estimating dengue incidence and hospitalization in Malaysia, 2001 to 2013. BMC Public Health, 18(1), 946. Recuperado el 2 de 9 de 2024, de https://bmcpublichealth.biomedcentral.com/articles/10.1186/s12889-018-5849-z | |
dc.relation.references | Xang, X. (2023). Remote Sensing Applications to Climate Change. Remote Sensing, 15(3). doi:https://doi.org/10.3390/rs15030747 | |
dc.relation.references | Yadav, D. (5 de December de 2018). Beginner’s Guide to RNN & LSTMs. Obtenido de Medium: https://medium.com/@humble_bee/rnn-recurrent-neural-networks-lstm-842ba7205bbf | |
dc.relation.references | Zellweger, R., Cano, J., Mangeas, M., Taglioni, F., Mercier, A., Despinoy, M., . . . Teurlai, M. (2017). Socioeconomic and environmental determinants of dengue transmission in an urban setting: An ecological study in Nouméa, New Caledonia. PLoS neglected tropical diseases, 11(4). doi:10.1371/journal.pntd.0005471 | |
dc.relation.references | Zhengming, W., Yi, Z., Zhang, Q., & Zhao-Liang, L. (2004). Quality assessment and validation of the MODIS global land surface temperature. International Journal of Remote Sensing, 25(1), 261–274. doi:https://doi.org/10.1080/0143116031000116417 | |
dc.rights.acceso | Abierto (Texto Completo) | |
dc.rights.accessrights | OpenAccess | |
dc.subject | Teledetección | |
dc.subject | Inteligencia artificial | |
dc.subject | Epidemiología | |
dc.subject | Dengue | |
dc.subject | Algoritmo | |
dc.subject.keyword | Remote sensing | |
dc.subject.keyword | Artificial intelligence | |
dc.subject.keyword | Epidemiology | |
dc.subject.keyword | Dengue fever | |
dc.subject.keyword | Algorithm | |
dc.subject.lemb | Maestría en Ciencias de la Información y las Comunicaciones -- Tesis y disertaciones académicas | |
dc.subject.lemb | Epidemiología -- Procesamiento electrónico de datos | |
dc.subject.lemb | Dengue -- Prevención y control | |
dc.subject.lemb | Redes neurales (Computadores) | |
dc.subject.lemb | Ciencia y tecnología | |
dc.title | Predicción de la incidencia epidemiológica del dengue en Colombia utilizando una Red Neuronal Recurrente a partir de información captada por sensores remotos | |
dc.title.titleenglish | Prediction of the epidemiological incidence of dengue fever in Colombia using a Recurrent Neural Network from remotely sensed information | |
dc.type | masterThesis | |
dc.type.degree | Investigación-Innovación |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 7 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: