Uso de la Transformada Wavelet para el Estudio de Tráfico Fractal en Redes de Comunicaciones

Fecha

Autor corporativo

Título de la revista

ISSN de la revista

Título del volumen

Editor

Universidad Distrital Francisco José de Caldas

Compartir

Director

Altmetric

Resumen

Descripción

En ingeniería de redes es necesario que los modelos de tráfico capturen las principales características estadísticas del tráfico moderno. En este sentido, los modelos autosimilares son los únicos que representan las complejas estructuras de correlación que este tráfico moderno exhibe en un amplio rango de escalas de tiempo. Desafortunadamente, la gran variabilidad de estos modelos dificultan enormente su análisis matemático. La transformada wavelet se ha venido conviritiendo en una poderosa herramienta para dicho análisis, pues elimina las complejas correlaciones al generar una serie de procesos independientes e idénticamente distribuidos que representan el tráfico original. En este artículo se hace una presentación sencilla y de manera tutorial tanto de la transformada wavelet como de su aplicación al estudio del tráfico autosimilar, en continuación de un artículo previo donde se presentaron de igual manera los conceptos más básicos sobre este tipo de tráfico [7]. El objetivo es ofrecer al lector mejores herramientas para iniciar el estudio del tema y, porqué no, para conducir su propia investigación al respecto.

Palabras clave

Wavelet Transform, Self-Similar Traffic, Detection and Estimation, FBM Synthesis., Transformada wavelet, Tráfico Autosimilar, Detección y Estimación, Síntesis de Movimiento Browniano Fraccional., Transformada wavelet, Tráfico Autosimilar, Detección y Estimación, Síntesis de Movimiento Browniano Fraccional.

Citación

Colecciones