NEURO-FUZZY SYSTEM WITH DEFUZZIFICATION BASED IN BOOLEAN RELATIONS (DBR) APPLIED TO TIME SERIES MACKEY-GLASS

Fecha

Autor corporativo

Título de la revista

ISSN de la revista

Título del volumen

Editor

Universidad Distrital Francisco José de Caldas

Compartir

Director

Altmetric

Resumen

Descripción

This paper presents a Neuro-Fuzzy system with defuzzification based on Boolean relations (DBR) for the prediction of Mackey-Glass chaotic time series. Initially, the Back-propagation training algorithm and use of DBR as a defuzzification method are explained. Later, time series is modeled with sixteen fuzzy If-Then rules, using the technique described. The results show a reduction in training time and computational calculations, compared with conventional Neuro-Fuzzy Networks.
En este artículo se presenta un sistema neurodifuso con defuzificación basaba en relaciones booleanas (DBR) para la predicción de la serie de tiempo caótica Mackey-Glass. Inicialmente, se explica el algoritmo de entrenamiento retropropagación y la utilización del DBR como método de defuzificación. Posteriormente, se modela la serie de tiempo con dieciséis reglas difusas Si-Entonces, usando la técnica descrita. Los resultados obtenidos muestran una reducción del tiempo de entrenamiento y cálculo computacional, en comparación con las redes neurodifusas convencionales.

Palabras clave

Neuro-fuzzy system, DBR, back-propagation, time series, prediction Mackey-Glass time series, Sistema neurodifuso, DBR, retropropagación, serie de tiempo, predicción, serie de tiempo Mackey-Glass

Citación