Metodología para la elección de modelos de LLMS en aplicaciones de predicción metereológicas a través de algoritmos de ML sobre entornos de computación en la Nube y capturas de datos a través de IoT
dc.contributor.advisor | Gaona García, Elvis Eduardo | |
dc.contributor.author | Bello González, Iván Darío | |
dc.contributor.orcid | Gaona García,Elvis Eduardo [0000-0001-5431-8776] | |
dc.date.accessioned | 2025-05-22T15:26:39Z | |
dc.date.available | 2025-05-22T15:26:39Z | |
dc.date.created | 2024-11-18 | |
dc.description | La predicción meteorológica es uno de los factores críticos que se aborda desde diversos enfoques, y resulta fundamental para una amplia gama de sectores, como la agricultura, la energía renovable, la gestión de desastres y la planificación urbana. Los avances recientes en Modelos de Lenguaje de Gran Tamaño (Large Language Models, LLMs), Internet de las Cosas (Internet of Things, IoT) y computación en la nube han abierto nuevas oportunidades para mejorar la precisión y la eficiencia de las predicciones en estos sectores. Sin embargo, existen varios desafíos relacionados con la variabilidad constante de las condiciones ambientales y la fiabilidad de los datos obtenidos de sensores. Esta investigación propone el desarrollo de una metodología integral para evaluar el impacto de la integración de LLMs con infraestructuras IoT y la computación en la nube, con el objetivo de determinar la precisión y mejorar la exactitud de las predicciones meteorológicas. La metodología comprende cinco fases iterativas: Identificación, Desarrollo, Prueba y Monitoreo, Evaluación y Análisis. Este enfoque permite la evaluación continua de los LLMs y la adaptación del sistema en función de los resultados obtenidos, abordando las necesidades cambiantes del entorno IoT. El estudio se enfoca en el diseño de métricas específicas para evaluar el rendimiento de los LLMs frente a los modelos tradicionales, desplegado dentro de una plataforma en la nube escalable que facilita la integración de los datos generados por dispositivos IoT. La metodología incorpora el uso de un agente ReAct (Reasoning and Acting), que mejora la precisión y exactitud del sistema al detectar anomalías en los datos y ajustar las respuestas en consecuencia. Este agente también demostró ser capaz de identificar cuando el rendimiento del modelo era insuficiente, recomendando el uso de fuentes de datos más fiables como alternativa para garantizar la calidad de las predicciones. En el caso de estudio, se evidenció que algunos modelos presentaron un bajo rendimiento, con métricas como el R² próximo a cero, indicando una incapacidad para capturar patrones subyacentes en los datos. Sin embargo, la inclusión del agente ReAct permitió mitigar estos problemas al tomar decisiones críticas para mantener la calidad de las predicciones. Los resultados mostraron la capacidad del sistema para ajustarse y mejorar conforme se recopilan nuevos datos, haciendo que el proceso sea adaptativo y más robusto. Se espera que los resultados de esta investigación contribuyan significativamente al avance de la predicción meteorológica, con beneficios directos para sectores críticos y diversas partes interesadas. La metodología desarrollada sienta las bases para futuras investigaciones y aplicaciones en este campo, facilitando predicciones meteorológicas más precisas y confiables. La combinación de LLMs con IoT y agentes reactivos no solo mejora la capacidad predictiva, sino también la adaptabilidad del sistema en entornos cambiantes, lo cual es esencial para aplicaciones meteorológicas modernas. | |
dc.description.abstract | Meteorological prediction is one of the critical factors addressed from various approaches and is fundamental for a wide range of sectors, such as agriculture, renewable energy, disaster management, and urban planning. Recent advances in Large Language Models (LLMs), Internet of Things (IoT), and cloud computing have opened new opportunities to improve the accuracy and efficiency of predictions in these sectors. However, there are several challenges related to the constant variability of environmental conditions and the reliability of data obtained from sensors. This research proposes the development of a comprehensive methodology to evaluate the impact of integrating LLMs with IoT infrastructures and cloud computing, with the aim of determining precision and improving the accuracy of meteorological predictions. The methodology comprises five iterative phases: Identification, Development, Testing and Monitoring, Evaluation, and Analysis. This approach allows for the continuous evaluation of LLMs and the adaptation of the system based on the obtained results, addressing the changing needs of the IoT environment. The study focuses on designing specific metrics to evaluate the performance of LLMs compared to traditional models, deployed within a scalable cloud platform that facilitates the integration of data generated by IoT devices. The methodology incorporates the use of a ReAct (Reasoning and Acting) agent, which improves the system's precision and accuracy by detecting anomalies in the data and adjusting responses accordingly. This agent also demonstrated the ability to identify when the model's performance was insufficient, recommending the use of more reliable data sources as an alternative to ensure the quality of predictions. In the case study, it was evident that some models exhibited low performance, with metrics such as R² close to zero, indicating an inability to capture underlying patterns in the data. However, the inclusion of the ReAct agent mitigated these problems by making critical decisions to maintain the quality of predictions. The results demonstrated the system's ability to adjust and improve as new data is collected, making the process adaptive and more robust. It is expected that the results of this research will significantly contribute to the advancement of meteorological prediction, with direct benefits for critical sectors and various stakeholders. The developed methodology lays the foundation for future research and applications in this field, facilitating more accurate and reliable meteorological predictions. The combination of LLMs with IoT and reactive agents not only enhances predictive capability but also the system's adaptability in changing environments, which is essential for modern meteorological applications. | |
dc.format.mimetype | ||
dc.identifier.uri | http://hdl.handle.net/11349/95628 | |
dc.language.iso | spa | |
dc.publisher | Universidad Distrital Francisco José de Caldas | |
dc.relation.references | AWS. (2024a). Amazon Timestream. AWS. https://docs.aws.amazon.com/timestream/latest/developerguide/what-is-timestream.html | |
dc.relation.references | AWS. (2024b). AWS IoT Core. AWS. https://aws.amazon.com/iot-core/ | |
dc.relation.references | Breiman, L. (2001). Random Forests (Vol. 45). https://doi.org/https://doi.org/10.1023/A:1010933404324 | |
dc.relation.references | Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., … Amodei, D. (2020). Language Models are Few-Shot Learners. http://arxiv.org/abs/2005.14165 | |
dc.relation.references | Dai, X., Liu, G. P., Hu, W., Lei, Z., & Zhou, H. (2023). Learning from ChatGPT: A Transformer-Based Model for Wind Power Forecasting. Proceedings - 2023 IEEE International Conference on Environment and Electrical Engineering and 2023 IEEE Industrial and Commercial Power Systems Europe, EEEIC / I and CPS Europe 2023. https://doi.org/10.1109/EEEIC/ICPSEurope57605.2023.10194807 | |
dc.relation.references | Grafana. (2024). Grafana Labs. https://grafana.com/docs/ | |
dc.relation.references | Hastie, T., Tibshirani, R., & Friedman, J. (2009). Springer Series in Statistics The Elements of Statistical Learning - Data Mining, Inference, and Prediction. In Springer (Vol. 2nd). | |
dc.relation.references | langchain. (2024). ReAct implementation. https://langchain-ai.github.io/langgraph/concepts/agentic_concepts/#react-implementation | |
dc.relation.references | Langsmith. (2024). Concepts - Langsmith. https://docs.smith.langchain.com/evaluation/concepts | |
dc.relation.references | Lee, Y. Y., Kim, W. M., Sohn, S. J., Kim, B. R., & Seuseu, S. K. (2022). Advances and challenges of operational seasonal prediction in Pacific Island Countries. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-15345-w | |
dc.relation.references | Liao, Y., Loures, E. D. F. R., & Deschamps, F. (2018). Industrial Internet of Things: A Systematic Literature Review and Insights. IEEE Internet of Things Journal, 5(6), 4515–4525. https://doi.org/10.1109/JIOT.2018.2834151 | |
dc.relation.references | Lin, J., Yu, W., Zhang, N., Yang, X., Zhang, H., & Zhao, W. (2017). A Survey on Internet of Things: Architecture, Enabling Technologies, Security and Privacy, and Applications. IEEE Internet of Things Journal, 4, 1125–1142. https://api.semanticscholar.org/CorpusID:31245252 | |
dc.relation.references | Liu, F. T., Ting, K. M., & Zhou, Z. H. (2008). Isolation forest. Proceedings - IEEE International Conference on Data Mining, ICDM. https://doi.org/10.1109/ICDM.2008.17 | |
dc.relation.references | Mekki, K., Bajic, E., Chaxel, F., & Meyer, F. (2019). A comparative study of LPWAN technologies for large-scale IoT deployment. ICT Express, 5(1), 1–7. https://doi.org/10.1016/j.icte.2017.12.005 | |
dc.relation.references | Mell, P. M., & Grance, T. (2011). The NIST definition of cloud computing. https://doi.org/10.6028/NIST.SP.800-145 | |
dc.relation.references | Nascimento, N., Alencar, P., & Cowan, D. (2023a). GPT-in-the-Loop: Supporting Adaptation in Multiagent Systems. Proceedings - 2023 IEEE International Conference on Big Data, BigData 2023, 4674–4683. https://doi.org/10.1109/BigData59044.2023.10386490 | |
dc.relation.references | Pedregosa FABIANPEDREGOSA, F., Michel, V., Grisel OLIVIERGRISEL, O., Blondel, M., Prettenhofer, P., Weiss, R., Vanderplas, J., Cournapeau, D., Pedregosa, F., Varoquaux, G., Gramfort, A., Thirion, B., Grisel, O., Dubourg, V., Passos, A., Brucher, M., Perrot andÉdouardand, M., Duchesnay, andÉdouard, & Duchesnay EDOUARDDUCHESNAY, Fré. (2011). Scikit-learn: Machine Learning in Python Gaël Varoquaux Bertrand Thirion Vincent Dubourg Alexandre Passos PEDREGOSA, VAROQUAUX, GRAMFORT ET AL. Matthieu Perrot. In Journal of Machine Learning Research (Vol. 12). http://scikit-learn.sourceforge.net. | |
dc.relation.references | Petrovic, N., Konicanin, S., & Suljovic, S. (2023a). ChatGPT in IoT Systems: Arduino Case Studies. 2023 IEEE 33rd International Conference on Microelectronics, MIEL 2023. https://doi.org/10.1109/MIEL58498.2023.10315791 | |
dc.relation.references | Premsankar, G., Di Francesco, M., & Taleb, T. (2018). Edge Computing for the Internet of Things: A Case Study. IEEE Internet of Things Journal, 5(2), 1275–1284. https://doi.org/10.1109/JIOT.2018.2805263 | |
dc.relation.references | Satyanarayanan, M. (n.d.). The Emergence of Edge Computing. | |
dc.relation.references | sprinklr. (2024). What is a Golden Test Set. https://www.sprinklr.com/help/articles/set-up-nlu-based-intents/what-is-a-golden-test-set/64804933723d925979db84e4 | |
dc.relation.references | Sri Preethaa, K. R., Muthuramalingam, A., Natarajan, Y., Wadhwa, G., & Ali, A. A. Y. (2023). A Comprehensive Review on Machine Learning Techniques for Forecasting Wind Flow Pattern. In Sustainability (Switzerland) (Vol. 15, Issue 17). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/su151712914 | |
dc.relation.references | symflower. (2024). Why monitor LLMs. https://symflower.com/en/company/blog/2024/llm-observability/ | |
dc.relation.references | Tokognon, A. C., Gao, B., Tian, G. Y., & Yan, Y. (2017). Structural Health Monitoring Framework Based on Internet of Things: A Survey. IEEE Internet of Things Journal, 4(3), 619–635. https://doi.org/10.1109/JIOT.2017.2664072 | |
dc.relation.references | Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polosukhin, I. (2017). Attention Is All You Need. http://arxiv.org/abs/1706.03762 | |
dc.relation.references | Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., & Cao, Y. (2022). ReAct: Synergizing Reasoning and Acting in Language Models. http://arxiv.org/abs/2210.03629 | |
dc.relation.references | Yu, W., Liang, F., He, X., Hatcher, W. G., Lu, C., Lin, J., & Yang, X. (2017). A Survey on the Edge Computing for the Internet of Things. In IEEE Access (Vol. 6, pp. 6900–6919). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/ACCESS.2017.2778504 | |
dc.relation.references | Zanella, A., Bui, N., Castellani, A., Vangelista, L., & Zorzi, M. (2014). Internet of things for smart cities. IEEE Internet of Things Journal, 1(1), 22–32. https://doi.org/10.1109/JIOT.2014.2306328 | |
dc.relation.references | Zhang, J., Liu, P., Zhang, F., Iwabuchi, H., De Moura, A. A. D. H. E. A., & De Albuquerque, V. H. C. (2021). Ensemble Meteorological Cloud Classification Meets Internet of Dependable and Controllable Things. IEEE Internet of Things Journal, 8(5), 3323–3330. https://doi.org/10.1109/JIOT.2020.3043289 | |
dc.relation.references | Zhou, H., Zhang, S., Peng, J., Zhang, S., Li, J., Xiong, H., & Zhang, W. (2021). Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting. www.aaai.org | |
dc.rights.acceso | Abierto (Texto Completo) | |
dc.rights.accessrights | OpenAccess | |
dc.subject | Agentes IA | |
dc.subject | Predicción meteorológica | |
dc.subject | Modelos de Lenguaje de gran tamaño | |
dc.subject | Computación en la nube | |
dc.subject.keyword | AI Agents | |
dc.subject.keyword | Weather forecasting | |
dc.subject.keyword | Large language models | |
dc.subject.keyword | Cloud computing | |
dc.title | Metodología para la elección de modelos de LLMS en aplicaciones de predicción metereológicas a través de algoritmos de ML sobre entornos de computación en la Nube y capturas de datos a través de IoT | |
dc.title.titleenglish | Methodology for the selection of LLMS models in weather prediction applications through ML lgaorithms on Cloud computing environments and data capture through IoT | |
dc.type | masterThesis | |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.degree | Monografía | |
dc.type.driver | info:eu-repo/semantics/masterThesis |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 7 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: