Incrustaciones contextualizadas de palabras con ELMO

dc.contributor.advisorMásmela Caita, Luis Alejandro
dc.contributor.authorSegura González, David Stiven
dc.contributor.orcidMásmela Caita, Luis Alejandro [0000-0003-3882-4980]
dc.contributor.otherGarcía Barreto, Germán Alberto (Catalogador)
dc.date.accessioned2025-05-22T22:09:42Z
dc.date.available2025-05-22T22:09:42Z
dc.date.created2024-12-12
dc.descriptionEl procesamiento del lenguaje natural (NLP, por sus siglas en inglés) es un campo esencial y en constante evolución dentro del aprendizaje automático, con aplicaciones como la traducción automática, chatbots, análisis de sentimientos y detección de plagio. Los modelos de aprendizaje automático para NLP buscan representaciones eficientes de palabras mediante distintas codificaciones, destacando las incrustaciones de palabras, que ofrecen una representación vectorial simplificada. Sin embargo, estos modelos tradicionales suelen omitir el contexto de las palabras. En este sentido, surge ELMo (Embeddings from Language Models), un modelo que considera el contexto para generar representaciones vectoriales dinámicas. ELMo emplea un modelo bidireccional de lenguaje (biLM), basado en redes neuronales como CNN, LSTM, y High-Way Network, permitiendo capturar el contexto y resolver problemas de polisemia. Presentado en 2018 por investigadores del Instituto Allen NLP y la Universidad de Washington, ELMo representa un avance significativo en el campo.
dc.description.abstractNatural language processing (NLP) is an essential and evolving field within machine learning, with applications such as machine translation, chatbots, sentiment analysis and plagiarism detection. Machine learning models for NLP seek efficient representations of words using different encodings, most notably word embeddings, which provide a simplified vector representation. However, these traditional models often omit the context of words. In this sense, ELMo (Embeddings from Language Models), a model that considers the context to generate dynamic vector representations, has emerged. ELMo employs a bidirectional language model (biLM), based on neural networks such as CNN , LSTM , and High-Way Network , allowing to capture context and solve polysemy problems. Introduced in 2018 by researchers at the Allen NLP Institute and the University of Washington, ELMo represents a significant advance in the field.
dc.format.mimetypepdf
dc.identifier.urihttp://hdl.handle.net/11349/95652
dc.language.isospa
dc.publisherUniversidad Distrital Francisco José de Caldas
dc.relation.referencesYoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. A neural probabilistic language model. J. Mach. Learn. Res., 3(null):1137–1155, mar 2003.
dc.relation.referencesSepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9:1735– 80, 12 1997.
dc.relation.referencesDaniel Jurafsky and James H. Martin. Speech and Language Processing. Stanford University Press, 2024.
dc.relation.referencesYoon Kim, Yacine Jernite, David Sontag, and Alexander M. Rush. Character-aware neural language models, 2015
dc.relation.referencesTomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representations in vector space. In Yoshua Bengio and Yann LeCun, editors, 1st International Conference on Learning Representations, ICLR 2013, Scottsdale, Arizona, USA, May 2-4, 2013, Workshop Track Proceedings, 2013.
dc.relation.referencesJeffrey Pennington, Richard Socher, and Christopher Manning. GloVe: Global vectors for word representation. In Alessandro Moschitti, Bo Pang, and Walter Daelemans, editors, Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1532–1543, Doha, Qatar, October 2014. Association for Computational Linguistics.
dc.relation.referencesMatthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettlemoyer. Deep contextualized word representations. In Marilyn Walker, Heng Ji, and Amanda Stent, editors, Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 2227–2237, New Orleans, Louisiana, June 2018. Association for Computational Linguistics.
dc.relation.referencesRupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. Highway networks. CoRR, abs/1505.00387, 2015.
dc.rights.accesoAbierto (Texto Completo)
dc.rights.accessrightsOpenAccess
dc.subjectCNN
dc.subjectLSTM
dc.subjectHighway network
dc.subjectBiLM
dc.subjectPolisemia
dc.subjectNLP
dc.subject.keywordCNN
dc.subject.keywordLSTM
dc.subject.keywordHighway network
dc.subject.keywordBiLM
dc.subject.keywordPolysemy
dc.subject.keywordNLP
dc.subject.lembMatemáticas -- Tesis y disertaciones académicas
dc.subject.lembAprendizaje automático (Inteligencia artificial) -- Aplicaciones
dc.subject.lembMétodos de simulación
dc.subject.lembPolisemia -- Matemáticas
dc.subject.lembProcesamiento del lenguaje naturalspa
dc.subject.lembRedes neuronales recurrentes bidireccionalesspa
dc.titleIncrustaciones contextualizadas de palabras con ELMO
dc.title.titleenglishContextualized word inlays with ELMO
dc.typebachelorThesis
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.degreeMonografía
dc.type.driverinfo:eu-repo/semantics/bachelorThesis

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
SeguraGonzálezDavidStiven2024.pdf
Tamaño:
370.61 KB
Formato:
Adobe Portable Document Format
Descripción:
Trabajo de Grado
No hay miniatura disponible
Nombre:
Licencia de uso y publicación.pdf
Tamaño:
1.14 MB
Formato:
Adobe Portable Document Format
Descripción:
Licencia de uso y autorización

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
7 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones