Estudio de las redes neuronales ortogonales y su aplicación en la ecuación de Bagley-Torvik

dc.contributor.advisorTrejos Angel, Deccy Yaneth
dc.contributor.authorManrique Moreno, Juan Sebastian
dc.contributor.orcidTrejos Angel, Deccy Yaneth [0000-0001-7586-9091]
dc.date.accessioned2025-12-09T16:50:17Z
dc.date.available2025-12-09T16:50:17Z
dc.date.created2025-10-27
dc.descriptionEsta monografía se inscribe en el ámbito de la física matemática y aborda la interacción entre el cálculo fraccionario y las redes neuronales ortogonales en la modelación de sistemas viscoelásticos con memoria, tomando como caso representativo la ecuación diferencial fraccionaria de Bagley-Torvik. En la primera parte se examina el marco teórico del cálculo fraccionario y su papel en la descripción de fenómenos de disipación y relajación temporal, derivando rigurosamente la ecuación de Bagley-Torvik a partir del problema de Stokes para un fluido newtoniano. En la segunda, se revisan las bases matemáticas y propiedades de las redes neuronales ortogonales sustentadas en polinomios clásicos de Hermite, Laguerre y Legendre, destacando su coherencia con los distintos dominios físicos de aplicación. Finalmente, se compara el desempeño de tres arquitecturas (HerNN, LaNN y LeNN) bajo diversos esquemas de entrenamiento para aproximar la solución de dicha ecuación. Los resultados experimentales revelan un patrón consistente: el esquema Extreme Learning Machine (ELM) proporciona la mejor combinación de precisión y eficiencia computacional, alcanzando para la arquitectura de Legendre (LeNN) una pérdida de 0,04035, un RMSE de 0,20088 y un coeficiente de correlación r = 0,9929, con tiempos de ejecución inferiores a 0,1 s. Los métodos iterativos de segundo orden (BFGS y Newton-CG) también mostraron un rendimiento notable, aunque con mayor variabilidad según la arquitectura y las condiciones numéricas. El análisis teórico-numérico evidenció además la influencia del intervalo de convergencia de los polinomios y la sensibilidad del operador fraccionario frente a la discretización temporal, factores determinantes en la estabilidad de la aproximación. En conjunto, los resultados confirman que la red de Legendre entrenada mediante ELM ofrece la representación más precisa y estable de la dinámica viscoelástica descrita por la ecuación de Bagley-Torvik, consolidando el enfoque fraccionario-ortogonal como una herramienta eficaz para el estudio de sistemas físicos con memoria y comportamiento no local.
dc.description.abstractThis monograph lies within the field of mathematical physics and explores the interplay between fractional calculus and orthogonal neural networks in modeling viscoelastic systems with memory, taking the fractional Bagley-Torvik equation as a representative case. The first part examines the theoretical framework of fractional calculus and its role in describing dissipation and temporal relaxation, deriving the Bagley-Torvik equation rigorously from Stokes’ problem for a Newtonian fluid. The second part reviews the mathematical foundations of orthogonal neural networks based on classical Hermite, Laguerre, and Legendre polynomials, emphasizing their consistency with distinct physical domains. Finally, a comparative analysis of three architectures (HerNN, LaNN, and LeNN) under various training schemes is conducted to approximate the equation’s numerical solution. Experimental results show a clear pattern: the Extreme Learning Machine (ELM) scheme achieves the best balance between accuracy and computational efficiency, with the Legendre-based network (LeNN) reaching a loss of 0.04035, RMSE of 0.20088, and correlation coefficient r = 0.9929 in less than 0.1 s of computation. Second-order iterative methods (BFGS and Newton-CG) also yielded competitive results, though with greater sensitivity to the network architecture and numerical conditions. The theoretical-numerical analysis further highlighted the impact of the convergence interval of orthogonal polynomials and the discretization sensitivity of the fractional operator on solution stability. Overall, the findings confirm that the Legendre network trained with ELM provides the most accurate and stable representation of the viscoelastic dynamics described by the Bagley-Torvik equation, establishing the fractional-orthogonal framework as a powerful tool for modeling physical systems with memory and nonlocal behavior.
dc.format.mimetypepdf
dc.identifier.urihttp://hdl.handle.net/11349/100069
dc.language.isospa
dc.publisherUniversidad Distrital Francisco José De Caldas
dc.relation.referencesR. O. E. Libardo y F. J. de Caldas, Tres documentos del coronel de ingenieros Francisco José de Caldas: padre de la ingeniería colombiana y fundador de nuestra facultad., Medellín: Editorial Universidad de Antioquia, abr. de 2010, ISBN: 9789587143706. Disponible en: https://bibliotecadigital.udea.edu.co/server/api/core/bitstreams/50faf3b9-6fc7-4223-bec5-c8d025feca1d/content.
dc.relation.referencesP. J. Torvik y R. L. Bagley, “On the Appearance of the Fractional Derivative in the Behavior of Real Materials,” Journal of Applied Mechanics, vol. 51, n.o 2, pp. 294–298, jun. de 1984, ISSN: 1528-9036. DOI: 10.1115/1.3167615.
dc.relation.referencesR. L. Bagley y P. J. Torvik, “A Theoretical Basis for the Application of Fractional Calculus to Viscoelasticity,” Journal of Rheology, vol. 27, n.o 3, pp. 201–210, jun. de 1983, ISSN: 1520-8516. DOI: 10.1122/1.549724.
dc.relation.referencesT. M. Atanackovic y D. Zorica, “On the Bagley-Torvik Equation,” Journal of Applied Mechanics, vol. 80, n.o 4, mayo de 2013, ISSN: 1528-9036. DOI: 10.1115/1.4007850.
dc.relation.referencesR. Herrmann, Fractional Calculus: An Introduction for Physicists, 2ª ed., Singapore: World Scientific Publishing Company, 2014, ISBN: 9789814551090.
dc.relation.referencesD. Xue, Fractional Calculus: High-Precision Algorithms and Numerical Implementations, 1st ed., L. Bai, ed., Singapore: Springer, 2024, ISBN: 9789819920709.
dc.relation.referencesI. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Mathematics in Science and Engineering, vol. 198, San Diego: Academic Press, 1999, ISBN: 9780080531984.
dc.relation.referencesI. Batiha, S. Alshorman, I. Jebril y M. Hammad, “A Brief Review about Fractional Calculus,” International Journal of Open Problems in Computer Science and Mathematics, vol. 15, pp. 39–56, dic. de 2022.
dc.relation.referencesC. C. Aggarwal, Neural Networks and Deep Learning: A Textbook, 2ª ed., Cham: Springer International Publishing AG, 2023, ISBN: 9783031296413.
dc.relation.referencesI. Goodfellow, Y. Bengio y A. Courville, Deep Learning, MIT Press, 2016. Disponible en: http://www.deeplearningbook.org.
dc.relation.referencesS. S. Haykin, Neural Networks and Learning Machines, 3ª ed., New York: Prentice-Hall, 2009, ISBN: 0131471392.
dc.relation.referencesT. M. Mitchell, Machine Learning (McGraw-Hill International Editions), New York: McGraw-Hill, 2013, ISBN: 0071154671.
dc.relation.referencesS.-S. Yang y C.-S. Tseng, “An Orthogonal Neural Network for Function Approximation,” IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), vol. 26, n.o 5, pp. 779–785, 1996, ISSN: 1083-4419. DOI: 10.1109/3477.537319.
dc.relation.referencesT. S. Chihara, Introduction to Orthogonal Polynomials, Dover Publications, 2011, ISBN: 9780486141411.
dc.relation.referencesW. Gautschi, Orthogonal Polynomials: Computation and Approximation, Oxford: Oxford University Press, 2020, ISBN: 9780191916571.
dc.relation.referencesR. E. N. A. T. O. Alvarez-Nodarse, Polinomios Hipergeométricos y Q-Polinomios, Prensas Universitarias de Zaragoza, 2003, ISBN: 9788477336372.
dc.relation.referencesS. Mall y S. Chakraverty, “Application of Legendre Neural Network for Solving Ordinary Differential Equations,” Applied Soft Computing, vol. 43, pp. 347–356, jun. de 2016, ISSN: 1568-4946. DOI: 10.1016/j.asoc.2015.10.069.
dc.relation.referencesY. Chen et al., “Numerical Solving of the Generalized Black-Scholes Differential Equation Using Laguerre Neural Network,” Digital Signal Processing, vol. 112, p. 103003, mayo de 2021, ISSN: 1051-2004. DOI: 10.1016/j.dsp.2021.103003.
dc.relation.referencesS. Mall y S. Chakraverty, “Hermite Functional Link Neural Network for Solving the Van der Pol–Duffing Oscillator Equation,” Neural Computation, vol. 28, n.o 8, pp. 1574–1598, ago. de 2016, ISSN: 1530-888X. DOI: 10.1162/neco_a_00858.
dc.relation.referencesG. G. Rigatos y S. G. Tzafestas, “Feed-Forward Neural Networks Using Hermite Polynomial Activation Functions, ” en Advances in Artificial Intelligence, Springer Berlin Heidelberg, 2006, pp. 323–333, ISBN: 9783540341185. DOI: 10.1007/11752912_33.
dc.relation.referencesA. Verma y M. Kumar, “Numerical Solution of Bagley–Torvik Equations Using Legendre Artificial Neural Network Method,” Evolutionary Intelligence, vol. 14, n.o 4, pp. 2027–2037, sep. de 2020, ISSN: 1864-5917. DOI: 10.1007/s12065-020-00481-x.
dc.relation.referencesY. Yang, M. Hou y J. Luo, “A Novel Improved Extreme Learning Machine Algorithm in Solving Ordinary Differential Equations by Legendre Neural Network Methods,” Advances in Difference Equations, vol. 2018, n.o 1, dic. de 2018, ISSN: 1687-1847. DOI: 10.1186/s13662-018-1927-x.
dc.relation.referencesK. Diethelm y J. Ford, “Numerical Solution of the Bagley-Torvik Equation,” BIT Numerical Mathematics, vol. 42, n.o 3, pp. 490–507, sep. de 2002, ISSN: 1572-9125. DOI: 10.1023/A:1021973025166.
dc.relation.referencesS. S. Ray y R. Bera, “Analytical Solution of the Bagley-Torvik Equation by Adomian Decomposition Method,” Applied Mathematics and Computation, vol. 168, n.o 1, pp. 398–410, sep. de 2005, ISSN: 0096-3003. DOI: 10.1016/j.amc.2004.09.006.
dc.relation.referencesG. W. Leibniz, C. Huygens y G. F. A. de L’Hôpital, Leibnizens Gesammelte Werke, Leibnizens Mathematische Schriften, Erste Abtheilung, Band II, Berlin: A. Asher & Comp., 1850, vol. 3, p. 343. Disponible en: https://data.onb.ac.at/rep/10A136D2.
dc.relation.referencesM. Lazarević, M. Rapaić y T. Šekara, “Introduction to Fractional Calculus with Brief Historical Background,” ene. de 2014, pp. 3–16, ISBN: 978-960-474-348-3.
dc.relation.referencesL. Euler, “De Progressionibus Transcendentibus Seu Quarum Termini Generales Algebraice Dari Nequeunt,” Commentarii Academiae Scientiarum Petropolitanae, vol. 5, pp. 36–57, 1738. Trad. al inglés por S. G. Langton, University of San Diego, 1999. Disponible en: https://scholarlycommons.pacific.edu/euler-works/19/.
dc.relation.referencesN. H. Asmar, Partial Differential Equations with Fourier Series and Boundary Value Problems, 2ª ed., Upper Saddle River, NJ: Pearson Prentice-Hall, 2005, ISBN: 0131480960.
dc.relation.referencesB. R. Munson, ed., Fundamentals of Fluid Mechanics, 7ª ed., Hoboken, NJ: Wiley, 2013, ISBN: 9781118399712.
dc.relation.referencesI. Siddique y D. Vieru, “Stokes Flows of a Newtonian Fluid with Fractional Derivatives and Slip at the Wall,” International Review of Physics (IREPHY), vol. 11, n.o 1, 2017, ISSN: 2533-2287. Disponible en: https://www.praiseworthyprize.org/jsm/index.php?journal=irephy&page=article&op=view&path%5B%5D=7269.
dc.relation.referencesH. Schlichting y K. Gersten, Boundary-Layer Theory, Springer Berlin Heidelberg, 2017, ISBN: 9783662529195. DOI: 10.1007/978-3-662-52919-5.
dc.relation.referencesF. Mainardi, “An Historical Perspective on Fractional Calculus in Linear Viscoelasticity: Short Survey,” Fractional Calculus and Applied Analysis, vol. 15, n.o 4, pp. 712–717, sep. de 2012, ISSN: 1314-2224. DOI: 10.2478/s13540-012-0048-6.
dc.relation.referencesM. Fukunaga y N. Shimizu, “Fractional Derivative Models of Viscoelastic Materials for Large Extension,” en ICFDA’14 International Conference on Fractional Differentiation and Its Applications, IEEE, jun. de 2014, pp. 1–5. DOI: 10.1109/icfda.2014.6967439.
dc.relation.referencesA. A. Zafar, G. Kudra y J. Awrejcewicz, “An Investigation of Fractional Bagley–Torvik Equation,” Entropy, vol. 22, n.o 1, p. 28, dic. de 2019, ISSN: 1099-4300. DOI: 10.3390/e22010028.
dc.relation.referencesA. Ben-Israel, Generalized Inverses: Theory and Applications, 2ª ed., T. N. E. Greville, ed., New York, NY: Springer, 2003, ISBN: 9780387216348.
dc.relation.referencesC. D. Vinodbhai y S. Dubey, “Numerical Solution of Neutral Delay Differential Equations Using Orthogonal Neural Network,” Scientific Reports, vol. 13, n.o 1, feb. de 2023, ISSN: 2045-2322. DOI: 10.1038/s41598-023-30127-8.
dc.relation.referencesJ. Wang, S. Lu, S.-H. Wang y Y.-D. Zhang, “A Review on Extreme Learning Machine,” Multimedia Tools and Applications, vol. 81, n.o 29, pp. 41611–41660, mayo de 2021, ISSN: 1573-7721. DOI: 10.1007/s11042-021-11007-7.
dc.relation.referencesI. Lagaris, A. Likas y D. Fotiadis, “Artificial Neural Networks for Solving Ordinary and Partial Differential Equations,” IEEE Transactions on Neural Networks, vol. 9, n.o 5, pp. 987–1000, 1998, ISSN: 1045-9227. DOI: 10.1109/72.712178.
dc.relation.referencesK. Udaya Mohanan, S. Cho y B.-G. Park, “Optimization of the Structural Complexity of Artificial Neural Network for Hardware-Driven Neuromorphic Computing Application,” Applied Intelligence, vol. 53, n.o 6, pp. 6288–6306, jul. de 2022, ISSN: 1573-7497. DOI: 10.1007/s10489-022-03783-y.
dc.relation.referencesY. Wang y Q. Ren, Deep Learning-Based Forward Modeling and Inversion Techniques for Computational Physics Problems, CRC Press, mayo de 2023, ISBN: 9781003397830. DOI: 10.1201/9781003397830.
dc.relation.referencesD. P. Kingma y J. Ba, “Adam: A Method for Stochastic Optimization,” dic. de 2014. DOI: 10.48550/ARXIV.1412.6980.
dc.relation.referencesJ. Nocedal y S. J. Wright, Numerical Optimization, 2ª ed., New York, NY: Springer, 2006, ISBN: 9780387400655.
dc.relation.referencesS. Ruder, “An Overview of Gradient Descent Optimization Algorithms,” sep. de 2016. DOI: 10.48550/ARXIV.1609.04747.
dc.relation.referencesF. Rosenblatt, “The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain,” Psychological Review, vol. 65, n.o 6, pp. 386–408, 1958, ISSN: 0033-295X. DOI: 10.1037/h0042519.
dc.relation.referencesR. Penrose, “A Generalized Inverse for Matrices,” Mathematical Proceedings of the Cambridge Philosophical Society, vol. 51, n.o 3, pp. 406–413, jul. de 1955, ISSN: 1469-8064. DOI: 10.1017/s0305004100030401.
dc.relation.referencesT. Ji, J. Hou y C. Yang, “Numerical Solution of the Bagley–Torvik Equation Using Shifted Chebyshev Operational Matrix,” Advances in Difference Equations, vol. 2020, n.o 1, nov. de 2020, ISSN: 1687-1847. DOI: 10.1186/s13662-020-03110-0.
dc.relation.referencesS. Esmaeili, “The Numerical Solution of the Bagley-Torvik Equation by Exponential Integrators,” Scientia Iranica, sep. de 2017, ISSN: 2345-3605. DOI: 10.24200/sci.2017.4503.
dc.relation.referencesI. Podlubny, “Matrix Approach to Discrete Fractional Calculus,” Fractional Calculus & Applied Analysis (FCAA), vol. 3, ene. de 2000. Disponible en: http://www.tuke.sk/podlubny/papers.html.
dc.rights.accesoAbierto (Texto Completo)
dc.rights.accessrightsOpenAccess
dc.subjectCálculo fraccionario
dc.subjectEcuación de Bagley-Torvik
dc.subjectFísica matemática
dc.subjectViscoelasticidad
dc.subjectRedes neuronales ortogonales
dc.subjectPolinomios ortogonales
dc.subject.keywordFractional calculus
dc.subject.keywordBagley-Torvik equation
dc.subject.keywordMathematical physics
dc.subject.keywordViscoelasticity
dc.subject.keywordOrthogonal neural networks
dc.subject.keywordOrthogonal polynomials
dc.subject.lembFísica -- Tesis y disertaciones académicas
dc.titleEstudio de las redes neuronales ortogonales y su aplicación en la ecuación de Bagley-Torvik
dc.title.titleenglishStudy of orthogonal neural networks and their application in the Bagley-Torvik equation
dc.typebachelorThesis
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.degreeMonografía
dc.type.driverinfo:eu-repo/semantics/bachelorThesis

Archivos

Bloque original

Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
Juan Sebastian Manrique Moreno.pdf
Tamaño:
2.05 MB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
Licencia de uso y publicación.pdf
Tamaño:
228.26 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
7 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones