Diseño e implementación de una arquitectura en la nube para mitigar fraudes digitales en transacciones con tarjeta de crédito utilizando técnicas de Fast Data
| dc.contributor.advisor | Espinel Ortega, Alvaro | |
| dc.contributor.author | Morales Mojica, Jhon Alejandro | |
| dc.contributor.orcid | Espinel Ortega Alvaro [0000-0002-7747-7718] | |
| dc.date.accessioned | 2025-10-02T15:54:27Z | |
| dc.date.available | 2025-10-02T15:54:27Z | |
| dc.date.created | 2025-09-15 | |
| dc.description | Hoy en día, impulsado por los objetivos comerciales clave de la nueva era digital, incluidas las presiones competitivas, la capacidad de explotar nuevas oportunidades de mercado, la necesidad de un procesamiento rápido de datos y la generación de experiencias de cliente nuevas, más complejas, seguras y relevantes; conllevan a la necesidad de métodos de procesamiento de datos sobre la marcha, que protejan los intereses de las entidades y el patrimonio de los clientes, ofreciendo resultados en tiempo real. La transferencia de datos, también conocida como Fast Data, no se trata solo de recuperar la información ingresada de manera inmediata y más rápida. Es un cambio general en la forma en que creamos aplicaciones centradas en datos. Muchas empresas con sistemas basados en Big Data han comenzado a cambiar sus sistemas de procesamiento por lotes para mantenerse al día con la tercera dimensión de los datos, la velocidad. Si bien esto es importante, migrar a arquitecturas de datos rápidas que permitan sistemas escalables, tolerantes a fallas y en tiempo real es un desafío. Por lo tanto, este trabajo propone un método transmisión de datos que beneficie el sector bancario colombiano (arquitectura completamente enfocada a la nube); diseñando e implementando la secuencia de pasos necesarios para prevenir intentos de fraudes en las tramas de transacciones con tarjetas de crédito; requiriendo del procesamiento de Big Data en tiempo real y el desarrollo de algoritmos como principal estrategia. Se espera que este proyecto proporcione información a diversas organizaciones sobre los movimientos transaccionales realizados gatillados por las personas que utilizan los diversos servicios que ofrece el sector financiero y así, reaccionar de manera concreta frente a sospechas de fraude que pueda poner en riesgo los bienes de sus clientes y la credibilidad de las entidades financieras. | |
| dc.description.abstract | Today, driven by key business objectives in the new digital era, including competitive pressures, the need to capitalize on new market opportunities, the requirement for rapid data processing, and the generation of new, more complex, secure, and relevant customer experiences, there is a growing need for real-time data processing methods that protect the interests of organizations and the assets of their customers. Data streaming, also known as Fast Data, is not merely about retrieving data more quickly. It represents a fundamental shift in how we design data-centric applications. Many companies with Big Data systems have begun to move away from batch processing to keep pace with the third dimension of data: speed. While this is important, migrating to fast data architectures that enable scalable, fault-tolerant, and real-time systems is challenging. Therefore, this project proposes a data streaming method that benefits the Colombian banking sector (a fully cloud-based architecture), by designing and implementing the necessary steps to prevent fraudulent credit card transactions. This approach leverages real-time Big Data processing and algorithm development as its core strategy. The project aims to provide various organizations with information about transactional activity triggered by users of financial services, enabling them to take proactive measures against suspected fraud that could compromise customer assets and the reputation of financial institutions. | |
| dc.format.mimetype | ||
| dc.identifier.uri | http://hdl.handle.net/11349/99414 | |
| dc.language.iso | spa | |
| dc.publisher | Universidad Distrital Francisco José de Caldas | |
| dc.relation.references | Aggarwal, C. C. (2013). Outlier analysis. Outlier Analysis, 9781461463962, 1–446. https://doi.org/10.1007/978-1-4614-6396-2 | |
| dc.relation.references | Akidau Tayler. (2015). Streaming 101: The world beyond batch – O’Reilly. https://www.oreilly.com/radar/the-world-beyond-batch-streaming-101/ | |
| dc.relation.references | Albawi, S., Mohammed, T. A., & Al-Zawi, S. (2017). Understanding of a convolutional neural network. Proceedings of 2017 International Conference on Engineering and Technology, ICET 2017, 2018-January, 1–6. https://doi.org/10.1109/ICENGTECHNOL.2017.8308186 | |
| dc.relation.references | Álvarez Argüero, D., López Peña, D., & Ángel, M. (2017). Estudio y aplicación de tecnologías de Fast Data y Fog Computing a las Smart Cities. | |
| dc.relation.references | Amin, R. K., Indwiarti, & Sibaroni, Y. (2015). Implementation of decision tree using C4.5 algorithm in decision making of loan application by debtor (Case study: Bank pasar of Yogyakarta Special Region). 2015 3rd International Conference on Information and Communication Technology, ICoICT 2015, 75–80. https://doi.org/10.1109/ICOICT.2015.7231400 | |
| dc.relation.references | Apache Kafka. (n.d.). Retrieved November 17, 2024, from https://kafka.apache.org/documentation/#intro_usage | |
| dc.relation.references | Azuaje, F. (2006). Witten IH, Frank E: Data Mining: Practical Machine Learning Tools and Techniques 2nd edition. BioMedical Engineering OnLine, 5(1). https://doi.org/10.1186/1475-925X-5-51 | |
| dc.relation.references | Banco de Bogotá. (2024). https://saladeprensa.bancodebogota.com/2024/02/21/estos-son-los-5- tipos-de-fraudes-bancarios-mas-comunes-en-colombia/ | |
| dc.relation.references | Bishop CM. (2007). Pattern Recognition and Machine Learning. Journal of Electronic Imaging, 16(4), 049901. https://doi.org/10.1117/1.2819119 | |
| dc.relation.references | Calvo J, Guzmán M, & Ramos D. (2018). Machine Learning, una pieza clave en la transformación de los modelos de negocio - Management Solutions. https://www.managementsolutions.com/es/publicaciones-y-eventos/informessectoriales/white-papers/machine-learning-una-pieza-clave-en-la-transformacion-de-losmodelos-de-negocio | |
| dc.relation.references | Cho, Y., & Saul, L. K. (2009). Kernel Methods for Deep Learning. | |
| dc.relation.references | Definition of Predictive Modeling - Gartner Information Technology Glossary. (2021). https://www.gartner.com/en/information-technology/glossary/predictive-modeling | |
| dc.relation.references | Dickey, D. A. (2012). Introduction to Predictive Modeling with Examples. 337–2012. | |
| dc.relation.references | Estrada Raul. (2018). From big data to fast data – O’Reilly. https://www.oreilly.com/content/frombig-data-to-fast-data/ | |
| dc.relation.references | Explicación de los datos de streaming - AWS. (2025). https://aws.amazon.com/es/whatis/streaming-data/ | |
| dc.relation.references | FraudLabs Pro. (2023). Fraud Detection Solution To Prevent Fraud and Reduce Chargeback. https://www.fraudlabspro.com/ | |
| dc.relation.references | Fürnkranz J. (2011). Mean Squared Error. Encyclopedia of Machine Learning, 653–653. https://doi.org/10.1007/978-0-387-30164-8_528 | |
| dc.relation.references | Gahi, Y., Guennoun, M., Guennoun, Z., & El-Khatib, K. (2011). Encrypted processes for oblivious data retrieval. IEEE. https://ieeexplore.ieee.org/document/6148390 | |
| dc.relation.references | Guama Sonia. (2015). ESTUDIO COMPARATIVO DE MÉTODOS EXISTENTES PARA INTEGRAR LAINFORMACIÓN ESTRUCTURADA Y NO ESTRUCTURADA DE UNAINDUSTRIA ENFOCADO EN LA GENERACIÓN DE CONOCIMIENTO,DESDE LA PERSPECTIVA DE UNA SOLUCIÓN INTEGRAL DE BIG DATA | |
| dc.relation.references | Henandéz Juan. (2022). Tipos de cifrado: ¿Simétrico o asimétrico? ¿RSA o AES? https://preyproject.com/es/blog/tipos-de-cifrado-simetrico-o-asimetrico-rsa-o-aes | |
| dc.relation.references | Hilal, W., Gadsden, S. A., & Yawney, J. (2022). Financial Fraud: A Review of Anomaly Detection Techniques and Recent Advances. Expert Systems with Applications, 193, 116429. https://doi.org/10.1016/J.ESWA.2021.116429 | |
| dc.relation.references | Introducción a Vertex AI | Vertex AI | Google Cloud. (n.d.). Retrieved November 17, 2024, from https://cloud.google.com/vertex-ai/docs/start/introduction-unified-platform?hl=es-419 | |
| dc.relation.references | ISO. (2017). ISO 27001 - Certificado ISO 27001. https://normaiso27001.es/ | |
| dc.relation.references | Kundu, A., Panigrahi, S., Sural, S., & Majumdar, A. K. (2009). BLAST-SSAHA hybridization for credit card fraud detection. IEEE Transactions on Dependable and Secure Computing, 6(4), 309–315. https://doi.org/10.1109/TDSC.2009.11 | |
| dc.relation.references | Kundu, A., Sural, S., & Majumdar, A. K. (2006). Two-Stage Credit Card Fraud Detection Using Sequence Alignment. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 4332 LNCS, 260–275. https://doi.org/10.1007/11961635_18 | |
| dc.relation.references | Leskovec, J., Rajaraman, A., & Ullman, J. D. (2014). Mining of Massive Datasets. Mining of Massive Datasets: Second Edition, 1–458. https://doi.org/10.1017/CBO9781139924801 | |
| dc.relation.references | Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gøtzsche, P. C., Ioannidis, J. P. A., Clarke, M., Devereaux, P. J., Kleijnen, J., & Moher, D. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Journal of Clinical Epidemiology, 62(10), e1–e34. https://doi.org/10.1016/J.JCLINEPI.2009.06.006 | |
| dc.relation.references | Mohanty, S., Jagadeesh, M., & Srivatsa, H. (2013). Big data imperatives: Enterprise big data warehouse, BI implementations and analytics. Big Data Imperatives: Enterprise Big Data Warehouse, BI Implementations and Analytics, 1–296. https://doi.org/10.1007/978-1-4302- 4873-6/COVER | |
| dc.relation.references | Motie, S., & Raahemi, B. (2023). Financial fraud detection using graph neural networks: A systematic review. 957–4174. https://doi.org/10.1016/j.eswa.2023.122156 | |
| dc.relation.references | Newton’s Philosophiae Naturalis Principia Mathematica (Stanford Encyclopedia of Philosophy). (n.d.). Retrieved May 24, 2025, from https://plato.stanford.edu/entries/newton-principia/ | |
| dc.relation.references | Obanewa, K., Olope, O. I., Obanewa, K., & Olope, O. I. (2024). Deep Learning Techniques for Image Recognition (Machine Learning). Path of Science, 10(10), 2029–2036. https://doi.org/10.22178/POS.110-8 | |
| dc.relation.references | PCI. (2018). Payment Card Industry (PCI) Data Security Standard Requirements and Security Assessment Procedures Version 3.2.1. | |
| dc.relation.references | Piccardi, M. L. S., & Palomo, L. E. (2021a). DEL BIG DATA AL FAST DATA: ENFOQUES MODERNOS DE STREAMING DE DATOS PARA EL PROCESAMIENTO DE DATOS MASIVOS EN TIEMPO REAL. Difusiones, 21(21), 38–58. http://ediciones.ucse.edu.ar/ojsucse/index.php/difusiones/article/view/401 | |
| dc.relation.references | Piccardi, M. L. S., & Palomo, L. E. (2021b). DEL BIG DATA AL FAST DATA: ENFOQUES MODERNOS DE STREAMING DE DATOS PARA EL PROCESAMIENTO DE DATOS MASIVOS EN TIEMPO REAL. Difusiones, 21(21), 38–58. http://ediciones.ucse.edu.ar/ojsucse/index.php/difusiones/article/view/401 | |
| dc.relation.references | Piekos John. (2015). Three Fast Data Application Patterns - High Scalability -. https://highscalability.com/three-fast-data-application-patterns/ | |
| dc.relation.references | ¿Qué es Pub/Sub? | Pub/Sub Documentation | Google Cloud. (n.d.). Retrieved November 17, 2024, from https://cloud.google.com/pubsub/docs/overview?hl=es-419 | |
| dc.relation.references | ¿Qué es Redis? – Amazon Web Services (AWS). (n.d.). Retrieved November 5, 2024, from https://aws.amazon.com/es/elasticache/what-is-redis/ | |
| dc.relation.references | Rahman, R. A., Syahira, I., & Anwar, K. (2014). Effectiveness of fraud prevention and detection techniques in Malaysian Islamic banks. Procedia-Social and Behavioral Sciences, 145, 97–102. https://doi.org/10.1016/j.sbspro.2014.06.015 | |
| dc.relation.references | Salkind, N. (2010). Root Mean Square Error. Encyclopedia of Research Design. https://doi.org/10.4135/9781412961288.N392 | |
| dc.relation.references | Schober, P., & Schwarte, L. A. (2018). Correlation coefficients: Appropriate use and interpretation. Anesthesia and Analgesia, 126(5), 1763–1768. https://doi.org/10.1213/ANE.0000000000002864 | |
| dc.relation.references | SFC. (2024). Superintendencia Financiera de Colombia Circular Externa 004 2024. | |
| dc.relation.references | Shalev-Shwartz, S., & Ben-David, S. (2013). Understanding machine learning: From theory to algorithms. Understanding Machine Learning: From Theory to Algorithms, 9781107057135, 1–397. https://doi.org/10.1017/CBO9781107298019 | |
| dc.relation.references | Simon Phil. (2013). THE BUSINESS CASE FOR BIG DATA too BIG to IGNORE xi. | |
| dc.relation.references | Singh, A., & Narayan, D. (2012). A Survey on Hidden Markov Model for Credit Card Fraud Detection. International Journal of Engineering and Advanced Technology (IJEAT), 1, 49. | |
| dc.relation.references | Suarez, A. J., & Rodriguez, J. E. (n.d.). ALGORITMOS METAHEURISTICOS BASADOS EN LA LEY DE GRAVITACION UNIVERSAL PARA AGRUPACION DE DATOS. | |
| dc.relation.references | Swamidass Paul. (2000). Encyclopedia of Production and Manufacturing Management. Encyclopedia of Production and Manufacturing Management, 827–827. https://doi.org/10.1007/1-4020-0612-8_1037 | |
| dc.relation.references | Tatbul Nesime. (2010). Streaming Data Integration: Challenges and Opportunities. https://doi.org/10.1109/icdew.2010.5452751 | |
| dc.relation.references | TransUnion. (2023). 859% aumentaron intentos de fraude digital en Colombia durante los últimos tres años. https://noticias.transunion.co/859-aumentaron-intentos-de-fraude-digital-encolombia-durante-los-ultimos-tresanos/#:~:text=La%20pandemia%20increment%C3%B3%20el%20n%C3%BAmero,en%20los%2 0%C3%BAltimos%20tres%20a%C3%B1os. | |
| dc.relation.references | Universidad Externado. (2023). ¿Qué es la Norma ISO 20022? https://observatoriofinancieroybursatil.uexternado.edu.co/que-es-la-norma-iso-20022-cuales-el-impacto-en-el-mundo-de-las-criptomonedas-y-las-finanzas-tradicionales/ | |
| dc.relation.references | Williams Paul, & Connors Christine. (2012). Unstructured Data and the Enterprise. https://www.slideshare.net/Dataversity/unstructured-data-and-the-enterprise | |
| dc.relation.references | Willmott, C. J., & Matsuura, K. (2005). Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Research, 30(1), 79–82. https://doi.org/10.3354/CR030079 | |
| dc.relation.references | Yamashita, R., Nishio, M., Do, R. K. G., & Togashi, K. (2018). Convolutional neural networks: an overview and application in radiology. Insights into Imaging, 9(4), 611–629. https://doi.org/10.1007/S13244-018-0639-9/FIGURES/15 | |
| dc.relation.references | Zikopoulos Paul, Eaton Chris, Deutsch Tom, Derros Dirk, & Lapis George. (2012). Understanding Big Data. http://it.toolbox.com/blogs/db2luw. | |
| dc.rights.acceso | Abierto (Texto Completo) | |
| dc.rights.accessrights | OpenAccess | |
| dc.subject | Streamig | |
| dc.subject | Fast data | |
| dc.subject | Fraude | |
| dc.subject | Arquitectura | |
| dc.subject.keyword | Streamig | |
| dc.subject.keyword | Fast data | |
| dc.subject.keyword | Fraud | |
| dc.subject.keyword | Architecture | |
| dc.subject.lemb | Maestría en Ciencias de la Información y las Comunicaciones Metodología Profundización -- Tesis y disertaciones académicas | |
| dc.title | Diseño e implementación de una arquitectura en la nube para mitigar fraudes digitales en transacciones con tarjeta de crédito utilizando técnicas de Fast Data | |
| dc.title.titleenglish | Design and implementation of a cloud architecture to mitigate digital fraud in credit card transactions using Fast Data techniques | |
| dc.type | masterThesis | |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
| dc.type.degree | Monografía | |
| dc.type.driver | info:eu-repo/semantics/bachelorThesis |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 7 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:
