Enseñanza y aprendizaje de las matemáticas: problemas semióticos, epistemológicos y prácticos

dc.contributor.authorD´Amore, Bruno
dc.contributor.authorRadford, Luis
dc.date.accessioned2024-07-11T15:04:55Z
dc.date.available2024-07-11T15:04:55Z
dc.date.created2017
dc.descriptionEn este libro, Bruno D´Amore y Luis Radford ponen en evidencia a la luz de nuevos enfoques -sobre todo socioculturales-, que progresivamente se han venido imponiendo en el campo de la educación matemática, la necesidad de repensar hoy en día algunas nociones centrales de la didáctica, como aquellas del saber, del conocimiento y del aprendizaje... Lo que une [a los autores], y que yo percibo de forma particular al interior de la reflexión que ellos conducen, es la importancia que ambos conceden a la dimensión epistemológica y semiótica. (Prólogo)spa
dc.description.abstractIn this book, Bruno D'Amore and Luis Radford highlight, in the light of new approaches - especially sociocultural - that have progressively been imposed in the field of mathematics education, the need to rethink some central notions today. of didactics, such as those of knowledge, knowledge and learning... What unites [the authors], and that I perceive in a particular way within the reflection that they lead, is the importance that both grant to epistemological and semiotic dimension. (Foreword)spa
dc.description.cityBogotáspa
dc.format.mimetypepdfspa
dc.identifier.editorialUniversidad Distrital Francisco José de Caldas. Doctorado Interinstitucional en Educaciónspa
dc.identifier.isbn978-958-5434-47-9spa
dc.identifier.isbn978-958-5434-48-6spa
dc.identifier.urihttp://hdl.handle.net/11349/37879
dc.relation.ispartofseriesÉnfasis; N° 17spa
dc.relation.referencesEco, U. (1981). Lector in fabula. Barcelona: Lumen.spa
dc.relation.referencesBagni, G. T., & D’Amore, B. (2005). Epistemologia, sociologia, semiotica: la prospettiva socio-culturale. La matematica e la sua didattica, 19(1), 73–89.spa
dc.relation.referencesBales, R. (1950). Interaction process analysis: A method for the study of small groups. Cambridge, Mass.: Addison-Wesley.spa
dc.relation.referencesBales, R. (1970). Personality and interpersonal behavior. New York: Holt, Rinehart & Winston.spa
dc.relation.referencesBartolini Bussi, M. (1994). Theoretical and empirical approaches to classroom interaction. En R. Biehler, R. W. Scholz, R. Strässer, & B. Winkelmann (Eds.), Didactics of mathematics as a scientific discipline (pp. 121–132). Dordrecht: Kluwer Academic Publishers.spa
dc.relation.referencesD’Amore, B. (1999). Elementi di didattica della matematica. Bologna: Pitagora.spa
dc.relation.referencesD’Amore, B. (2006). Didáctica de la matemática (1ª edición italiana, 1999). Bogotá: Magisterio.spa
dc.relation.referencesD’Amore, B. (2003). La complexité de la noétique en mathématiques ou les raisons de la dévolution manquée. For the learning of mathematics, 23(1), 47–51.spa
dc.relation.referencesD’Amore, B. (2015). Saber, conocer, labor en didáctica de la matemática: una contribución a la teoría de la objetivación. En L. Branchetti (Ed.), Teaching and learning mathematics: Some past and current approaches to mathematics education [Número especial]. Isonomia-Epistemologica (pp. 151–171). Universidad de Urbino “Carlo Bo”. Recuperado de: http://isonomia.uniurb.it/archive_epistemologica_special/201509spa
dc.relation.referencesD’Amore, B., & Fandiño Pinilla, M. I. (2015). Propuestas metodológicas que constituyeron ilusiones en el proceso de enseñanza de la matemática. Educación matemática [México DF, México], 27(3), 7-43.spa
dc.relation.referencesDurkheim, E. (1964). The division of labor in society. New York: Free Press. (Trabajo original publicado en 1893).spa
dc.relation.referencesDuval, R. (1993a). Registres de représentations sémiotiques et fonctionnement cognitif de la pensée. Annales de Didactique et de Science Cognitives, 5(1), 37–65.spa
dc.relation.referencesDuval, R. (1993b). Argumenter, demontrer, expliquer: continuité ou rupture cognitive? Petit x, 31, 37–61.spa
dc.relation.referencesDuval, R. (1999). Argumentar, demostrar, explicar: ¿continuidad o ruptura cognitiva? México: Grupo Editorial Iberoamérica.spa
dc.relation.referencesFandiño Pinilla, M. I. (2010). Múltiples aspectos del aprendizaje de la matemática. Prólogo de Giorgio Bolondi. Bogotá: Magisterio.spa
dc.relation.referencesGodino, J. D., & Batanero, C. (1994). Significado institucional y personal de los objetos matemáticos. Recherches en didactiques des mathématiques, 14(3), 325–355.spa
dc.relation.referencesHardesty, D. (1977). Ecological anthropology. New York: Wiley.spa
dc.relation.referencesMerton, R. (1968). Social theory and social structure. New York: Free Press.spa
dc.relation.referencesMills, T. (1967). The sociology of small groups. Englewood Cliffs, N.J.: Prentice Hall.spa
dc.relation.referencesRadford, L. (1997). On psychology, historical epistemology and the teaching of mathematics: Towards a socio-cultural history of mathematics. For the Learning of Mathematics, 17(1), 26–33.spa
dc.relation.referencesRadford, L. (2003a). On the epistemological limits of language: Mathematical knowledge and social practice in the Renaissance. Educational Studies in Mathematics, 52(2), 123–150. doi: 10.1023/A:1024029808871spa
dc.relation.referencesRadford, L. (2003b). On culture and mind: A post-Vygotskian semiotic perspective, with an example from Greek mathematical thought. En M. Anderson, A. SáenzLudlow, S. Zellweger, & V. Cifarelli (Eds.), Educational Perspectives on Mathematics as Semiosis: From Thinking to Interpreting to Knowing (pp. 49–79). Ottawa: Legas Publishing.spa
dc.relation.referencesRadford, L. (2014). De la teoría de la objetivación. Revista Latinoamericana de Etnomatemática, 7(2), 132-150.spa
dc.relation.referencesRadford, L., & Demers, S. (2006). Comunicazione e apprendimento. Prólogo de Bruno D’Amore. Bologna: Pitagora.spa
dc.relation.referencesRobertson, I. (1977). Sociobiology. New York: Worth Publishers Inc.spa
dc.relation.referencesD’Amore, B. (2005). Pratiche e metapratiche nell’attività matematica della classe intesa come società: Alcuni elementi rilevanti della didattica della matematica interpretati in chiave sociologica. La matematica e la sua didattica, 19(3), 325–336.spa
dc.relation.referencesD’Amore, B., Font, V., & Godino, J. D. (2007). La dimensión metadidáctica en los procesos de enseñanza y aprendizaje de la matemática. Paradigma, 28(2), 49–77.spa
dc.relation.referencesD’Amore, B., Font, V., & Godino, D. J. (2008). La dimensione metadidattica dei processi di insegnamento e di apprendimento della matematica. La matematica e la sua didattica, 22(2), 207–235.spa
dc.relation.referencesFont, V., Godino, D. J., & D’Amore, B. (2007). An onto-semiotic approach to rappresentations in mathematical education. For the learning of mathematics, 27(2), 2–7 and 14.spa
dc.relation.referencesArtigue, M., Gras, R., Laborde, C., & Tavignot, P. (Eds.) (1994). Vingt ans de didactique des mathématiques en France: Hommage à Guy Brousseau et Gérard Vergnaud. Grenoble: La Pensée Sauvage.spa
dc.relation.referencesBrousseau, G. (1986a). La relation didactique: le milieu. Actes de la IVème école d’été de didactique des mathématiques (pp. 54–68). Paris: IREM de Paris 7.spa
dc.relation.referencesBrousseau, G. (1986b). Fondements et méthodes de la didactique des mathématiques. Recherches en didactique des mathématiques, 7(2), 33–115.spa
dc.relation.referencesCampolucci, L., Fandiño Pinilla, M. I., & Maori, D. (2011). Frazioni. En B. D’Amore, M. I. Fandiño Pinilla, & S. Sbaragli (Eds.), Progetto “Matematica nella scuola primaria, percorsi per apprendere” (Vol. 8). Bologna: Pitagora.spa
dc.relation.referencesCampolucci, L., Fandiño Pinilla, M. I., Maori, D., & Sbaragli, S. (2006). Cambi di convinzione sulla pratica didattica concernente le frazioni. La matematica e la sua didattica, 20(3), 353–400.spa
dc.relation.referencesChevallard, Y. (1988). Sur l’analyse didactique: Deux études sur les notions de contrat et de situation. Marseille: IREM d’Aix-Marseille.spa
dc.relation.referencesD’Amore, B. (2003). Le basi filosofiche, pedagogiche, epistemologiche e concettuali della Didattica della Matematica. Bologna: Pitagora.spa
dc.relation.referencesD’Amore, B. (2004). El papel de la epistemología en la formación de profesores de Matemática de la escuela secundaria, Epsilon 60, 20(3), 413–434.spa
dc.relation.referencesD’Amore, B. (2005). Bases filosóficas, pedagógicas, epistemológicas y conceptuales de la didáctica de la matematica. México DF, México: Reverté-Relime. (Trabajo original publicado 2003).spa
dc.relation.referencesD’Amore, B. (2006a). Didáctica de la matemática. Bogotá: Editorial Magisterio. (Trabajo original publicado 1999).spa
dc.relation.referencesD’Amore, B. (2006b). Didattica della matematica “C”. En S. Sbaragli (Ed.), La matematica e la sua didattica, vent’anni di impegno. Actas del Congreso Internacional homónimo, Castel San Pietro Terme (BO), 23 septiembre 2006 (pp. 93–96). Roma: Carocci.spa
dc.relation.referencesD’Amore, B. (2007). “Didattica disciplinare”, “Formazione in scienze naturali”, “Formazione in matemática”, “Scienza”. En F. Frabboni, G. Wallnöfer, N. Belardi, & W. Wiater (Eds.), Le parole della pedagogía: Teorie italiane e tedesche a confronto (pp. 72–75, 140–142, 145–147, 335-337). Torino: Bollati Boringhieri.spa
dc.relation.referencesD’Amore, B., & Fandiño Pinilla, M. I. (2002). Un acercamiento analítico al “triángulo de la didáctica”. Educación Matemática, 14(1), 48–61.spa
dc.relation.referencesD’Amore, B., & Fandiño Pinilla, M. I. (2004). Cambios de convicciones en futuros profesores de matemática de la escuela secundaria superior. Epsilon 58, 20(1), 25–43.spa
dc.relation.referencesD’Amore, B., & Fandiño Pinilla, M. I. (2007). Le didattiche disciplinari. Prefación de Franco Frabboni. Trento: Erickson.spa
dc.relation.referencesD’Amore, B., & Fandiño Pinilla, M. I. (2013). El paso más largo: Sobre la necesidad de no tirar por la borda (en el nombre de un modernismo vacío) las teorías de la educación matemática que explican, perfectamente, situaciones reales del aula. Acta Scientiae: Revista de Ensino de Ciências e Matemática, 15(2), 246–256. Recuperado de: http://www.periodicos.ulbra.br/index.php/acta/issue/view/36spa
dc.relation.referencesD’Amore, B., & Fandiño Pinilla, M. I. (2015). Propuestas metodológicas que constituyeron ilusiones en el proceso de enseñanza de la matemática. Methodological proposals that constituted illusions in the process of teaching of mathematics. Educacion Matemática [México DF, México], 27(3), 7-43.spa
dc.relation.referencesD’Amore, B., Fandiño Pinilla, M. I., & Iori, M. (2013). La semiotica en la didáctica de la matemática. Prefacios de Raymond Duval, Luis Radford. Prólogo a la edición en idioma español de Carlos Eduardo Vasco. Bogotá: Magisterio.spa
dc.relation.referencesD’Amore, B., Fandiño Pinilla, M. I., & Sbaragli, S. (Eds.) (2011). Progetto “Matematica nella scuola primaria, percorsi per apprendere” (vols. 1-14). [Proyecto de enseñanza-aprendizaje de la matemática en la escuela primaria en 14 volúmenes]. Bologna: Pitagora.spa
dc.relation.referencesD’Amore, B., Fandiño Pinilla, M. I., Marazzani, I., & Sarrazy, B. (2010). Didattica della matemática: Alcuni effetti del “contratto”. Prefación y postfación de Guy Brousseau. Bologna: Archetipolibri.spa
dc.relation.referencesD’Amore, B., Fandiño Pinilla, M. I., Marazzani, I., & Sbaragli, S. (2008). La didattica e le difficoltà in matematica. Trento: Erickson.spa
dc.relation.referencesD’Amore, B., Fandiño Pinilla, M. I., Marazzani, I., & Sbaragli, S. (2010). La didáctica y la dificultad en matemática. Bogotá: Magisterio. (Trabajo original publicado 2008).spa
dc.relation.referencesD’Amore, B., & Frabboni, F. (1996). Didattica generale e didattiche disciplinari. Milano: Angeli.spa
dc.relation.referencesD’Amore, B., & Frabboni, F. (2005). Didattica generale e didattica disciplinare. Milano: Bruno Mondadori.spa
dc.relation.referencesD’Amore, B., & Sbaragli, S. (2011). Principi di base di didattica della matematica. En B. D’Amore, M. I. Fandiño Pinilla, & S. Sbaragli (Eds.), Progetto “Matematica nella scuola primaria, percorsi per apprendere” (Vol. 2). Bologna: Pitagora.spa
dc.relation.referencesDa Ponte, J. P. (2009). Far ricerca sulla nostra pratica: una strategia di formazione e di costruzione della conoscenza professionale. La matematica e la sua didattica, 23(2), 157–189.spa
dc.relation.referencesDozza, L. (2006). Relazioni cooperative a scuola: Il lievito e gli ingredienti. Trento: Erickson.spa
dc.relation.referencesEllerani, P. (2012). La sfida della didattica: trasformare le classi in contesti di apprendimento continuo per formare competenze e capitale sociale. En G. Bolondi & M. I. Fandiño Pinilla (Eds.), Metodi e strumenti per l’insegnamento e l’apprendimento della matematica. Napoli: Edises.spa
dc.relation.referencesFandiño Pinilla, M. I. (2002). Curricolo e valutazione in matematica. Bologna: Pitagora.spa
dc.relation.referencesFandiño Pinilla, M. I. (2005). Frazioni, aspetti concettuali e didattici. Bologna: Pitagora.spa
dc.relation.referencesFandiño Pinilla, M. I. (2006). Currículo, evaluación y formación docente en matemática. Bogotá: Magisterio. (Trabajo original publicado 2002).spa
dc.relation.referencesFandiño Pinilla, M. I. (2009). Las fracciones: Aspectos conceptuales y didácticos. Bogotá: Magisterio. Prefacio de Athanasios Gagatsis. Prefacio a la edición en idioma español de Carlos Eduardo Vasco Uribe. (Trabajo original publicado 2005).spa
dc.relation.referencesFandiño Pinilla, M. I., & Sbaragli, S. (2011). Matematica di base per insegnare nella scuola primaria. En B. D’Amore, M. I. Fandiño Pinilla, & S. Sbaragli (Eds.), Progetto “Matematica nella scuola primaria, percorsi per apprendere” (Vol. 1). Bologna: Pitagora.spa
dc.relation.referencesGodino, J. (1993). La metáfora ecológica en el estudio de la noosfera matemática. Quadrante, 2(2), 69–79.spa
dc.relation.referencesMartini, B., & Sbaragli, S. (2005). Insegnare e apprendere la matematica. Napoli: Tecnodid.spa
dc.relation.referencesPerrin-Glorian, M.-J. (1994). Théorie des situations didactiques: naissance, développement, perspectives. En M. Artigue, R. Gras, C. Laborde, & P. Tavignot (Eds.), Vingt ans de didactique des mathématiques en France: Hommage à Guy Brousseau et Gérard Vergnaud (pp. 97–147). Grenoble: La Pensée Sauvage.spa
dc.relation.referencesSbaragli, S. (Ed.) (2011). Buone pratiche d’aula. Bologna: Pitagora.spa
dc.relation.referencesSbaragli, S. (2012). Il ruolo delle misconcezione nella didattica della matematica. En G. Bolondi & M. I. Fandiño Pinilla (Eds.), Metodi e strumenti per l’insegnamento e l’apprendimento della matematica. Napoli: Edises.spa
dc.relation.referencesStenhouse, L. (1975). An introduction to curriculum research and development. London: Heineman Educational.spa
dc.relation.referencesZan, R. (2007). Difficoltà in matematica. Milano: Springer.spa
dc.relation.referencesZeichner, K., & Nofke, S. (2001). Practitioner research. En V. Richardson (Eds.), Handbook of research on teaching (pp. 298–330). Washington: AERA.spa
dc.relation.referencesD’Amore, B., & Fandiño Pinilla, M. I. (2013). La didattica della didattica della matematica: Esperienze personali e spunti critici di discussione e ricerca. L’insegnamento della matematica e delle scienze integrate, 36B(4), 325–353.spa
dc.relation.referencesChevallard, Y. (1991). Dimension instrumentale, dimension sémiotique de l’acitivité mathématique. Actes du séminaire de didactique des mathématiques et de l’informatique (année 1990-1991, n. 122) (pp. 103–117). Grenoble: LSD-IMAG, Université Joseph Fourier.spa
dc.relation.referencesChevallard, Y. (1992). Concepts fondamentaux de la didactique: perspectives apportées par une approche antropologique. Recherches en didactique des mathématiques, 12(1), 73–111.spa
dc.relation.referencesD’Amore, B. (1998). Objetos relacionales y registros representativos distintos: Dificultades cognitivas y obstáculos. Uno, 15, 63-78.spa
dc.relation.referencesD’Amore, B. (1999a). Scolarizzazione del sapere e delle relazioni: effetti sull’apprendimento della matematica. L’insegnamento della Matematica e delle scienze integrate, 22A(3), 247–276.spa
dc.relation.referencesD’Amore, B. (1999b). Elementi di didattica della matematica. Prefazione di Colette Laborde. Bologna: Pitagora.spa
dc.relation.referencesD’Amore, B. (2001a). Concettualizzazione, registri di rappresentazioni semiotiche e noetica. La matematica e la sua didattica, 15(2), 150–173.spa
dc.relation.referencesD’Amore, B. (2001b). Un contributo al dibattito su concetti e oggetti matematici: la posizione “ingenua” in una teoria “realista” vs il modello “antropologico” in una teoria “pragmatica”. La matematica e la sua didattica. 1, 4–30.spa
dc.relation.referencesD’Amore, B. (2001c). Una contribución al debate sobre conceptos y objetos matemáticos. Uno, 27, 51–78.spa
dc.relation.referencesD’Amore, B. (2004). Conceptualización, registros de representaciones semióticas y noética: interacciones constructivistas en el aprendizaje de los conceptos matemáticos e hipótesis sobre algunos factores que inhiben la devolución. Uno, 35, 90–106. (Trabajo original publicado 2001).spa
dc.relation.referencesD’Amore, B. (2006a). Oggetti matematici e senso: Le trasformazioni semiotiche cambiano il senso degli oggetti matematici. La matematica e la sua didattica, 20(4), 557–583.spa
dc.relation.referencesD’Amore, B. (2006b). Objetos, significados, representaciones semióticas y sentido. En L. Radford & B. D’Amore (Eds.), Semiotics, Culture and Mathematical Thinking [Número especial]. Revista Latinoamericana de Investigación en Matemática Educativa, 9(1), 177-195.spa
dc.relation.referencesD’Amore, B. (2006c). Didáctica de la matemática. Con una carta de Guy Brousseau. Prefacio a la edición en idioma español de Luis Rico. Bogotá: Editorial Magisterio. (Trabajo original publicado en 1999).spa
dc.relation.referencesD’Amore, B. (2007a). How the treatment or conversion changes the sense of mathematical objects. En E. P. Avgerinos & A. Gagatsis (Eds.), Current trends in Mathematics Education. Proceedings of 5th MEDCONF2007 (Mediterranean Conference on Mathematics Education) (pp. 77–82). Athens: New Technologies Publications.spa
dc.relation.referencesD’Amore, B. (2007b). Mathematical objects and sense: How semiotic transformations change the sense of mathematical objects. Acta Didactica Universitatis Comenianae, 7, 23–45.spa
dc.relation.referencesD’Amore, B. (2011). La ricerca in didattica della matematica: un esempio di ricerca. Oggetti matematici, trasformazioni semiotiche e senso. L’insegnamento della matematica e delle scienze integrate, 34AB(3), 255–266.spa
dc.relation.referencesD’Amore, B., & Fandiño, M. I. (2007a). How the sense of mathematical objects changes when their semiotic representations undergo treatment and conversion. La matematica e la sua didattica, 21(1), 87–92.spa
dc.relation.referencesD’Amore, B., & Fandiño, M. I. (2007b). Relationships between area and perimeter: Beliefs of teachers. En E. P. Avgerinos & A. Gagatsis (Eds.), Current trends in Mathematics Education. Proceedings of 5th MEDCONF2007 (Mediterranean Conference on Mathematics Education) (pp. 383–396). Athens: New Technologies Publications.spa
dc.relation.referencesD’Amore, B., & Fandiño, M. I. (2008a). Change of the meaning of mathematical objects due to the passage between their different representations: How other disciplines can be useful to the analysis of this phenomenon. Roma, Symposium on the occasion of the 100th anniversary of ICMI, Marzo 2008. WG5: The evolution of theoretical framework in mathematics education. Recuperado de: www.unige.ch/math/EnsMath/Rome2008spa
dc.relation.referencesD’Amore, B., & Fandiño, M. I. (2008b). The phenomenon of change of the meaning of mathematical objects due to the passage between their different representations: How other disciplines can be useful to the analysis. En A. Gagatsis (Ed.), Research in Mathematics Education. Proceedings of Conference of five cities: Nicosia, Rhodes, Bologna, Palermo, Locarno (pp. 13–22). Nicosia, Cyprus: University of Cyprus.spa
dc.relation.referencesD’Amore, B., & Fandiño, M. I. (2008c). Change of the meaning of mathematical objects due to the passage between their different representations. En M. Menghini, F. Furinghetti, L. Giacardi & F. Arzarello (Eds.), The First Century of the International Commission on Mathematical Instruction (1908-2008). Reflecting and shaping the world of mathematics education. Actas del homónimo Congreso (pp. 304-305). Roma: Instituto de la Enciclopedia Italiana. Colección Scienza e Filosofia.spa
dc.relation.referencesD’Amore, B., Fandiño Pinilla, M. I., Iori, M., & Matteuzzi, M. (2015). Análisis de los antecedentes histórico-filosóficos de la “paradoja cognitiva de Duval”. Revista Latinoamericana de Investigación en Matemática Educativa, 18(2), 177– 212. doi: 10.12802/relime.13.1822spa
dc.relation.referencesDe Saussure, F. (1915). Cours de linguistique générale (5a ed., 1960). Paris: Payot.spa
dc.relation.referencesDuval, R. (1988a). Ecarts sémantiques et cohérence mathématique. Annales de Didactique et de Sciences cognitives, 1(1), 7–25.spa
dc.relation.referencesDuval, R. (1988b). Approche cognitive des problèmes de géométrie en termes de congruence. Annales de Didactique et de Sciences cognitives, 1(1), 57–74.spa
dc.relation.referencesDuval, R. (1988c). Graphiques et équations. Annales de Didactique et de Sciences cognitives, 1(1), 235–253.spa
dc.relation.referencesDuval, R. (1993). Registres de représentations sémiotique et fonctionnement cognitif de la pensée. Annales de Didactique et de Sciences Cognitives, 5(1), 37–65.spa
dc.relation.referencesDuval, R. (1995). Sémiosis et pensée humaine. Registres sémiotiques et apprentissages intellectuels. Berne: Peter Lang.spa
dc.relation.referencesDuval, R. (1996). Quel cognitif retenir en didactique des mathématiques? Recherche en Didactique des Mathématiques, 16(3), 349–382.spa
dc.relation.referencesDuval, R. (1998). Signe et object (I). Trois grandes étapes dans la problématique des rapports entre répresentation et objet. Annales de Didactique et de Sciences Cognitives, 6(1), 139–163.spa
dc.relation.referencesGodino, J. D., & Batanero, C. (1994). Significado institucional y personal de los objetos matemáticos. Recherches en Didactique des Mathématiques, 14(3), 325–355.spa
dc.relation.referencesIori, M. (2015). La consapevolezza dell’insegnante della dimensione semio-cognitiva dell’apprendimento della matematica. (Tesis de Doctorado, Universidad de Palermo, Italia). Recuperado de: http://www.dm.unibo.it/rsddm/it/Phd/Iori/ Iori.htmspa
dc.relation.referencesIori, M. (2017). Objects, signs and representations in the semio-cognitive analysis of the processes involved in teaching and learning mathematics. A Duvalian perspective. Educational studies in mathematics, 94(3), 275-291. doi: 10. 1007 / s 10649-016-9726-3.spa
dc.relation.referencesMoreno Armella, L. (1999). Epistemologia ed Educazione Matematica. La matematica e la sua didattica, 13(1), 43–59.spa
dc.relation.referencesPerrin Glorian, M. J. (1994). Théorie des situations didactiques: naissance, développement, perspectives. En M. Artigue, R. Gras, C. Laborde, & P. Tavignot (Eds.), Vingt ans de didactique des mathématiques en France: Hommage à Guy Brousseau et Gérard Vergnaud (pp. 97–148). Grenoble: La Pensée Sauvage.spa
dc.relation.referencesPiaget, J. (1937). La construction du réel chez l’enfant. Neuchâtel-Paris: Delachaux et Niestlé.spa
dc.relation.referencesPiaget, J., & García, R. (1983). Psychogenèse et histoire des sciences. Paris: Flammarion.spa
dc.relation.referencesRadford, L. (2002). The seen, the spoken and the written: A semiotic approach to the problem of objectification of mathematical knowledge. For the learning of mathematics, 22(2), 14–23.spa
dc.relation.referencesRadford, L. (2003). Gestures, speech and the sprouting of signs: A semiotic-cultural approach to students’ types of generalization. Mathematical Thinking and Learning, 5(1), 37–70.spa
dc.relation.referencesRadford, L. (2004). Cose sensibili, essenze, oggetti matematici ed altre ambiguità. La matematica e la sua didattica. 1, 4–23.spa
dc.relation.referencesRojas, P. (2014). Articulación de saberes matemáticos: representaciones semióticas y sentidos. Universidad Distrital Francisco José de Caldas: Bogotá (Colombia).spa
dc.relation.referencesSanti, G. (2010). Changes in meaning of mathematical objects due to semiotic transformations: a comparison between semiotic perspectives (Tesis Doctoral), Universidad de Palermo (Italia).spa
dc.relation.referencesSanti, G. (2011). Objectification and semiotic function. Educational studies in mathematics, 77 (2-3), 285-311.spa
dc.relation.referencesSperanza, F. (1997). Scritti di epistemologia della matematica. Bologna: Pitagora.spa
dc.relation.referencesVergnaud, G. (1990). La théorie des champs conceptuels. Recherches en Didactique des Mathématiques, 10(2-3), 133–170.spa
dc.relation.referencesVygotsky, L. (1962). Thought and language. Cambridge, MA: MIT Press.spa
dc.relation.referencesWertsch, J. (1993). Voces de la mente. Madrid: Visor.spa
dc.relation.referencesArendt, H. (1958). The modem concept of history. The Review of Politics, 20(4), 570-590. doi:10.1017/S0034670500034227.spa
dc.relation.referencesAristotle. (1998). Metaphysics. (H. Lawson-Tancred, Trans.). London: Penguin Books.spa
dc.relation.referencesCampbell, S. (2002). Constructivism and the limits of reason: Revisiting the Kantian problematic. Studies in Philosophy and Education, 21,421-445.spa
dc.relation.referencesHegel, G. W. F. (1977). Phenomenology of spirit. Oxford: Oxford University Press (First edition, 1807).spa
dc.relation.referencesHegel, G. (2001). The philosophy of history. Kitchener, ON: Batoche Books. (Original work published 1837)spa
dc.relation.referencesHegel, G. (2009). Logic. (W. Wallace, Trans.). Pacifica, CA: MIA. (Original work published 1830)spa
dc.relation.referencesHirata, S., Morimura, N., & Houki, C. (2009). How to crack nuts: Acquisition process in captive chimpanzees (pan troglodytes) observing a model. Animal Cognition, 12, 87-101. doi: 10.1007/s10071-009-0275-3spa
dc.relation.referencesIlyenkov, E. V. (1977). Dialectical logic. Moscow: Progress Publishers.spa
dc.relation.referencesKant, I. (2003). Critique of pure reason. (N. K. Smith, Trans.) New York: St. Marin’s Press. (Original work published 1787)spa
dc.relation.referencesLawlor, R., & Lawlor, D. (1979). Theon of Smirna: Mathematics useful for understanding Plato. San Diego: Wizards Bookshelf.spa
dc.relation.referencesLefevre, W. (1981). Rechenstein und sprache [computing stones and language]. In P. Damerow & W. Lefevre (Eds.), Rechenstein, experiment, sprache. Historische fallstudien zur entstehung der exakten wissenschaften [Computing stones, experiment, language. Historical case studies on the emergence of the exact sciences] (pp. 115-169). Stuttgart: Klett-Cotta.spa
dc.relation.referencesLerman, S. (1996). Intersubjectivity in mathematics learning: A challenge to the radical constructivist paradigm? Journal for Research in Mathematics Education, 27(2), 133-150.spa
dc.relation.referencesManitius, K. (1888). Des hypsikles schrift anaphorikos nach iiberlieferung und inhalt kritisch behandelt [Hypsikles’ text “anaphorikos” according to transmission and content dealt with in a critical way]. Dresden: Lehmannsche Buchdruckerei.spa
dc.relation.referencesMarx, K. (1973). Grundrisse: Introduction to the critique of political economy. Baltimore: Penguin Books.spa
dc.relation.referencesMarx, K. (1998). The German ideology. New York: Prometheus Books.spa
dc.relation.referencesMatsuzawa, T., Biro, D., Humle, T., Inoue-Nakamura, N., Tonooka, R., & Yamakoshi, G. (2001). Emergence of culture in wild chimpanzees: Education by masterapprenticeship. In T. Matsuzawa (Ed.), Primate origins of human cognition and behavior (pp. 557-574). Tokyo: Springer.spa
dc.relation.referencesMaybee, J. (2009). Picturing Hegel. Lanham, MD: Lexington Books.spa
dc.relation.referencesMikhailov, F. T. (1980). The riddle of the self. Moscow: Progress Publishers.spa
dc.relation.referencesNicomachus of Gerasa. (1938). Introduction to arithmetic. (M. L. D’Ooge, Trans.). Ann Arbor: University of Michigan Press.spa
dc.relation.referencesOtte, M. (1998). Limits of constructivism : Kant, Piaget and Peirce. Science & Education, 7, 425-450.spa
dc.relation.referencesRadford, L. (2006a). Elementos de una teoría cultural de la objetivación. Revista Latinoamericana de Investigación en Matemática Educativa, Special Issue on Semiotics, Culture and Mathematical Thinking, 103-129 (available at: http://luisradford.ca)spa
dc.relation.referencesRadford, L. (2006b). Variables, unknowns, and parameters of mathematical generality. In Mini-Workshop on studying original sources in mathematics education. Oberwolfach, April 30th-May 6th, 2006. Report No. 22/2006, 16-17.spa
dc.relation.referencesRadford, L. (2014). De la teoría de la objetivación. Revista Latinoamericana de Etnomatemática, 7(2), 132-150.spa
dc.relation.referencesRoth, W.-M. (2011). Possibility: At the limits of the constructivist metaphor. New York: Springer.spa
dc.relation.referencesSachs, J. (2015). Aristotle: Motion and its place in nature. In The internet encyclopedia of philosophy. http://www .iep.utm.edu/ (Accessed on April 9 2015).spa
dc.relation.referencesTarán, L. (1 969). Asclepius of Tralles: Commentary to Nichomacus’ Introduction to arithmetic (Vol. 59, part 4). Transactions of the American Philosophical Society.spa
dc.relation.referencesValero, M. (2004). Postmodernism as an attitude of critique to dominant mathematics education research. In P. Walshaw (Ed.), Mathematics education within the postmodern (pp. 35-54). Greenwich, CT: Information Age Publishing.spa
dc.relation.referencesVer Eecke, P. (1959). Diopante d’Alexandrie. Les six livres arithmetiques et le livre des nombres polygones [Diophantus of Alexandria: The six books on arithmetic and the book on polygonal numbers]. Liege: Desclee de Brower. (Original work published 1926).spa
dc.relation.referencesVygotsky, L. S. (1987-1999). Collected works. New York: Plenum Press.spa
dc.relation.referencesVygotsky, L. S., & Luria, A. (1994). Tool and symbol in child development. In R. van der Veer & J. Valsiner (Eds.), The Vygotsky reader (pp. 99-174). Oxford: Blackwell Publishers.spa
dc.relation.referencesZevenbergen, R. (1996). Constructivism as a liberal bourgeois discourse. Educational Studies in Mathematics, 31, 95-113.spa
dc.relation.referencesArtigue, M. (1995). The role of epistemology in the analysis of teaching/learning relationships in mathematics education. In Y. M. Pothier (Ed.), Proceedings of the 1995 annual meeting of the Canadian mathematics education study group (pp. 7-21). University of Western Ontario.spa
dc.relation.referencesArtigue, M. (2009). Didactical design in mathematics education. In C. Winslow (Ed.), Nordic research in mathematics education. Proceedings ofNORMA08. Rotterdam: Sense Publishers.spa
dc.relation.referencesGardener, S. (n.d.). Hegel: Glossary. Retrieved from http://philosophyfaculty.ucsd. edu/faculty/ewatkins/Hegel-Glossary.pdf.spa
dc.relation.referencesHegel, G. (2009). Logic. (W. Wallace, Trans.). Pacifica, CA: MIA. (Original work published 1830)spa
dc.relation.referencesHeidegger, M. (2004). On the essence of language. New York: SUNY. (Original work published 1999)spa
dc.relation.referencesJanet, P. (1929). L’evolution psychologique de la personnalite [The psychological evolution of personality]. Paris: Masson.spa
dc.relation.referencesLave, J. (1988). Cognition in practice. Cambridge: Cambridge University Press.spa
dc.relation.referencesLave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. Cambridge: Cambridge University Press.spa
dc.relation.referencesLeont’ev, A. N. (1978). Activity, consciousness, and personality. Englewood Cliffs, NJ: Prentice-Hall.spa
dc.relation.referencesMikhailov, F. T. (1980). The riddle of the self. Moscow: Progress Publishers.spa
dc.relation.referencesRadford, L. (2007). Towards a cultural theory of learning. In D. Pitta-Pantazi & G. Philippou (Eds.), Proceedings of the fifth congress of the european society for research in mathematics education (CERME-5) (pp. 1782-1797). Lamaca, Cyprus.spa
dc.relation.referencesRadford, L. (2008). Iconicity and contraction: A semiotic investigation of forms of algebraic generalizations of patterns in different contexts. ZDM - the International Journal on Mathematics Education, 40{ 1), 83-96. Doi:10.1007/sll858- 007-0061-0spa
dc.relation.referencesRadford, L. (2010). Algebraic thinking from a cultural semiotic perspective. Research in Mathematics Education, 12(1), 1-19. Doi: 10.1080/14794800903569741spa
dc.relation.referencesRadford, L. (2011). Embodiment, perception and symbols in the development of early algebraic thinking. In Proceedings of the 35th conference of the international group for the psychology of mathematics education (Vol. 4, pp. 17-24). Ankara: PME.spa
dc.relation.referencesRadford, L., & Roth, W.-M. (2011). Intercorporeality and ethical commitment: An activity perspective on classroom interaction. Educational Studies in Mathematics, 77(2-3), 227-245. Doi: 10.1007/s10649-010-9282-1spa
dc.relation.referencesRogoff, B. (1990). Apprenticeship in thinking. Oxford: Oxford University Press.spa
dc.relation.referencesSpinoza, B. (1989). Ethics including the improvement of the understanding. (R. Elwes, Trans.). Buffalo: Prometheus. (Original work published 1667)spa
dc.relation.referencesTaylor, C. (1989). Sources of the self. Cambridge, MA: Harvard University Press.spa
dc.relation.referencesVeresov, N. (1999). Undiscovered Vygotsky. Etudes on the pre-history of culturalhistorical psychology. Frankfurt: Peter Lang.spa
dc.relation.referencesVygotsky, L. (1929). The problem of the cultural development of the child. Journal of Genetic Psychology, 36, 415-434.spa
dc.relation.referencesVygotsky, L. S. (1978). Mind in society. Cambridge, Ma: Harvard University Press.spa
dc.relation.referencesArendt, H. (1958). The modern concept of history. The Review of Politics, 20(4), 570-590.spa
dc.relation.referencesBaldino, R., & Cabral, T. (1998). Lacan and the school’s credit system. In A. Olivier & K. Newstead (Eds.), Proceedings of the 22nd conference of the international group for the psychology of mathematics education (Vol. 22, pp. 56-63). Stellenbosch, South Africa. University of Stellenbosch: PME.spa
dc.relation.referencesBakhtin, M. (1990). Art and answerability. Austin: University of Texas Press.spa
dc.relation.referencesBeaud, M. (2004). A history of capitalism. Delhi: Aakar Books.spa
dc.relation.referencesBrousseau, G. (1997). Theory of didactical situations in mathematics. Dordrecht: Kluwer.spa
dc.relation.referencesBrousseau, G. (2003). Glossaire de quelques concepts de la théorie des situations didactiques en mathématiques [Glossary of some concepts of the theory of didactic situations in mathematics]. Retrieved on January 20, 2007, From http://dipmat.math.unipa.it/~grim/Gloss_fr_Brousseau.pdf.spa
dc.relation.referencesCambiano, G. (1993). Devenir homme. In J. Vernant (Ed.), L’homme grec (pp. 171- 215). Paris: Éditions du Seuil.spa
dc.relation.referencesCassirer, E. (1963). The individual and the cosmos in renaissance philosophy. (Original work published in 1927). New York: Harper Torchbooks.spa
dc.relation.referencesCobb, P., & Yackel, E. (1996). Constructivist, emergent, and sociocultural perspectives in the context of developmental research. Educational Psychologist, 31(3/4), 175-190.spa
dc.relation.referencesFischbach, F. (2012). Sans objet. Capitalisme, subjectivité, alienation [Sin objeto. Capitalismo, subjetividad, alienación]. Paris: Vrin.spa
dc.relation.referencesFreire, P. (2004). Pedagogy of indignation. Boulder, Colorado: Paradigm Publishers.spa
dc.relation.referencesFuringhetti, F., & Radford, L. (2008). Contrasts and oblique connections between historical conceptual developments and classroom learning in mathematics. In L. English (Ed.), Handbook of international research in mathematics education (2nd edition) (pp. 626 - 655). New York: Taylor and Francis.spa
dc.relation.referencesGlasersfeld von, E. (1995). Radical constructivism: A way of knowing and learning. London: The Falmer Press.spa
dc.relation.referencesHegel, G. (2001). The philosophy of history. Kitchener, ON: Batoche Books. (Original work published 1837)spa
dc.relation.referencesHeidegger, M. (1962). Being and time. (Translated by J. Macquarrie & E. Robinson). New York: Harper.spa
dc.relation.referencesHusserl, E. (1970). The crisis of the European science. Evanston: Northwestern University Press.spa
dc.relation.referencesHusserl, E. (1982). Cartesian meditations: An introduction to phenomenology. (D. Cairns, Trans.). The Hague: Martinus Nijhoff Publishers.spa
dc.relation.referencesIllouz, E. (1997). Consuming the romantic utopia: Love and the cultural contradictions of capitalism. London: The University of California Press.spa
dc.relation.referencesLancy, D. F. (1983). Cross-cultural studies in cognition and mathematics. New York: Academic Press.spa
dc.relation.referencesLe Goff, J. (1956). Marchands et banquiers du moyen age. (7th updated edition, 1986). Paris: Presses Universitaires de France.spa
dc.relation.referencesLeont’ev, A. N. (1974). The problem of activity in psychology. Soviet Psychology, 13(2), 4-33.spa
dc.relation.referencesLeont’ev [or Leontyev], A. N. (2009). Activity and consciousness. Pacifica, CA: MIA. Retrieved August 29, 2009, from http://www.marxists.org/archive/leontev/works/activity-consciousness.pdf.spa
dc.relation.referencesLévinas, E. (1982). Éthique et infini. Paris: Fayard.spa
dc.relation.referencesLizcano, E. (2009). Imaginario colectivo y creación matemática. Madrid: Gedisa.spa
dc.relation.referencesMarx, K. (1988). Economic and philosophic manuscripts of 1844. Amherst, New York: Prometheus Books. (Original work published 1932).spa
dc.relation.referencesMarx, K. (2007). Manuscrits économico-philosophiques de 1844 [Manuscritos económico-filosóficos de 1844]. (F. Fischbach, Trans.). Paris: Vrin. (Original work published 1932)spa
dc.relation.referencesOwens, K. (2001). Indigenous mathematics: a rich diversity. Mathematics: Shaping Australia. Proceedings of the Eighteenth Biennial Conference of the Australian Association of Mathematics Teachers, 151–167. Retrieved Feburary 17, 2006, from: http://www.aamt.edu.au/ICSIMAN/resources/papers/owens.pdf.spa
dc.relation.referencesPais, A. (2011). Mathematics education and the political: An ideology critique of an educational research field. Ph. D. Dissertation. Aalborg, Denmark: Department of Learning and Philosophy. Aalborg University.spa
dc.relation.referencesPiaget, J. (1973). To understand is to invent. The future of education. New York: Grossman.spa
dc.relation.referencesPopkewitz, T. (2004). The alchemy of the mathematics curriculum: Inscriptions and the fabrication of the child. American Educational Research Journal, 41(1), 3-34.spa
dc.relation.referencesPumuge, H. M. (1975). The counting system of the pekai-alue tribe of the topopul village in the ialibu sub-district in the southern highlands district, papua new guinea. Science in New Guinea, 3(1), 19-25.spa
dc.relation.referencesRadford, L. (2006). Elementos de una teoría cultural de la objetivación [Elements of a cultural theory of objectification]. Revista Latinoamericana de Investigación en Matemática Educativa, Special Issue on Semiotics, Culture and Mathematical Thinking, 103-129 (available at: http://www.laurentian.ca/educ/lradford/).spa
dc.relation.referencesRadford, L. (2008). The ethics of being and knowing: Towards a cultural theory of learning. In L. Radford, G. Schubring, & F. Seeger (Eds.), Semiotics in mathematics education: Epistemology, history, classroom, and culture (pp. 215-234). Rotterdam: Sense Publishers.spa
dc.relation.referencesRadford, L. (2012). Education and the illusions of emancipation. Educational Studies in Mathematics, 80(1), 101-118.spa
dc.relation.referencesRadford, L. (2013). Sumisión, alienación y (un poco de) esperanza: hacia una visión cultural, histórica, ética y política de la enseñanza de las matemáticas. In A. Ramirez y Y. Morales (Eds). Memorias del I Congreso de Educación Matemática de América Central y El Caribe. Santo Domingo, República Dominicana, November 6-8, 2013 (disponible en la página: http://luisradford.ca)spa
dc.relation.referencesRadford, L. (2014). De la teoría de la objetivación [on the theory of objectification]. Revista Latinoamericana de Etnomatemática, 7(2), 132-150.spa
dc.relation.referencesRadford, L. (2015). Of love, frustration, and mathematics: A cultural-historical approach to emotions in mathematics teaching and learning. In B. Pepin & B. Roesken-Winter (Eds.), From beliefs to dynamic affect systems in mathematics education (pp. 25-49). New York: Springer.spa
dc.relation.referencesRadford, L. (2016). On alienation in the mathematics classroom. International Journal of Educational Research, 79, 258-266. http://dx.doi.org/10.1016/j. ijer.2016.04.001.spa
dc.relation.referencesRadford, L., & Roth, W. -M. (2011). Intercorporeality and ethical commitment: An activity perspective on classroom interaction. Educational Studies in Mathematics, 77(2-3), 227-245.spa
dc.relation.referencesShweder, R., & LeVine, R. (1984). Culture theory. Essays on mind, self, and emotion. Cambridge: Cambridge University Press.spa
dc.relation.referencesSpinoza, B. (1989). Ethics including the improvement of the understanding. (R. Elwes, Trans.). Buffalo: Prometheus. (Original work published 1667)spa
dc.relation.referencesTaylor, C. (1989). Sources of the self. Cambridge, Ma: Harvard University Press.spa
dc.relation.referencesThompson, P. (2014). Constructivism in mathematics education. In S. Lerman (Ed.), Encyclopedia of mathematics education (pp. 96-100). New York: Springer.spa
dc.relation.referencesTodorov, T. (2000). Éloge de l›individu [Elogio del individuo]. Paris: Adam Biro.spa
dc.relation.referencesValero, M. (2004). Postmodernism as an attitude of critique to dominant mathematics education research. In P. Walshaw (Ed.), Mathematics education within the postmodern (pp. 35-54). Greenwich, CT: Information Age Publishing.spa
dc.relation.referencesValero, P. (2009). Mathematics education as a network of social practices. In Proceedings of the 6th conference of European research in mathematics education (CERME 6). Lyon, France, Jan. 28th - Feb. 1, 2009. (Retrieved on December 10 2010 from) http://www.inrp.fr/publications/edition-electronique/cerme6/ plenary2-valero.pdf).spa
dc.relation.referencesVygotski, L. (1985). Pensée et langage. Paris: Messidor.spa
dc.relation.referencesVygotsky, L. S. (1987). Collected works (Vol. 1). R. W. Rieber and A. S. Carton (Eds.). New York: Plenum.spa
dc.relation.referencesVygotsky, L. S. (1999). Collected works (vol. 6). R. W. Rieber (Ed.). New York: Plenum.spa
dc.relation.referencesBachelard, G. (1938). La formation de l’esprit scientifique. Paris: VRIN.spa
dc.relation.referencesBagni, G. T. (2005). The historical roots of the limit notion: Cognitive development and development of representation registers. Canadian Journal of Science, Mathematics and Technology Education, 5(4), 453–468.spa
dc.relation.referencesBagni, G. T. (2006). Some cognitive difficulties related to the representations of two major concepts of set theory. Educational Studies in Mathematics, 62(3), 259–280. Doi: 10.1007/s10649-006-8545-3spa
dc.relation.referencesBagni, G. T., & D’Amore, B. (2005). Epistemologia, sociologia, semiotica: la prospettiva socio-culturale. La matematica e la sua didattica, 19(1), 73–89.spa
dc.relation.referencesBalacheff, N. (1988). Le contrat et la coutume: deux registres des interactions didactiques. En C. Laborde (Ed.), Actes du premier colloque franco-allemand de didactique des mathématiques et de l’informatique (pp. 15–26). Grenoble: La Pensée Sauvage.spa
dc.relation.referencesBarbin, E. (1994). Sur la conception des savoirs géométriques dans les Éléments de géométrie. Cahiers de didactique des Mathématiques, 14-15, 135–158. (http:// smf4.emath.fr/Publications/RevueHistoireMath/20/html/smf_rhm_20_253- 302.php)spa
dc.relation.referencesBauersfeld, H. (1995). “Language game” in the mathematics classroom: Their function and their effects. En P. Cobb & H. Bauersfeld (Eds.), The emergence of meaning: Interaction in classroom cultures (pp. 271–292). Hillsdale NJ: Lawrence Erlbaum Associates.spa
dc.relation.referencesBernhard, J. (1995). Child development, cultural diversity, and the professional training of early childhood educators. Canadian Journal of Education, 20(4), 415–436.spa
dc.relation.referencesBrickhouse, N. (1990). Teachers’ beliefs about the nature of science and their relationship to classroom practice. Journal of teacher education, 41(3), 53–62.spa
dc.relation.referencesBrousseau, G. (1976). Les obstacles épistémologiques et les problèmes en mathématiques. En W. Vanhamme & J. Vanhamme (Eds.), La problématique et l’enseignement des mathématiques, Actes de la XXVIIIème rencontre CIEAEM (pp. 101-117). Louvain la Neuve.spa
dc.relation.referencesBrousseau, G. (1983). Les obstacles épistémologiques et les problèmes in mathématiques. Reserches en Didactique des Mathématiques, 4(2), 165–198.spa
dc.relation.referencesBrousseau, G. (1989). Les obstacles épistémologiques et la didactique des mathématiques. En N. Bednarz & C. Garnier (Eds.), Constructions des savoirs, obstacles et conflits (pp. 41–64). Montreal: Agence d’Arc.spa
dc.relation.referencesCastoriadis, C. (1987). The imaginary institution of society. Cambridge, Mass.: The MIT Press.spa
dc.relation.referencesD’Amore, B. (2001a). Une contribution au débat sur les concepts et les objets mathématiques. Scientia Paedagogica Experimentalis, 38(1), 17–46.spa
dc.relation.referencesD’Amore, B. (2001b). Conceptualisation, registres de représentations sémiotiques et noétique: interactions constructivistes dans l’apprentissage des concepts mathématiques et hypothèse sur quelques facteurs inhibant la dévolution. Scientia Paedagogica Experimentalis, 38(2), 143–168.spa
dc.relation.referencesD’Amore, B. (2003a). Matemática em algumas culturas da America do Sul: Uma contribuição à Etnomatemática. Bolema. Boletim de Educação Matemática, 19, 73–89.spa
dc.relation.referencesD’Amore, B. (2003b). Le basi filosofiche, pedagogiche, epistemologiche e concettuali della Didattica della Matematica. Bologna: Pitagora.spa
dc.relation.referencesD’Amore, B. (2003c). The noetic in mathematics. Scientia Pedagogica Experimentalis, 39(1), 75–82.spa
dc.relation.referencesD’Amore, B. (2003d). La complexité de la noétique en mathématiques ou les raisons de la dévolution manquée. For the learning of mathematics, 23(1), 47–51.spa
dc.relation.referencesD’Amore, B. (2003e). La complejidad de la educación y de la construcción del saber. Suma, 43, 23–30.spa
dc.relation.referencesD’Amore, B. (2004). Il ruolo dell’epistemologia nella formazione degli insegnanti di matematica nella scuola secondaria. La matematica e la sua didattica, 18(4), 4–30.spa
dc.relation.referencesD’Amore, B. (2005a). Pratiche e metapratiche nell’attività matematica della classe intesa come società: Alcuni elementi rilevanti della didattica della matematica interpretati in chiave sociologica. La matematica e la sua didattica, 19(3), 325–336.spa
dc.relation.referencesD’Amore, B. (2005b). Secondary school students’ mathematical argumentation and Indian logic (nyaya). For the learning of mathematics, 25(2), 26–32.spa
dc.relation.referencesD’Amore, B., & Fandiño Pinilla, M. I. (2001). Matemática de la cotidianidad. Paradigma, 22(1), 59–72.spa
dc.relation.referencesD’Amore, B., & Fandiño Pinilla, M. I. (2004). Cambi di convinzione in insegnanti di matematica di scuola secondaria superiore in formazione iniziale. La matematica e la sua didattica, 18(3), 27–50.spa
dc.relation.referencesD’Amore, B., & Fandiño Pinilla, M. I. (2005). Storia ed epistemologia della matematica basi etiche. La matematica e la sua didattica, 19(4), 503–515.spa
dc.relation.referencesD’Amore, B., & Godino, J. D. (2006). Punti di vista antropologico ed ontosemiotico in Didattica della Matematica. La matematica e la sua didattica, 20(1), 9–38.spa
dc.relation.referencesD’Amore, B., & Sbaragli, S. (2005). Analisi semantica e didattica dell’idea di “misconcezione”. La matematica e la sua didattica, 19(2), 139–163.spa
dc.relation.referencesD’Amore, B., & Speranza, F. (Eds.) (1989). Lo sviluppo storico della matematica: Spunti didattici (Vol. 1). Roma: Armando.spa
dc.relation.referencesD’Amore, B., & Speranza, F. (Eds.) (1992). Lo sviluppo storico della matematica: Spunti didattici (Vol. 2). Roma: Armando.spa
dc.relation.referencesD’Amore, B., & Speranza, F. (Eds.) (1995). La matematica e la sua storia: Alcuni esempi per spunti didattici. Milano: Angeli.spa
dc.relation.referencesde Haan, M. (1999). Learning as a cultural practice. Amsterdam: Thela Thelis.spa
dc.relation.referencesEco, U. (1975). Trattato di semiotica generale. Milano: Bompiani.spa
dc.relation.referencesEnriques, F. (1942). L’errore nelle matematiche. Periodico di matematiche, serie IV, 22, 57-65. [Bajo el pseudonimo A. Giovannini].spa
dc.relation.referencesFauvel, J., & Maanen, J. (2000). History in mathematics education: The ICMI study. Dordrecht - Boston, London: Kluwer.spa
dc.relation.referencesFeyerabend, P. K. (2003). Contro il metodo. Milano: Feltrinelli. (Trabajo original publicado 1975).spa
dc.relation.referencesFuringhetti, F., & Radford, L. (2002). Historical conceptual developments and the teaching of mathematics: From philogenesis and ontogenesis theory to classroom practice. En L. English (Ed.), Handbook of International Research in Mathematics Education (pp. 631–654). Hillsdale: Erlbaum.spa
dc.relation.referencesGadamer, H.-G. (1975). Truth and method (2nd ed., 1989). New York: Crossroad.spa
dc.relation.referencesGodino, J. D. (2002). Un enfoque ontológico y semiótico de la cognición matemática. Recherches en Didactique des Mathématiques, 22(2-3), 237–284.spa
dc.relation.referencesGodino, J. D., & Batanero, C. (1994). Significado institucional y personal de los objetos matemáticos. Recherches en didactiques des mathématiques, 14(3), 325–355.spa
dc.relation.referencesGodino, J. D., & Llinares, S. (2000). El interaccionismo simbólico en educación matemática. Educación Matemática, 12(1), 70–92. Grugnetti, L., & Rogers, L. (2000). Philosophical, multicultural and interdisciplinary issues. En J. Fauvel & J. van Maanen (Eds.), History in Mathematics Education (pp. 39–62). Dodrecht: Kluwer.spa
dc.relation.referencesHabermas, J. (2003). Truth and justification (trad. B. Fultner). Cambridge, MA: The MIT Press. (Trabajo original publicado 1999).spa
dc.relation.referencesHardesty, D. (1977). Ecological anthropology. New York: Wiley.spa
dc.relation.referencesHashweb, M. Z. (1996). Effects of science teachers’ epistemological beliefs in teaching. Journal of Research in Science Teaching, 33(1), 47–63.spa
dc.relation.referencesIlyenkov, E. (1977). The concept of the ideal. Philosophy in the USSR: Problems of dialectical materialism. Moscow: Progress Publishers.spa
dc.relation.referencesLeontiev, A. A. (1981a). Sign and activity. En J. V. Wertsch (Ed.), The concept of activity in Soviet psychology (pp. 241–255). New York: Sharpe.spa
dc.relation.referencesLeontiev, A. A. (1981b). The problem of activity in psychology. En J. V. Wertsch (Ed.), The concept of activity in Soviet psychology (pp. 37–71). New York: Sharpe.spa
dc.relation.referencesMcClain, K., & Cobb P. (1997). An analysis of the teacher’s role in guiding the evolution of sociomathematical norms. En E. Pekhonen (Ed.), Proceedings of the 21st PME International Conference (Vol. 3, pp. 224–231). Lahti: University of Helsinki.spa
dc.relation.referencesNewton, M. (2002). Savage girls and wild boys: A history of feral children. London: Faber & Faber.spa
dc.relation.referencesPiaget, J., & Garcia, R. (1983). Psychogenèse et histoire des sciences. Paris: Flammarion.spa
dc.relation.referencesPerrin-Glorian, M.-J. (1994). Théorie des situations didactiques: naissance, développement, perspectives. En M. Artigue, R. Gras, C. Laborde, & P. Tavignot (Eds.), Vingt ans de didactique des mathématiques en France: Hommage à Guy Brousseau et Gérard Vergnaud (pp. 97–147). Grenoble: La Pensée Sauvage.spa
dc.relation.referencesRadford, L. (1997). On psychology, historical epistemology and the teaching of mathematics: Towards a socio-cultural history of mathematics. For the Learning of Mathematics, 17(1), 26–33.spa
dc.relation.referencesRadford, L. (2003a). On the epistemological limits of language: Mathematical knowledge and social practice in the Renaissance. Educational Studies in Mathematics, 52(2), 123–150. doi: 10.1023/A:1024029808871spa
dc.relation.referencesRadford, L. (2003b). On culture and mind: A post-Vygotskian semiotic perspective, with an example from Greek mathematical thought. En M. Anderson, A. SáenzLudlow, S. Zellweger, & V. Cifarelli (Eds.), Educational Perspectives on Mathematics as Semiosis: From Thinking to Interpreting to Knowing (pp. 49–79). Ottawa: Legas Publishing.spa
dc.relation.referencesRadford, L. (2004b). Syntax and meaning. En M. J. Høines & A. B. Fuglestad (Eds.), Proceedings of the 28 Conference of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 161–166). Norway: Bergen University College.spa
dc.relation.referencesRadford, L. (2006a). The anthropology of meaning. Educational Studies in Mathematics, 61(1-2), 9–65. doi: 10.1007/s10649-006-7136-7spa
dc.relation.referencesRadford, L. (2006b). The cultural-epistemological conditions of the emergence of algebraic symbolism. En S. Kaijser, C. Tzanakis, & F. Furringhetti (Eds.), Proceedings of the 2004 History and Pedagogy of Mathematics Conference & ESU4 (pp. 509-524). Uppsala, Sweden. Recuperado de: http://laurentian.ca/ educ/lradford/PUBLIC.HTMLspa
dc.relation.referencesRadford, L. (2006c). Semiótica cultural y cognición. En R. Cantoral Uriza, O. Covián Chávez, R. M. Farfán, J. Lezama Andalón, & A. Romo Vázquez (Eds.), Investigaciones sobre enseñanza y aprendizaje de las matemáticas. Un reporte iberoamericano (pp. 669–689). Mexico: Diaz de Santos.spa
dc.relation.referencesRadford, L., Boero, P., & Vasco, C. (2000). Epistemological assumptions framing interpretations of students understanding of mathematics. En J. Fauvel & J. van Maanen (Eds.), History in Mathematics Education (pp. 162–167). Dordrecht: Kluwer.spa
dc.relation.referencesRobertson, I. (1977). Sociobiology. New York: Worth Publishers Inc.spa
dc.relation.referencesRomberg, T. (1988). Necessary ingredients for a theory of mathematics education. En H. G. Steiner & A. Vermandel (Eds.), Foundations and methodology of the discipline Mathematics Education. Proceedings of the 2nd TME (pp. 97–112). Bielefeld, Antwerpen: IDM Publications.spa
dc.relation.referencesSfard, A., & Prusak, A. (2005). Identity that makes a difference: Substantial learning as closing the gap between actual and designated identities. En H. L. Chick & J. L. Vincent (Eds.), Proceedings of the 29th Conference of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 37–52). Melbourne: PME.spa
dc.relation.referencesSierpinska, A., & Lerman, S. (1996). Epistemologies of mathematics and of mathematics education. En A. J. Bishop, K. Clements, C. Keitel, J. Kilpatrick, & C. Laborde (Eds.), International handbook of mathematics education (pp. 827– 876). Dordrecht: Kluwer Academic Publishers.spa
dc.relation.referencesWartofsky, M. (1979). Models, representation and the scientific understanding. Dordrecht: Reidel.spa
dc.relation.referencesWerner, H. (1948). Comparative psychology of mental development. New York: International University Press.spa
dc.relation.referencesWittgenstein, L. (1956), Bemerkungen über die Grundlagen der Mathematik. Oxford: Blackwell.spa
dc.relation.referencesD’Amore, B., Radford, L. & Bagni, GT. (2007). Obstáculos epistemológicos y perspectiva socio-cultural de la matemática. Coleción “Cuadernos del Seminario en educación”. Bogotá: Universidad Nacional de Colombia.spa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accesoAbierto (Texto Completo)spa
dc.rights.accessrightsOpenAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectMatemáticasspa
dc.subjectConocimientospa
dc.subjectDidáctica de la matemáticaspa
dc.subjectConstructivismospa
dc.subjectSemióticaspa
dc.subjectObjetivaciónspa
dc.subjectSubjetividadspa
dc.subjectNoéticaspa
dc.subject.keywordMathematicsspa
dc.subject.keywordKnowledgespa
dc.subject.keywordMathematics teachingspa
dc.subject.keywordConstructivismspa
dc.subject.keywordSemioticsspa
dc.subject.keywordNoeticspa
dc.subject.keywordObjectificationspa
dc.subject.keywordSubjectivityspa
dc.subject.lembMatemáticas -- Enseñanzaspa
dc.subject.lembMatemáticas -- Problemas, ejercicios, etc.spa
dc.subject.lembSemiología (Linguistica)spa
dc.titleEnseñanza y aprendizaje de las matemáticas: problemas semióticos, epistemológicos y prácticosspa
dc.title.alternativeProblemas semióticos, epistemológicos y prácticosspa
dc.title.titleenglishTeaching and learning mathematics: semiotic, epistemological and practical problemsspa
dc.typebookspa
dc.type.coarhttp://purl.org/coar/resource_type/c_2f33
dc.type.driverinfo:eu-repo/semantics/book

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
ensenanza_y_aprendizaje_de_las_matematicas_problemas_semioticos_epistemologicos_y_practicos.pdf
Tamaño:
1.76 MB
Formato:
Adobe Portable Document Format
Descripción:
Enseñanza y aprendizaje de las matemáticas: problemas semióticos, epistemológicos y prácticos

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
7 KB
Formato:
Item-specific license agreed upon to submission
Descripción: