Construcción de geometrías 3D utilizando imágenes UAV como alternativa de solución para la oclusión fotogramétrica

dc.contributor.advisorBarragán Zaque, William Benigno
dc.contributor.authorRomero Beltrán, Jeisson Andrés
dc.date.accessioned2024-10-28T20:03:45Z
dc.date.available2024-10-28T20:03:45Z
dc.date.created2024-05-29
dc.descriptionLa oclusión fotogramétrica se presenta en áreas urbanas, dificultando la reconstrucción de la geometría 3D de un objeto, al no ser posible la identificación de ciertas áreas en una aerofotografía. Su correcto estudio permite generar ortoimágenes verdaderas, evitando el fenómeno de doble mapeo, igualmente denominado como ghost image, producido principalmente por la proyección cónica o perspectiva en que naturalmente es capturada una aerofotografía. Este trabajo de investigación pretende mostrar los resultados obtenidos en la construcción e implementación de una metodología geométrica para la detección de oclusiones fotogramétricas y reconstrucción de ortoimágenes verdaderas, empleando conjuntos de datos asociados al modelo digital de superficie y a ortoimágenes convencionales generadas a partir del procesamiento de imágenes de alta resolución para un modelo fotogramétrico. El comportamiento de la metodología fue validado inicialmente en conjuntos de datos correspondientes a un escenario simulado y, seguidamente, en un escenario controlado que pretendió recrear la existencia de geometrías tridimensionales. Por último, fue comprobado su comportamiento en un escenario real, a partir del empleo de imágenes de alta resolución obtenidas mediante un sobrevuelo llevado a cabo en la Universidad Distrital Francisco José de Caldas - Sede “Aduanilla de Paiba”, en Bogotá D.C., Colombia. En todos los casos, a partir de la verificación visual llevada a cabo para las áreas detectadas como ocluidas, fue posible obtener resultados coherentes en la reconstrucción de la ortoimagen verdadera.
dc.description.abstractPhotogrammetric occlusion occurs in urban areas, making difficult to reconstruct a 3D geometry of an object, as certain areas are not properly identified in an aerial photograph. Correctly studying this phenomenon allows to generate true orthoimages, avoiding the double mapping phenomenon, also called ghost image, mainly caused by the perspective projection. This research work aims to show the results got from the construction and deployment of a geometrical methodology for detection of photogrammetric occlusions and reconstruction of true orthoimages, by using datasets associated to the digital surface model and conventional orthoimages generated through high-resolution imagery processing related to a photogrammetric model. Behavior of the proposed methodology was initially validated on simulated datasets belonging to a controlled scenario and, subsequently, on a controlled scenario that sought to recreate the existence of three-dimensional geometries. Finally, its behavior was verified in a real scenario, through the use of high-resolution imagery obtained for a flyover carried out over the Headquarter “Aduanilla de Paiba”, one which belongs to the Universidad Distrital Francisco José de Caldas, located in Bogotá D.C., Colombia. In all cases, from visual verification carried out for areas detected as occluded, it was possible to obtain coherent results in the reconstruction of the true orthoimage.
dc.format.mimetypepdf
dc.identifier.urihttp://hdl.handle.net/11349/42344
dc.language.isospa
dc.relation.referencesAbdullah, S., Tahar, K. N., Abdul Rashid, M. F., & Osoman, M. A. (2019). Camera Calibration Performance on Different Non-Metric Cameras. Pertanika Journal of Science & Technology, 27(3), 1397-1406
dc.relation.referencesAli, A. H., & Mahmood, R. Z. (2021). Bresenham's Line and Circle Drawing Algorithm using FPGA. AL-Rafidain Journal of Computer Sciences and Mathematics, 15(2), 39-53. doi:10.33899/csmj.2021.170007
dc.relation.referencesAl-Khalil, O. (2020). Structure from Motion (SfM) Photogrammetry as Alternative to Laser Scanning for 3D Modelling of Historical Monuments. Open Science Journal, 1-17.
dc.relation.referencesAlsadik, B., & Abdulateef, N. A. (2022). Epipolar Geometry Between Photogrammetry and Computer Vision - A Computational Guide. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 5, 25-32. doi:https://doi.org/10.5194/isprs-annals-V-5-2022-25-2022
dc.relation.referencesBalado, J., González, E., Díaz-Vilatiño, L., & Lorenzo, H. (2020). Automatic Detection and Characterization of Ground Occlusions in Urban Point Clouds from Mobile Laser Scanning Data. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 13-20.
dc.relation.referencesBarazzetti, L., Brumana, R., Oreni, D., Previtali, M., & Roncoroni, F. (2014). True Orthophoto Generation from UAV Images: Implementation of a Combined Photogrammetric and Computer Vision Appoach. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, II, pp. 57-63. Riva del Garda, Italy. doi:10.5194/isprsannals-II-5-57-2014
dc.relation.referencesBarazzetti, L., Remondino, F., & Scaioni, M. (2010). Orientation and 3D Modelling From Markerless Terrestrial Images: Combining Accuracy with Automation. The Photogrammetric Record, 25(132), 356-381. doi:10.1111/j.1477-9730.2010.00599.x
dc.relation.referencesBhattacharya, S., Braun , C., & Leopold, U. (2021). An Efficient 2.5D Shadow Detection Algorithm for Urban Planning and Design Using a Tensor Based Approach. International Journal of Geo-Information, 10(9), 1-17. doi:https://doi.org/10.3390/ijgi10090583
dc.relation.referencesBlistan, P., Kovanič, Ľ., Patera, M., & Tomáš, H. (2019). Evaluation Quality Parameters of DEM Generated With Low-Cost UAV Photogrammetry and Structure-from-Motion (SfM) Approach for Topographic Surveying on Small Areas. Acta Montanistica Slovaca, 24(3), 198-212.
dc.relation.referencesBoutros, N., Shortis, M. R., & Harvey, E. S. (2015). A comparison of calibration methods and system configurations of underwater stereo-video systems for applications in Página | 210 marine ecology. Limnology and Oceanography: Methods, 13(5), 224-236. doi:https://doi.org/10.1002/lom3.10020
dc.relation.referencesCândido de Oliveira, H., & Galo, M. (2013). Detecção de áreas de oclusão para geração de ortoimagem verdadeira utilizando dados LASER. Anais XVI Simpósio Brasileiro de Sensoriamento Remoto - SBSR, (pp. 6135-6142). Fonte: http://hdl.handle.net/11449/86809
dc.relation.referencesCândido de Oliveira, H., Porfírio Dal Poz, A., Galo, M., & Fawzy Habib, A. (2018). Surface Gradient Approach for Occlusion Detection Based on Triangulated Irregular Network for True Orthophoto Generation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 443-457. doi:10.1109/jstars.2017.2786162
dc.relation.referencesChima Jude, I., John Okolie, C., & Gbenga Ayodele, E. (2020). An Assessment of the Accuracy of Structure-from-Motion (SfM) Photogrammetry for 3D Terrain Mapping. Geomatics, Land Management and Landscape(2), 65-82.
dc.relation.referencesDoumit, J. (2020). LiDAR and SfM Point Cloud Fusion Effects in the Generation of Urban Digital Surface Models. BRICS Journal of Education Research, 10(3&4), 40-44.
dc.relation.referencesESRI. (2022). Displaying Raster Data in ArcGIS {Pro 3.0}. Fonte: Displaying Raster Data in ArcGIS by ESRI: https://www.esri.com/training/Engine/defaultui/player/modern.html?
dc.relation.referencesFonstad, M. A., Dietrich, J. T., Courville, B. C., Jensen, J. L., & Carbonneau, P. E. (2013). Topographic structure from motion: a new development in photogrammetric measurement. Earth Surface Processes and Landforms(38), 421-430. doi:https://10.1002/esp.3366
dc.relation.referencesGaol, F. L. (2013). Bresenham Algorithm: Implementation and Analysis in Raster Shape. Jornal of Computers, 8(1), 69-78. doi:doi:10.4304/jcp.8.1.69-78
dc.relation.referencesGomez, C., Hayakawa, Y., & Obanawa, H. (2015). A study of Japanese landscapes using structure from motion derived DSMs and DEMs based on historical aerial photographs: New opportunities for vegetation monitoring and diachronic geomorphology. Geomorphology(242), 11-20. doi:https://doi.org/10.1016/j.geomorph.2015.02.021
dc.relation.referencesHu, Y., Stanley, D., & Xin, Y. B. (2016). True ortho generation of urban area using high resolution aerial photos. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information, 1-4.
dc.relation.referencesIglhaut, J., Cabo, C., Puliti, S., Piermattei, L., O'Connor, J., & Rosette, J. (2019). Structure from Motion Photogrammetry in Forestry: a Review. Current Forestry Reports, 5, 155-168. doi:https://doi.org/10.1007/s40725-019-00094-3
dc.relation.referencesIheaturu, C. J., Ayodele, E. G., & Okolie, C. J. (2020). An Assessment of the Accuracy of Structure-from-Motion (SfM) Photogrammetry for 3D Terrain Mapping. Geomatics, Landmanagement and Landscape(2), 65-82. doi:http://dx.doi.org/10.15576/GLL/2020.2.65
dc.relation.referencesJeziorska, J. (2019). UAS for Wetland Mapping and Hydrological Modeling. Remote Sensing, 11(17), 1-39. doi:https://doi.org/10.3390/rs11171997
dc.relation.referencesJiang, S., Jiang, W., Huang, W., & Yang, L. (2017). UAV-Based Oblique Photogrammetry for Outdoor Data Acquisition and Offsite Visual Inspection of Transmission Line. Remote Sensing, 9(3), 1-25. doi:https://doi.org/10.3390/rs9030278
dc.relation.referencesKalacska, M., Chmura, G. L., Lucanus, O., Bérubé, D., & Arroyo-Mora, J. P. (2017). Structure from motion will revolutionize analyses of tidal wetland landscapes. Remote Sensing of Environment, 199, 14-24. doi:https://doi.org/10.1016/j.rse.2017.06.023
dc.relation.referencesKarantanellis, E., Marinos, V., & Vassilakis, E. (2019). 3D Hazard Analysis and ObjectBased Characterization of Landslide Motion Mechanism using UAV Imagery. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII, pp. 425-430. Enschede, The Netherlands. doi:https://doi.org/10.5194/isprs-archives-XLII-2-W13-425-2019
dc.relation.referencesKumar, G., & Sridevi, B. (2020). Development of Efficient Swarm Intelligence Algorithm for Simulating Two-Dimensional Orthomosaic for Terrain Mapping Using Cooperative Unmanned Aerial Vehicles. doi:https://doi.org/10.1016/B978-0-12-816385-6.00006- 4
dc.relation.referencesLakshmi Narayanan, R., & Ibe, O. (2015). Joint Network for Disaster Relief and Search and Rescue Network Operations. Wireless Public Safety Networks 1, 163-193. doi:https://doi.org/10.1016/B978-1-78548-022-5.50006-6
dc.relation.referencesLeal-Alves, D., Weschenfelder, J., da Guia Albuquerque, M., de Almeida Espinoza, J., Ferreira-Cravo, M., & Melo de Almeida, L. (2020). Digital Elevation Model Generation Using UAV-SfM Photogrammetry Techniques to Map Sea-Level Rise Scenarios at Cassino Beach, Brazil. SN Applied Sciences, 1-19.
dc.relation.referencesLi, T., Jiang, C., Bian, Z., Wang, M., & Niu, X. (2020). A Review of True Orthophoto Rectification Algorithms. IOP Conference Series Materials Science and Engineering, 1-8. doi:10.1088/1757-899X/780/2/022035
dc.relation.referencesLi, X., & Shao, X. (2012). Fast line drawing algorithm by circular subtraction based on Bresenham. Fourth International Conference on Machine Vision (ICMV 2011): Machine Vision, Image Processing, and Pattern Analysis, 8349, p. 83490L. doi:https://doi:10.1117/12.920389
dc.relation.referencesLisein, J., Deseilligny, M. P., Bonnet, S., & Lejeune, P. (2013). A Photogrammetric Workflow for the Creation of a Forest Canopy Height Model from Small Unmanned Aerial System Imagery. Forests, 922-944. doi:https://doi.org/10.3390/f4040922
dc.relation.referencesLiu, Y., Zheng, X., Ai, G., Zhang, Y., & Zuo, Y. (2018). Generating a High-Precision True Digital Orthophoto Map Based on UAV Images. ISPRS International Journal of GeoInformation, 7(9), 1-15. doi:https://doi.org/10.3390/ijgi7090333
dc.relation.referencesMahmoud, M., Oyedeji, M., & Xia, Y. (2021). Path Planning in Autonomous Aerial Vehicles. 331-362. doi:https://doi.org/10.1016/B978-0-12-821186-1.00018-0
dc.relation.referencesMicheletti, N., Chandler, J. H., & Lane, S. (2015). Structure from Motion (SfM) Photogrammetry. Geomorphological Techniques (Online Edition). Fonte: https://repository.lboro.ac.uk/articles/journal_contribution/Structure_from_motion_ SFM_photogrammetry/9457355
dc.relation.referencesMlambo, R., Woodhouse, I. H., Gerard, F., & Anderson, K. (2017). Structure from Motion (SfM) Photogrammetry with Drone Data: A Low Cost Method for Monitoring Greenhouse Gas Emissions from Forests in Developing Countries. Forests, 8(3). doi:https://doi.org/10.1016/j.geomorph.2015.02.021
dc.relation.referencesMurtiyoso, A., & Grussenmeyer, P. (2017). Documentation of Heritage Buildings Using Close-Range UAV Images: Dense Matching Issues, Comparison and Case Studies. The Photogrammetric Record, 32(159), 206-229. doi:10.1111/phor.12197
dc.relation.referencesNex, F., & Remondino, F. (2014). UAV for 3D Mapping Applications: A Review. Applied Geomatics, 1-15. doi:10.1007/s12518-013-0120-x
dc.relation.referencesNing, W., & Peng, C. (2012). A Novel Method for Projection Based on Bresenham Like Algorithm. Second International Conference on Intelligent System Design and Engineering Application, (pp. 84-87). doi:https://doi.org/10.1109/ISdea.2012.623
dc.relation.referencesNoor, N., Abdullah, A., & Hashim, M. (2018). Remote Sensing UAV/drones and its applications for urban areas: A review. IOP Conference Series Earth and Environmental Science, (pp. 1-8). doi:https://10.1088/1755-1315/169/1/012003
dc.relation.referencesOliveira, H. C., Habib, A. F., Dal Poz, A. P., & Galo, M. (2015). Height Gradient Approach for Occlusion Detection in UAV Imagery. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-1/W4, 263- 268. doi:10.5194/isprsarchives-XL-1-W4-263-2015
dc.relation.referencesOniga, V.-E., Breaban, A.-I., Pfeifer, N., & Diac, M. (2022). 3D Modelling of Urban Area Based on Oblique UAS Images - An End-to-End Pipeline. Remote Sensing, 14(422), 1-31. doi:https://doi.org/10.3390/rs14020422
dc.relation.referencesOstrowski, W., Gulli, V., Bakula, K., & Kurczyński, Z. (2020). Quality Aspects of True Orthophoto in Urban Areas. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 191-198
dc.relation.referencesPeng, S., Ma, H., & Zhang, L. (2019). Automatic Registration of Optical Images with Airborne LiDAR Point Cloud in Urban Scenes Based on Line-Point Similarity Invariant and Extended Collinearity Equations. Sensors, 19(5), 1-17. doi:Automatic Registration of Optical Images with Airborne LiDAR Point Cloud in Urban Scenes Based on Line-Point Similarity Invariant and Extended Collinearity Equations
dc.relation.referencesPepe, M., Fregonese, L., & Scaioni, M. (2018). Planning Airborne Photogrammetry and Remote Sensing Missions with Modern Platforms and Sensors. European Journal of Remote Sensing, 412-436.
dc.relation.referencesPeppa, M. V., Mills, J. P., Moore, P., Miller, P. E., & Chambers, J. E. (2019). Automated Co-Registration and Calibration in SfM Photogrammetry for Landslide Change Detection. Earth Surface Processes and Landforms, 44(1), 287-303. doi:https://doi.org/10.1002/esp.4502
dc.relation.referencesRodrigues Lima, P. (2018). Aerofotogrametría por Meio de VANTs: Análise da Viabilidade no Levantamento Planialtimétrico. Fonte: https://repositorio.ufersa.edu.br/handle/prefix/6058
dc.relation.referencesRuzgienė, B. (2014). Analysis of camera orientation variation in airborne photogrammetry: images under tilt (roll-pitch-yaw) angles. Journal of Measurements in Engineering, 2(2), 95-102.
dc.relation.referencesSaeed, A., Younes, A., Cai, C., & Cai, G. (2018). A survey of hybrid Unmanned Aerial Vehicles. Progress in Aerospace Sciences, 91-105. doi:https://10.1016/j.paerosci.2018.03.007
dc.relation.referencesSanz-Ablanedo, E., Chandler, J. H., Rodríguez-Pérez, J. R., & Ordóñez, C. (2018). Accuracy of Unmanned Aerial Vehicle (UAV) and SfM Photogrammetry Survey as a Function of the Number and Location of Ground Control Points Used. Remote Sensing, 10(10), 1-19. doi:https://10.3390/rs10101606
dc.relation.referencesShin, Y. H., & Lee, D.-C. (2021). True Orthoimage Generation Using Airborne LiDAR Data with Generative Adversarial Network-Based Deep Learning Model. Journal of Sensors, 1-25. doi:https://doi.org/10.1155/2021/4304548
dc.relation.referencesSinghal, G., Bansod, B., & Mathew, L. (2018). Unmanned Aerial Vehicle Classification, Application and Challenges: A Review. Preprints, 1-19. doi:https://doi:10.20944/preprints201811.0601.v1
dc.relation.referencesStöcker, C., Bennett, R., Nex, F., Gerke, M., & Zevenbergen, J. (2017). Review of the Current State of UAV Regulations. Remote Sensing, 9(5). doi:https://doi.org/10.3390/rs9050459
dc.relation.referencesTsouros, D. C., Triantafyllou, A., Bibi, S., & Sarigannidis, P. G. (2019). Data acquisition and analysis methods in UAV-based applications for Precision Agriculture. 15th International Conference on Distributed Computing in Sensor Systems (DCOSS), (pp. 377-384). doi:https://doi:10.1109/dcoss.2019.00080
dc.relation.referencesU.A.E.A.C. (2015). Circular Reglamentaria No. 002 Requisitos Generales de Aeronavegabilidad y Operaciones para RPAS. Fonte: Proyecto Borrador Circular RPAS: https://www.aerocivil.gov.co/autoridad-de-la-aviacion-civil/certificacion-ylicenciamiento/Documents/PROYECTO%20BORRADOR%20CIRCULAR%20RP AS.pdf#:~:text=Esta%20circular%20aplica%20a%20cualquier%20persona%20%28 natural%20o,fines%20diferentes%20a%20los%20de%20
dc.relation.referencesWallace, L., Lucieer, A., Malenovský, Z., Turner, D., & Vopěnka, P. (2016). Assessment of Forest Structure Using Two UAV Techniques: A Comparison of Airborne Laser Scanning and Structure from Motion (SfM) Point Clouds. Forests, 7(3). doi:https://doi.org/10.3390/f7030062
dc.relation.referencesWang, J., Xiao, S., Song, T., Yue, J., Bian, P., & Li, Y. (2020). Spatial Straight-Line Drawing Algorithm Based on Method of Discriminate Regions - A Control Algorithm of Motors. Energies, 13(19), 1-24. doi:https://doi.org/10.3390/en13195002
dc.relation.referencesWang, X., & Xie, J. (2012). A Method for True Orthophoto Generation Based on Projection and Iteration Strategy. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, I-4, pp. 311-314. Melbourne.
dc.relation.referencesWatts, A. C., Ambrosia, V. G., & Hinkley, E. A. (2012). Unmanned Aircraft Systems in Remote Sensing and Scientific Research: Classification and Considerations of Use. Remote Sensing, 4, 1671-1692. doi:https://doi.org/10.3390/rs4061671
dc.relation.referencesYao, H., Qin, R., & Chen, X. (2019). Unmanned Aerial Vehicle for Remote Sensing Applications - A Review. MDPI - Remote Sensing, 11(12). doi:https://doi.org/10.3390/rs11121443
dc.relation.referencesYesuf, H. M., Assen, M., Melesse, A. M., & Alamirew, T. (2015). Detecting land use/land cover changes in the Lake Hayq (Ethiopia) drainage basin, 1957–2007. Lakes & Reservoirs: Research & Management, 20(1), 1-18. doi:https://doi.org/10.1111/lre.12082
dc.relation.referencesZahra, L., & Ayman, H. (2015). A new approach for segmentation-based texturing of laser scanning data., XL-5/W4, pp. 115-121. doi:10.5194/isprsarchives-XL-5-W4-115- 2015
dc.relation.referencesZhang, H., Aldana-Jague, E., Clapuyt, F., Wilken, F., Vanacker, V., & Van Oost, K. (2019). Evaluating the potential of post-processing kinematic (PPK) georeferencing for UAV-based structure- from-motion (SfM) photogrammetry and surface change detection. Earth Surface Dynamics, 807-827.
dc.relation.referencesZhao, C., Zhang, C., Yan, Y., & Su, N. (2021). A 3D Reconstruction Framework of Buildings Using Single Off-Nadir Satellite Image. Remote Sensing, 1-20. doi:https://doi.org/10.3390/rs13214434
dc.relation.referencesZhou, G., Wang, Y., Yue, T., Ye, S., & Wang, W. (2017). Building Occlusion Detection From Ghost Images. IEEE Transactions on Geoscience and Remote Sensing, 55(2), 1074-1084. doi:10.1109/TGRS.2016.2619184
dc.rights.accesoAbierto (Texto Completo)
dc.rights.accessrightsOpenAccess
dc.subjectStructure-from-Motion
dc.subjectOrtoimagen verdadera
dc.subjectOclusión fotogramétrica
dc.subjectConjunto de datos
dc.subjectVehículo aéreo no tripulado
dc.subject.keywordStructure-from-Motion
dc.subject.keywordTrue ortoimage
dc.subject.keywordPhotogrammetric occlusion
dc.subject.keywordDataset
dc.subject.keywordUnmanned Aerial Vehicle
dc.subject.lembMaestría en Ciencias de la Información y las Comunicaciones -- Tesis y disertaciones académicas
dc.subject.lembFotogrametría y oclusión
dc.subject.lembReconstrucción 3D y UAV
dc.subject.lembOrtoimágenes y modelos digitales de superficie
dc.titleConstrucción de geometrías 3D utilizando imágenes UAV como alternativa de solución para la oclusión fotogramétrica
dc.title.titleenglishConstruction of 3D geometries using UAV images as a workaround for the photogrammetric occlusion
dc.typemasterThesis
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.degreeInvestigación-Innovación
dc.type.driverinfo:eu-repo/semantics/masterThesis

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
RomeroBeltránJeissonAndrés2024.pdf
Tamaño:
12.02 MB
Formato:
Adobe Portable Document Format
Descripción:
Trabajo de grado
No hay miniatura disponible
Nombre:
LicenciaDeUsoyAutorizaciónRomeroBeltránJeissonAndrés2024.pdf
Tamaño:
785.11 KB
Formato:
Adobe Portable Document Format
Descripción:
Licencia de uso y autorización

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
7 KB
Formato:
Item-specific license agreed upon to submission
Descripción: