Modelo de comunicación basado en IoT para la transmisión de datos de estaciones meteorológicas

dc.contributor.authorSUAREZ SUAREZ, CARLOS RENE
dc.contributor.authorGaona Garcia, Paulo Alonso
dc.contributor.authorSoto Gaona, Sebastian
dc.contributor.authorMontenegro Marín, Carlos Enrique
dc.contributor.orcidSUAREZ SUAREZ, CARLOS RENE [0000-0002-7558-1503]spa
dc.contributor.orcidGaona Garcia, Paulo Alonso [0000-0002-8758-1412]spa
dc.contributor.orcidSoto Gaona, Sebastian [0000-0003-2738-2312]spa
dc.contributor.orcidMontenegro Marín, Carlos Enrique [0000-0002-9460-7254]spa
dc.date.accessioned2023-09-21T22:33:54Z
dc.date.available2023-09-21T22:33:54Z
dc.date.created2020-11
dc.descriptionEn el presente libro se precisa el estudio de las redes de sensores inalámbricas (WSN) utilizadas en meteorología y la técnica con la que se implementan mediante Internet of Things (IoT) y su arquitectura. Asimismo se exponen métodos para el desarrollo e integración de tecnologías de bajo costo, con el fin de plantear nuevas soluciones y mejorar sus aplicaciones relacionadas con el medio ambiente y la energía en contextos de estudio que permitan definir métodos de pronóstico meteorológico. Lo anterior a través de un modelo de comunicaciones para la transmisión de datos a estaciones elaboradas con base en técnicas y modelos matemáticos que posibiliten interpretar la relación entre distintas variables, parámetros y restricciones climáticas que requieren ser explicados en detalle para el diseño del sistema propuesto.spa
dc.description.abstractThis book requires the study of wireless sensor networks (WSN) used in meteorology and the technique with which they are implemented through the Internet of Things (IoT) and its architecture. Likewise, methods are presented for the development and integration of low-cost technologies, in order to to propose new solutions and improve their applications related to the environment and energy in study contexts that allow defining meteorological forecasting methods. The above through a communications model for data transmission to elaborate stations based on techniques and mathematical models that make it possible to interpret the relationship between different variables, parameters and climatic restrictions that require to be explained in detail for the design of the proposed system.spa
dc.description.cityBogotáspa
dc.format.mimetypepdfspa
dc.identifier.editorialUniversidad Distrital Francisco José de Caldas. Centro de Investigaciones y Desarrollo Científicospa
dc.identifier.isbn978-958-787-256-9spa
dc.identifier.urihttp://hdl.handle.net/11349/32260
dc.language.isospaspa
dc.relation.ispartofseriesEspaciosspa
dc.relation.referencesAakvaag, N. y Frey, J. E. (2006). Redes de sensores inalámbricos. Nuevas soluciones de interconexión para la automatización industrial. Revista ABB, 2(2006), 39-42.spa
dc.relation.referencesAbhayawardhana, V. S., Wassell, I. J., Crosby, D., Sellars, M. P. y Brown, M. G. (2005). Comparison of empirical propagation path loss models for fixed wireless access systems. En 2005 IEEE 61st Vehicular Technology Conference (vol. 1, pp. 73-77).spa
dc.relation.referencesAfric, W., Zovko-Cihlar, B. y Grgic, S. (2007). Methodology of path loss calculation using measurement results. En 14th International Workshop on Systems, Signals and Image Processing and 6th EURASIP Conference focused on Speech and Image Processing, Multimedia Communications and Services(pp. 257-260). IEEE.spa
dc.relation.referencesAguayo, F. R. (2018). Estado del arte de robótica en la agricultura. Revista Observatorio de la Economia Latinoamericana, 2018, 1-9.spa
dc.relation.referencesAkkaya, K. y Younis, M. (2005). A survey on routing protocols for wireless sensor networks. Ad Hoc Networks, 3, 325-349.spa
dc.relation.referencesAkyildiz, I. F., Su, W., Sankarasubramaniam, Y. y Cayirci, E. (2002). Wireless sensor networks: A survey. Computer Networks, 38(4), 393-422.spa
dc.relation.referencesAkyildiz, I. y Can Vuran, M. (2010). Wireless Sensor Network. Singapur: John Wiley & Sons.spa
dc.relation.referencesAlamdar, F. K. (2016). Towards multi-agency sensor information integration for disaster management. Computers, Environment and Urban Systems, 56, 68-85.spa
dc.relation.referencesAngular (2019). Material design components for Angular. https://material.angular. io/guidesspa
dc.relation.referencesArchila, D. y Santamaria, A. (2013). State of the art of Wireless Sensor Networks. Revista Digital TIA, 2(1).spa
dc.relation.referencesArchundia, P. (2019). El estándar IEEE 802.15.4. http://catarina.udlap.mx/u_dl_a/ tales/documentos/lem/archundia_p_fm/capitulo4.pdfspa
dc.relation.referencesAsocaña (2012). Protocolos elaborados para medir el impacto de las intervenciones del fondo agua por la vida y la sostenibilidad. Cali: Autor.spa
dc.relation.referencesAzam, M. K. (2017). Development of flood alert application in Mushim stream watershed Korea. International Journal of Disaster Risk Reduction, 21, 11-26.spa
dc.relation.referencesBarrenetxea, G., Ingelrest, F., Schaefer, G. y Vetterli, M. (2008). SensorScope: Out of-the-box environmental monitoring. ACM/IEEE International Conference on Information Processing in Sensor Networks.spa
dc.relation.referencesBarrenetxea, G., Ingelrest, F., Schaefer, G., Vetterli, M., Couach, O., y Parlange, M. (2008). Sensorscope: Out-of-the-box environmental monitoring. En 2008 Interna tional Conference on Information Processing in Sensor Networks (pp. 332-343). IEEE.spa
dc.relation.referencesBermúdez, A., Casado, R., García, E. M., Gómez, A., Quiles, F. J. y Ruiz-Gallardo, J. R. (2007). Empleo de una red de sensores en el reajuste de modelos de comportamiento del fuego en incendios forestales. En 4.ª Conferencia Internacional sobre Incendios Forestales (pp. 13-17). http://www.eufirelab.org/toolbox2/library/ upload/2244.pdfspa
dc.relation.referencesBreed, G. (2003). Bit error rate: Fundamental concepts and measurement issues. High Frequency Electronics, 2003, 46-48.spa
dc.relation.referencesCaicedo Ortiz, J. G., Acosta Coll, M. A. y Cama-Pinto, A. (2015). WSN deployment model for measuring climate variables that cause strong precipitation. Prospectiva, 13(1), 106-115.spa
dc.relation.referencesCama-Pinto, A., Piñeres-Espitia, G., Zamora-Musa, R., Acosta-Coll, M., Caice do-Ortiz, J., y Sepúlveda-Ojeda, J. (2016). Design of a wireless sensor network for monitoring of flash floods in the city of Barranquilla, Colombia. Ingeniare, Revista Chilena de Ingeniería, 24(4), 581-599.spa
dc.relation.referencesCampos, A., Holm-Nielsen, N., Díaz, C., Rubiano, D., Costa, C., Ramírez, F. y Dickson, E. (2012). Análisis de la gestión del riesgo de desastres en Colombia: un aporte para la construcción de políticas públicas. Bogotá: Banco Mundial.spa
dc.relation.referencesCentenaro, M., Vangelista, L., Zanella, A. y Zorzi, M. (2016). Long-range communi cations in unlicensed bands: The rising stars in the IoT and smart city scenarios. IEEE Wireless Communications, 23(5), 60-67.spa
dc.relation.referencesChamberlin, K. A. y Luebbers, R. J. (1982). An evaluation of Longley-Rice and GTD propagation models. IEEE Transactions on Antennas and Propagation, 32(1), 1093-1098.spa
dc.relation.referencesChia-Pang, C., Cheng-Long, C. y Joe-Air, J. (2013). Ecological monitoring using wireless sensor networks-Overview, challenges, and opportunities. Advancement in Sensing Technology, 1, 1-21.spa
dc.relation.referencesChiasserini, C. F. y Gareto, M. G. (2004). Modeling the performance of wireless sensor. Proceedings of the 23rd Annual Joint Conference of the IEEE Computer.spa
dc.relation.referencesChu, H. C., Siao, W. T., Wu, W. T. y Huang, S. C. (2011). Design and implemen tation an energy-aware routing mechanism for solar wireless sensor networks. En IEEE International Conference on High Performance Computing and Communications (pp. 881-886). IEEE.spa
dc.relation.referencesD’Hondt, M. S. (2013). Crowdsourcing of Pollution Data using Smartphones. Geophysical, 48(5),1-4.spa
dc.relation.referencesDaniel Scott, S. B. (2010). Adapting to climate change and climate policy: Progress, problems and potentials. Journal of Sustainable Tourism, 18(3), 283-295.spa
dc.relation.referencesDel Brío, B. M. (1999). Sistemas electrónicos basados en microprocesadores y microcontroladores. Zaragoza: Universitarias de Zaragoza.spa
dc.relation.referencesDjenouri, D. y Balasingham, I. (2010). Traffic-differentiation-based modular QoS localized routing for wireless sensor networks. IEEE Transactions on Mobile Computing, 10(6), 797-809.spa
dc.relation.referencesDurisic, M. P., Tafa, Z., Dimic, G. y Milutinovic, V. (2012). A survey of military applications of wireless sensor networks. 2012 Mediterranean Conference on Embedded Computing (MECO) (pp. 196-199). Bar: IEEE.spa
dc.relation.referencesEisa, I., El-Bakry, H. M., Abd Elrazik, S. M., Hasan, I. Q., Hasan, A. Q. y Zaid, S. (2016). Challenges in Wireless Sensor Networks. International Journal of Advanced Research in Computer Science & Technology, 4(4), 22-27.spa
dc.relation.referencesEisa, I., El-Bakry, H. M., Abd Elrazik, S. M., Hasan, I. Q., Hasan, A. Q., y Zaid, S. (2016). Challenges in Wireless Sensor Networks. International Journal of Advanced Research in Computer Science & Technology, 4(4), 22-27.spa
dc.relation.referencesEvans, D. (2011). Internet of Things. La próxima evolución de Internet lo está cambiando todo. Grupo de Soluciones Empresariales para Internet (IBSG) de Cisco.spa
dc.relation.referencesEyceoz, T., Duel-Hallen, A., y Hallen, H. (1998). Deterministic channel modeling and long range prediction of fast fading mobile radio channels. IEEE Communi cations Letters, 2(9), 254-256.spa
dc.relation.referencesFernández, C. (2012). RHEA: un proyecto europeo para el desarrollo de robots aplicados a la protección vegetal. PHYTOMA, 244, 30-35.spa
dc.relation.referencesFernández, R., Ordieres, J. y Martínez, F. (2009). Redes inalambircas de sensores: teoría y aplicación práctica. Longroño: Universidad de La Rioja.spa
dc.relation.referencesFohringer, J., Dransch, D., Kreibich, H. y Schröter, K. (2015). Social media as an information source for rapid flood inundation mapping. Natural Hazards and Earth System Sciences, 15, 2725-2738.spa
dc.relation.referencesFondo para el Financiamiento del Sector Agropecuario (FINAGRO) (2018, 9 de octubre). El momento del agro. https://www.finagro.com.co/noticias/el-mo mento-del-agrospa
dc.relation.referencesFreiberger, T., Sedigh, S. y Atekwana, E. (2007). Hydrological monitoring with hybrid sensor networks. International Conference on Sensor Technologies and Applications (pp. 484-489). Valencia: IEEE Explore.spa
dc.relation.referencesFutureWater (2019, 20 de abril). Teledeteccfión satelital. https://www.futurewater. es/metodos/teledeteccion/spa
dc.relation.referencesGage, D. W. (1995). A brief history of Unmanned Ground Vehicle (UGV) develop ment efforts. Unmanned Systems Magazine, 13(3), 1-7.spa
dc.relation.referencesGallardo, S. (2015). Elementos de sistemas de telecomunicaciones. Madrid: Paraninfo.spa
dc.relation.referencesGhassemzadeh, S. S., Jana, R., Rice, C. W. y Turin, W. (2002). A statistical path loss model for in-home UWB channels. 2002 IEEE Conference on Ultra Wideband Systems and Technologies (pp. 59-64). Baltimore: IEEE.spa
dc.relation.referencesGhassemzadeh, S. S., Jana, R., Rice, C. W., Turin, W. y Tarokh, V. (2002). A statistical path loss model for in-home UWB channels. En IEEE Conference on Ultra Wideband Systems and Technologies (IEEE Cat. 02EX580; pp. 59-64). IEEE.spa
dc.relation.referencesGildert, N. (2018). The need for combining implicit and explicit communication in cooperative robotic systems. https://www.frontiersin.org/articles/10.3389/ frobt.2018.00065/fullspa
dc.relation.referencesGranados, F. L. (2013). Uso de vehículos aéreos no tripulados (UAV) para la evaluación de producción agraria. Ambienta, 105, 40-52.spa
dc.relation.referencesHa’c, A. (2003). Wireless Sensor Network Designs. West Sussex: John Wiley & Sons.spa
dc.relation.referencesHar, D., Watson, A. M., y Chadney, A. G. (1999). Comment on diffraction loss of rooftop-to-street in COST 231-Walfisch-Ikegami model. IEEE Transactions on Vehicular Technology, 1451-1452.spa
dc.relation.referencesHarik, C. (2015). UAV-UGV cooperation for objects transportation in an industrial area. https://hal.archives-ouvertes.fr/hal-01141993/documentspa
dc.relation.referencesHe, T., Huang, C., Blum, B. M., Stankovic, J. A., y Abdelzaher, T. (2003). Range-free localization schemes for large scale sensor networks. En Proceedings of the 9th annual international conference on Mobile computing and networking (pp. 81-95).spa
dc.relation.referencesHeinzelman, W. (2000). Application specific protocol architectures. Boston: MIT.spa
dc.relation.referencesHemant Ghayvat, S. M. (2015). WSN- and IOT-Based Smart Homes and Their Extension to Smart Buildings. Sensors, 15(5), 10350-10379.spa
dc.relation.referencesHightower, J., y Borriello, G. (2001). Location systems for ubiquitous computing. Computer, 34(8), 57-66.spa
dc.relation.referencesHill, J., Horton, M., Kling, R. y Krishnamurthy, L. (2004). The platforms enabling wireless sensor networks. Communications of the ACM, 47(6), 41-46.spa
dc.relation.referencesHofmann-Wellenhof, B., Lichtenegger, H. y Wasle, E. (2008). GPS. GNSS-Global Navigation Satellite Systems: GPS, GLONASS, Galileo, and more. Viena: Springer.spa
dc.relation.referencesHuaita, A. (2017). Análisis de la eficiencia de un sistema inalámbrico aplicado a la monitorización de una estación móvil mediante una estación base. http:// repositorio.unsa.edu.pe/bitstream/handle/UNSA/5050/ITMhubeaa. pdf?sequence=1&isAllowed=yspa
dc.relation.referencesInzunza, J. C. (2019). Meteorología descriptiva. Concepción: Universidad de Concepción.spa
dc.relation.referencesJenkins, J. D. (1982). Prototyping: The new paradigm for systems development. Management Information Systems, 6(3), 29-44.spa
dc.relation.referencesJesús Martín Talavera, L. E. (2017). Review of IoT applications in agro-industrial and environmental fields. Computers and Electronics in Agriculture, 142(Part A), 283-297.spa
dc.relation.referencesJohann, S., Moreira, M., HeckNey, L., Calazans N. y Hessel, F. (2016). A processor for IoT applications: An assessment of design space and trade-offs. Microprocessors and Microsystems, 42, 156-164.spa
dc.relation.referencesJose Escribano Vega, M. A. (2016). Implementación de una estación meteorológica con Arduino. Valencia: Universidad Politécnica de Valencia.spa
dc.relation.referencesKazem Sohraby, D. M. (2007). Wireless Sensor Networks: Technology, protocols, and appli cations. Nueva Jersey: John Wiley & So.spa
dc.relation.referencesKeane, J. F. y Carr, S. (2013). A brief history of early unmanned aircraft. Johns Hopkins Apl Technical Digest, 32(3), 558-571.spa
dc.relation.referenceskeiiti Aki, P. R. (2002). Quantitative Seismology. Sausalito: University Science Books.spa
dc.relation.referencesKrishnamachari, B., Estrin, D. y Wicker, S. (2002). Modelling data-centric routing in wireless sensor networks. En IEEE infocom (vol. 2, pp. 39-44). Los Ángeles: University of Southern California.spa
dc.relation.referencesKrishnamachari, B., Estrin, D. y Wicker, S. (2002). Modelling data-centric routing in wireless sensor networks. En IEEE infocom (vol. 2, pp. 39-44). https://www.resear chgate.net/publication/215619101_Modeling_Data-Centric_Routing_in_Wire less_Sensor_Networksspa
dc.relation.referencesKureshi, I., Theodoropoulos, G., Mangina, E., O’Hare, G. y Roche, J. (2015). Towards an info-symbiotic decision support system for disaster risk management. En IEEE/ACM 19th International Symposium on Distributed Simulation and Real Time Applications (DS-RT). https://ieeexplore.ieee.org/document/7395918spa
dc.relation.referencesLazarescu, M. T. (2013). Design of a WSN platform for long-term environmental monitoring for IoT applications. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 3(1), 45-54.spa
dc.relation.referencesMahdavinejad, M. S., Rezvan, M., Barekatain, M. y Adibi, P. (2017). Machine learning for Internet of Things data analysis: A survey. https://www.researchgate. net/publication/320393191_Machine_learning_for_Internet_of_Things_data_ analysis_A_surveyspa
dc.relation.referencesMainwaring, A., Polastre, J., Szewczyk, R., y Culler, D. (2002). WSNs for habitat monitoring https://www.researchgate.net/publication/2545990_Wireless_ Sensor_Networks_for_Habitat_Monitoringspa
dc.relation.referencesMaksimović, V. V. (2014). Raspberry Pi as a Wireless Sensor node: Performances and constraints. 37th International Convention on Information and Communication Technology, Electronics and Microelectronics (pp. 1013-1018). Opatija: IEEE.spa
dc.relation.referencesMartins Dias, G. (2016). Using data prediction techniques to reduce data transmis sions in the IoT. IEEE 3rd World Forum on Internet of Things (pp. 331-335). Reston: IEEE Explore.spa
dc.relation.referencesMejía, R. (marzo de 2016). ¿Se está promoviendo la inversión agrícola en Colombia? Revista Nacional de Agricultura, 969. https://sac.org.co/se-esta-promoviendo-la inversion-agricola-en-colombia/spa
dc.relation.referencesMohdFauzi, O. y Khairunnisa, S. (2012). Wireless Sensor Network Applications: A study in environment monitoring system. Procedia Engineering, 41, 1204-1204. https://doi.org/10.1016/j.proeng.2012.07.302spa
dc.relation.referencesMolisch, A., Balakrishnan, K., Cassioli, D., Chong, C. C., Emami, S., Fort, A., Karedal, J., Kunisch, J., Schantz, H., Schuster, U. y Siwiak, K. (2004). IEEE 802.15.4a channel model - Final report. http://www.ieee802.org/15/pub/04/15-04-0662-02-004a channel-model-final-report-r1.pdfspa
dc.relation.referencesMorales, M. (2016, 23 de mayo). El 65.8% de la tierra apta para sembrar en Colombia no se aprovecha. https://www.eleconomista.net/actualidad/El-65.8-de-la tierra-apta-para-sembrar-en-Colombia-no-se-aprovecha-20160524-0048.htmlspa
dc.relation.referencesNagamitsu, S., Aida, H., Okunishi, R., Motoya, Y. y Miki, M. (2014). Time synchro nization protocol using lighting control for wireless sensor network. En 2014 International Conference on Wireless Networks (ICWN2014) (pp. 10-16).spa
dc.relation.referencesNechibvute, A., Chawanda, A., y Luhanga, P. (2012). Piezoelectric energy harvesting devices: An alternative energy source for wireless sensors. Smart Materials Research, 2012, 1-13.spa
dc.relation.referencesNilsson, N. J. (1984). shakey the robot. Menlo Park: SRI International.spa
dc.relation.referencesNiu, J., Cheng, L., Gu, Y., Shu, L., y Das, S. K. (2013). R3E: Reliable reactive routing enhancement for wireless sensor networks. IEEE Transactions on Industrial Informatics, 10(1), 784-794.spa
dc.relation.referencesOficina de Información Científica y Tecnológica para el Congreso de la Unión (2018). Agricultura de Precisión. https://www.foroconsultivo.org.mx/INCyTU/docu mentos/Completa/INCYTU_18-015.pdfspa
dc.relation.referencesOlyazadeh, R., Aye, Z. C., Jaboyedoff, M. y Derron, M. H. (2016). Prototype of an open-source web-GIS platform for rapid disaster impact assessment. Spatial Infor mation Research, 24(3), 203-210.spa
dc.relation.referencesOrganización de las Naciones Unidas para la Alimentación y la Agricultura (FAO) (2017). Concentración y extranjerización de tierras productivas en Colombia. Bogota: FAO.spa
dc.relation.referencesPawula, R. (1981). On the theory of error rates for narrow-band digital FM. IEEE Transactions on Communications, 29(11), 1634-1643.spa
dc.relation.referencesPeng, R. y Sichitiu, M.. (2006). Angle of arrival localization for wireless sensor networks. En 3rd Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks. https://ieeexplore.ieee.org/document/4068140spa
dc.relation.referencesPinto, A., Bonivento, A., Sangiovanni-Vincentelli, A. L., Passerone, R. y Sgroi, M. (2004). System level design paradigms: Platform-based design and communica tion synthesis. En Proceedings of the 41st Annual Design Automation Conference (pp. 537-563). https://doi.org/10.1145/996566.1142982spa
dc.relation.referencesPinto, A., Bonivento, A., Sangiovanni-Vincentelli, A. L., Passerone, R. y Sgroi, M. (2004, June). System level design paradigms: Platform-based design and communication synthesis. En Proceedings of the 41st annual Design Automation Conference (pp. 537-563).spa
dc.relation.referencesPoellabauer, W. D. (2010). Fundamentals of Wireless Sensor Networks: Theory and Practice. Chichester: John Wiley & Sons.spa
dc.relation.referencesPonticelli, R. (2011). Sistema de exploración de terrenos con robots móviles: aplicación en tareas de detección y localización de minas antipersonas. https://eprints.ucm. es/12318/1/T32658.pdfspa
dc.relation.referencesPortafolio (2017, 29 de julio). Colombia quiere convertirse en una potencia agroin dustrial. https://www.portafolio.co/economia/colombia-quiere-convertirse-en una-potencia-agroindustrial-508227spa
dc.relation.referencesPRAA Perú (2013). Variabilidad climática: percepciones e impacto en los cultivos de papa y maíz amiláceo en la subcuenca del río Shullcas, Junin. Lima: Ministerio de Ambiente.spa
dc.relation.referencesREST (2019). Rest API Tutorial. https://restfulapi.net/spa
dc.relation.referencesSaigua, S. F. y Villafuerte, M. V. (2014). Evaluación de las topologías físicas de WSN mediante la implementación de un prototipo de medición de variables ambientales para el G.E.A.A. – ESPOCH (tesis de pregrado). Riobamba: Escuela Superior Politécnica de Chimborazo. http://dspace.espoch.edu.ec/handle/123456789/3241spa
dc.relation.referencesSandoval, D. (2015). Estado del arte del IoT aplicado a la geotecnia (tesis de pregrado). Bogotá: Universidad Católica de Colombia. https://repository.ucatolica.edu.co/ bitstream/10983/4202/1/Estado-del-arte-del-IoT-aplicado-a-la-geotecnia.pdfspa
dc.relation.referencesSavvides, A., Han, C. C. y Strivastava, M. B. (2001). Dynamic fine-grained localization in ad-hoc networks of sensors. En Proceedings of the 7th Annual International Conference on Mobile Computing and Networking (pp. 166-179).spa
dc.relation.referencesSchurgers, C., Tsiatsis, V., Ganeriwa, S. y Srivastava, M. (2002). Optimizing sensor networks in the energy-latency-density design space. IEEE Transactions on Mobile Computing, 1(1), 70-80.spa
dc.relation.referencesSeah, W., Ang Eu, Z. y Pink Tan, H.(2009). Wireless Sensor Networks Powered by Ambient Energy Harvesting (WSN-HEAP) – Survey and Challenges. 2009 1st International Conference on Wireless Communication, Vehicular Technology, Informa tion Theory and Aerospace & Electronic Systems Technology (pp. 1-5). Aalborg: IEEE Explore.spa
dc.relation.referencesSerrat, O. (2009). The SCAMPER Technique. Knowledge Solutions, 33, 311-314.spa
dc.relation.referencesShad Roundy, P. K. (2002). Micro-electrostatic vibration-to-electricity converters. 2002 ASME International Mechanical Engineering Congress & Exposition (pp. 1-10). New Orleans: ASME.spa
dc.relation.referencesShanmuganthan, S. (2008). Sensor data acquisition for climate change modelling. WSEAS TRANSACTIONS on Circuits & Systems, 942-952.spa
dc.relation.referencesSharma, R. y Malhotra, S. (2015). Approximate point in triangulation (APIT) based localization algorithm in wireless sensor network. International Journal for Innovative Research in Science & Technology, 2, 39-42.spa
dc.relation.referencesShellhammer, S. (2000). Packet Error Rate of an IEEE 802.11 WLAN in the Presence of Bluetooth. IEEE P802, 15, 15-00.spa
dc.relation.referencesSingh, Y. (2012). Comparison of Okumura, Hata and COST-231 models on the basis fo path loss and signa strenght. International Journal of Computer Applications, 59(11), 37-41.spa
dc.relation.referencesSMC (2017). FMS-200 Módulo de Formación 7: Sensores industriales. SMC International Training.spa
dc.relation.referencesStansfield, R. (1947). Statistical theory of DF fixing. Journal of IEE, 14, 762-770.spa
dc.relation.referencesSuárez, C., Gaona-García, P., Montenegro-Marín, C. y Parra, J. (2018). IOT quality of service based in link channel optimization in Wireless Sensor Networks. En 2018 IEEE International Conference on Smart Internet of Things (SmartIoT) (pp. 172-177). IEEE.spa
dc.relation.referencesT. Hasegawa, H. H. (2011). Industrial wireless standardization - Scope and imple mentation of ISA SP100 standard. En SICE Annual Conference 2011 (pp. 2059- 2064). Tokyo: IEEE.spa
dc.relation.referencesTh. Arampatzis, J. L. (2005). A Survey of Applications of Wireless Sensors and Wireless Sensor Networks. En Proceedings of the 13th Mediterranean Conference on Control and Automation (pp. 719-724). http://citeseerx.ist.psu.edu/viewdoc/do wnload?doi=10.1.1.192.6122&rep=rep1&type=pdfspa
dc.relation.referencesTomé, C. (2016). La velocidad de las ondas electromagnéticas y la naturaleza de la luz. https://culturacientifica.com/2016/07/26/la-velocidad-las-ondas-electro magneticas-la-naturaleza-la-luzspa
dc.relation.referencesTorresan, S. C. (2016). DESYCO: A decision support system for the regional risk assessment of climate change impacts in coastal zones. Ocean and Coastal Mana gement, 120, 49-63.spa
dc.relation.referencesUbaldi, B. (2013). Open government data: Towards empirical analysis of open gover nment data initiatives. OECD, 1-60spa
dc.relation.referencesUniversidad Distrital Franciso José de Caldas (2018, 31 de octubre). Bosque de paz Aquitania - Antioquia - RITA. https://rita.udistrital.edu.co/bosqueaquitania/#/ monitoreospa
dc.relation.referencesUniversidad Nacional de Colombia (2015, 30 de diciembre). Envejecimiento de habitantes rurales, otro freno al desarrollo del campo. https://agenciadenoticias. unal.edu.co/detalle/article/envejecimiento-de-habitantes-rurales-otro-freno-al desarrollo-del-campo.htmlspa
dc.relation.referencesValdez, L. (2014). A Study On The Wireless Sensor Networks. Twelfth LACCEI Latin American and Caribbean Conference for Engineering and Technology (pp. 1-8).spa
dc.relation.referencesVanegas, M. (2018, 25 de diciembre). Colombia tiene potencial para ser una despensa de alimentos en el mundo. Semana. https://www.semana.com/contenidos editoriales/hay-campo-para-la-paz/articulo/colombia-como-despensa-de alimentos-del-mundo/565788spa
dc.relation.referencesVereecken, H., Kamai, T., Harter, T., Kasteel, R., Hopmans, J. y. Vanderborght, J. (2007). Explaining soil moisture variability as a function of mean soil moisture: A stochastic unsaturated flow perspective. Geophysical Research Letters, 34, 1-6.spa
dc.relation.referencesVilla, V., Paltinieri, N., Khan, F. y Cozzani, V. (2016). Towards dynamic risk analysis: A review of the risk assessment approach and its limitations in the chemical process industry. Safety Science, 89, 77-93.spa
dc.relation.referencesVillón Valdiviezo, D. (2011). Diseño de una red de sensores inalámbrica para agricultura de precisión (tesis de pregrado). Lima: Pontificia Universidad Católica del Perú.spa
dc.relation.referencesWaharte, S., Boutaba, R., Iraqi, Y. e Ishibashi, B. (2006). Routing protocols in wireless mesh networks: challenges and design considerations. Multimedia tools and Applications, 29(3), 285-303.spa
dc.relation.referencesWaltenegus Dargie, C. P. (2010). Fundamentals Of wireless Sensor Networks. En C. P. Waltenegus Dargie, Fundamentals Of wireless Sensor Networks (p. 249). West Sussex: Willey.spa
dc.relation.referencesWerner-Allen, G., Lorincz, K., Welsh, M., Marcillo, O., Johnson, J., Ruiz, M. y Lees, J. (2006). Deploying a wireless sensor network on an active volcano. IEEE Internet Computing, 2006, 18-25.spa
dc.relation.referencesWestern, A. W., Zhou, S. L., Grayson, R. B., McMahon, T. A., Blöschl, G., y Wilson, D. J. (2004). Spatial correlation of soil moisture in small catchments and its relationship to dominant spatial hydrological processes. Journal of Hydrology, 286(1-4), 113-134.spa
dc.relation.referencesWollschlaeger, M. y Thilo, S. (2017). The future of industrial communication: Automation networks in the era of the Internet of Things and Industry 4.0. IEEE Industrial Electronics Magazine, 11(1), 17-27.spa
dc.relation.referencesX. Mao, J. J. (2010). Wireless channel modeling methods: Classification, comparison and application. 5th International Conference on Computer Science & Education (pp. 1669-1673). Hefei: IEEE.spa
dc.relation.referencesXu, J., Liu, W., Lang, F., Zhang, Y. y Wang, C. (2010). Distance measurement model based on RSSI in WSN. Wireless Sensor Network, 2(8), 606.spa
dc.relation.referencesYan, Y., Li, S., Zhang, R., Lin, F., Wu, R., Lu, Q. y Wang, X. (2009). Rapid proto typing and manufacturing technology: principle, representative technics, appli cations, and development trends. Tsinghua Science and Technology, 14(S1), 1-12spa
dc.relation.referencesZekavat, M. J. (2015). Time of Arrival Estimation in Wireless Sensor Networks via OFDMA. 015 IEEE 82nd Vehicular Technology Conference (pp. 1-5). Boston: IEEE Explore.spa
dc.relation.referencesZhang, H., Arora, A., Choi, Y. R., y Gouda, M. G. (2007). Reliable bursty conver gecast in wireless sensor networks. Computer Communications, 30(13), 25spa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accesoAbierto (Texto Completo)spa
dc.rights.accessrightsOpenAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectComunicaciónspa
dc.subjectInternet de las cosasspa
dc.subjectRedes de sensores Inalámbricasspa
dc.subjectRedes estáticasspa
dc.subjectPrototipospa
dc.subjectEstaciones meteorológicasspa
dc.subject.keywordCommunicationspa
dc.subject.keywordInternet of thingsspa
dc.subject.keywordWireless sensor networksspa
dc.subject.keywordStatic networksspa
dc.subject.keywordPrototypespa
dc.subject.keywordWeather stationsspa
dc.subject.lembInternet de las cosasspa
dc.subject.lembEstaciones meteorológicas -- Sistemas de comunicaciónspa
dc.subject.lembSistemas de transmisión de datosspa
dc.subject.lembRedes de sensores inalámbricosspa
dc.titleModelo de comunicación basado en IoT para la transmisión de datos de estaciones meteorológicasspa
dc.title.titleenglishIoT-based communication model for station data transmission meteorologicalspa
dc.typebookspa
dc.type.coarhttp://purl.org/coar/resource_type/c_2f33
dc.type.driverinfo:eu-repo/semantics/book

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
INTERNAS MODELO DE COMUNICACIÓN.pdf
Tamaño:
4.76 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
7 KB
Formato:
Item-specific license agreed upon to submission
Descripción: