Modelo de asignación multicanal con equidad para la movilidad espectral en redes de radio cognitiva

dc.contributor.authorHernández Suárez, César Augusto
dc.contributor.authorMárquez Ramos, Hans Raúl
dc.contributor.authorPedraza Martínez, Luis Fernando
dc.date.accessioned2023-12-05T16:32:21Z
dc.date.available2023-12-05T16:32:21Z
dc.date.created2017-04
dc.descriptionLas redes de radio cognitiva (CRN) responden a la necesidad de optimizar los recursos existentes dentro de la red y fundamentalmente el uso del espectro. Esto se traduce como una oportunidad de mejorar el nivel de servicio para los usuarios de tecnologías inalámbricas, haciendo un uso oportuni sta del espectro disponible, y mejorando por ende, la eficiencia espectral. La CR proporciona un uso eficiente del espectro permitiendo al usuario secundario (SU) aprovechar de forma oportunista las porciones o canales del espectro licenciado que no están siendo utilizadas por el usuario primario (PU), las cuales se denominan oportunidades espectrales. Este libro de investigación pretende desarrollar un modelo que permita aprovechar dichas oportuni dades espectrales por parte de los SU, incluso a través de un enfoque de transmisión multicanal, siempre que el número de oportunidades espectrales y de SU lo permita, es decir, a SU con aplica ciones de tiempo real que requieran un mayor ancho de banda, el modelo les podría asignar varios canales de frecuencia para su transmisión. Sin embargo, lo anterior solo será posible si el número de SU que requieren el recurso espectral es menor que la cantidad de oportunidades espectrales, por lo que el modelo propuesto incorporará un criterio de Equidad (Fairness) para garantizar una asignación equitativa de las tales oportunidades a los SU.spa
dc.description.abstractCognitive radio networks (CRN) respond to the need to optimize existing resources within the network and fundamentally the use of the spectrum. This translates as an opportunity to improve the level of service for users of wireless technologies, making opportunistic use of the available spectrum, and therefore improving spectral efficiency. CR provides a use efficient spectrum allowing the secondary user (SU) to opportunistically take advantage of the portions or channels of the licensed spectrum that are not being used by the primary user (PU), which are called spectral opportunities. This research book aims to develop a model that allows EDs to take advantage of these spectral opportunities, including through a multi-channel transmission approach, As long as the number of spectral and SU opportunities allows it, that is, to SUs with real-time applications that require greater bandwidth, the model could assign several frequency channels for transmission. However, the above will only be possible if the number of SU requiring the spectral resource is less than the number of spectral opportunities, so that the proposed model will incorporate a Fairness criterion to guarantee an allocation equitable provision of such opportunities to SUs.spa
dc.description.cityBogotáspa
dc.format.mimetypepdfspa
dc.identifier.editorialUniversidad Distrital Francisco José de Caldas. Centro de Investigaciones y Desarrollo Científicospa
dc.identifier.isbn978-958-5434-26-4spa
dc.identifier.urihttp://hdl.handle.net/11349/33052
dc.language.isospaspa
dc.relation.ispartofseriesEspaciosspa
dc.relation.referencesAbramson, N. (1970). The Aloha System. EnInternational Conference on Computer.spa
dc.relation.referencesAhmed, A., Boulahia, L. M. & Gaïti, D. (2014). Enabling vertical handover decisions in heterogeneous wireless networks: A state-of-the-art and a classification. IEEE Communications Surveys and Tutorials, 16 (2), 776-811.spa
dc.relation.referencesAhmed, E., Gani, A., Abolfazli, S., Yao, L. J. & Khan, S. U. (2016). Channel Assignment Algorithms in Cognitive Radio Networks: Taxonomy, Open Issues, and Challenges. IEEE Communications Surveys & Tutorials, 18 (1), 795-823.spa
dc.relation.referencesAkin, S. & Fidler, M. (2016). On the Transmission Rate Strategies in Cognitive Radios. IEEE Transactions on Wireless Communications, 15 (3), 2335-2350.spa
dc.relation.referencesAkyildiz, I. F., Lee, W.-Y. & Chowdhury, K. R. (2009). CRAHNs: Cognitive radio ad hoc networks. Ad Hoc Networks, 7(5), 810-836.spa
dc.relation.referencesAkyildiz, I. F., Lee, W.-Y., Vuran, M. C. & Mohanty, S. (2008). A survey on spectrum management in cognitive radio networks. IEEE Communications Magazine, 46 (4), 40-48. DOI http://doi.org/10.1109/MCOM.2008.4481339spa
dc.relation.referencesAkyildiz, I. F., Won-Yeol, L., Vuran, M. C. & Mohanty, S. (2006). Next generation/ dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks, 50 (13), 2127-2159.spa
dc.relation.referencesAnbunami, K. y Nedunchezhian, R. (2010). Soft Computing Applications for Database Technologies: Techniques and Issues. IGI Global.spa
dc.relation.referencesAwerbuch, B. & Mishra, A. (2015). Medium Access Control (MAC) Protocols for Ad hoc Wireless Networks - II. Recuperado de http://www.cs.jhu.edu/~cs647/ mac_lecture_2.pdfspa
dc.relation.referencesCao, Y., Li, V. & Cao, Z. (2003). Scheduling delay-sensitive and best-effort traffics in wireless networks. Communications, 3, 2208-2212.spa
dc.relation.referencesCárdenas-Juarez, M., Díaz-Ibarra, M. A., Pineda-Rico, U., Arce, A. & StevensNavarro, E. (2016). On Spectrum Occupancy Measurements at 2. 4 GHz ISM Band for Cognitive Radio Applications. En International Conference on Electronics, Communications and Computers (pp. 25-31).spa
dc.relation.referencesChen, Y., & Hee-Seok, O. (2016). A Survey of Measurement-based Spectrum Occupancy Modeling for Cognitive Radios. IEEE Communications Surveys & Tutorials, 18 (1), 848-859.spa
dc.relation.referencesChih-Yung, C., Hung, L., Chang, C., Wang, T. y Wang, T. (2013). A Cognitive Radio MAC Protocol for Exploiting Bandwidth Utilization in Wireless Networks. En Wireless Communications and Mobile Computing Conference (IWCMC) (pp. 1774-1779).spa
dc.relation.referencesChih-Yung, C., Li-Ling, H., Chao-Tsun, C., Tzu-Lin, W., & Tzu-Chia, W. (2013). A Cognitive Radio MAC protocol for exploiting bandwidth utilization in wireless networks. En Wireless Communications and Mobile Computing Conference (IWCMC), 2013 9th International (pp. 1774-1779). IEEE.spa
dc.relation.referencesChristian, I., Moh, S., Chung, I. & Lee, J. (2012). Spectrum mobility in cognitive radio networks. IEEE Communications Magazine, 50 (6), 114-121.spa
dc.relation.referencesCohen, K. & Leshem, A. (2013). Distributed throughput maximization for multichannel ALOHA networks. En Computational Advances in Multi-Sensor Adaptive Processing (pp. 456-459).spa
dc.relation.referencesElliot, R. (2002). A measure of fairness of service for scheduling algorithms in multiuser systems. Electrical and Computer Engineering, 3, 1583-1588.spa
dc.relation.referencesFCC. (2003). Docket No 03-322 Notice of Proposed Rule Making and Order. Communications. Recuperado de http://www.fcc.govspa
dc.relation.referencesFCC (2005). ET Docket No. 03-108. Facilitating Opportunities for Flexible, Efficient, And Reliable Spectrum Use Employing Cognitive Radio Technologies. Recuperado de http://www.fcc.govspa
dc.relation.referencesFederal Communications Commission. (2003). Notice of proposed rulemaking and order. Washington, D.C.spa
dc.relation.referencesFonte, J. P. & Mora, F. E. (2008, jul.). Implementación de protocolos de capar de enlace de datos en los simuladores Omnet++ Y Ns-2. Quito, Ecuador: EPN.spa
dc.relation.referencesForero, F. (2012). Detección de códigos de usuarios primarios para redes de radio cognitiva en un canal de acceso DCMA. Bogotá, Colombia: Universidad Distrital Francisco José de Caldas.spa
dc.relation.referencesGast, M. (2005). 802.11 Wireless Networks: The Definitive Guide. booksgooglecom booksgooglecom. Disponible en http://books.google.com/books?hl=en& lr=&id=9rHnRzzMHLIC&oi=fnd&pg=PR3&dq=802.11? +Wireless+Networks:+The+Definitive+Guide&ots=3xsOL8XbIs&s ig=06lHUxGYPwzlnC67jDsYVkK2_gAspa
dc.relation.referencesGeorgios, E., Antonis, H., Ahmad, K., Neophytos, A. & Mohamed, A. A. (2011). Next-Generation Internet Architectures and Protocols. Next-Generation Internet: Architectures and Protocols.spa
dc.relation.referencesGhorbanzadeh, M., Abdelhadi, A. & Clancy, C. (2015). A Utility ProportionalFairness Radio Resource Block Allocation in Cellular Networks. En2015 International Conference on Computing, Networking and Communications, Communication QoS and System Modeling Symposium (pp. 499-504).spa
dc.relation.referencesGoogle (2016, abr.). Youtube: Configuración, tasa de bits y resoluciones del codificador en vivo. Disponible en https://support.google.com/youtube/ answer/2853702?hl=es-419spa
dc.relation.referencesHaykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23 (2), 201-220.spa
dc.relation.referencesHernández, C. & Giral, D. (2015). Spectrum Mobility Analytical Tool for Cognitive Wireless Networks. International Journal of Applied Engineering Research, 10 (21), 42265-42274.spa
dc.relation.referencesHernández, C., Pedraza, L. & Rodríguez-Colina, E. (2016). Fuzzy Feedback Algorithm for the Spectral Handoff in Cognitive Radio Networks. Sin publicar.spa
dc.relation.referencesHernández, C., Pedraza, L. F. & Rodríguez-Colina, E. (2016). Fuzzy Feedback Algorithm for the Spectral Handoff in Cognitive Radio Networks. Revista Facultad de Ingeniería de La Universidad de Antioquia.spa
dc.relation.referencesHernández, C., Salgado, C., López, H. & Rodríguez-Colina, E. (2015). Multivariable algorithm for dynamic channel selection in cognitive radio networks. EURASIP J. Wirel. Commun. Netw, 2015 (1), 1-17.spa
dc.relation.referencesHernández-Sampieri, R., Fernández-Collado, C. & Baptista, P. (2006). Metodología de la investigación. McGraw-Hill. Recuperado de http://www.univo.edu. sv:8081/tesis/020090/020090_Cap1.pdfspa
dc.relation.referencesHoven, N., Tandra, R. & Sahai, A. (2005). Some fundamental limits on cognitive radio. Wireless Foundations EECS. Berkeley: Univ. of California.spa
dc.relation.referencesHuang, P., Wang, C. & Xiao, L. (2015). RC-MAC: A receiver-centric MAC protocol for event-driven wireless sensor networks. IEEE Transactions on Computers, 64 (4), 1149-1161.spa
dc.relation.referencesIEEE. Standard Definitions and Concepts for Spectrum Management and Advanced Radio Technologies, Pub. L. No. P1900.1 (2007).spa
dc.relation.referencesIEEE COMSOC. (2008). IEEE Standard Definitions and Concepts for Dynamic Spectrum Access: Terminology Relating to Emerging Wireless Networks, System Functionality, and Spectrum Management. IEEE Std 1900.1-2008.spa
dc.relation.referencesJain, K., Chiu, W., & Hawe, W. (1984). A quantitative measure of fairness and discrimination for resource allocation and shared computer system. Recuperado el 20 de abril de 2016, de http://www.cs.wustl.edu/~jain/papers/ftp/fairness.pdf.spa
dc.relation.referencesJiménez, G. (2015). Ventajas y desventajas de las simulaciones. Recuperado el 12 de agosto de 2015, de http://www.virtual.unal.edu.co/cursos/sedes/manizales/4060015/Lecciones/Capitulo VI/ventajas.htm.spa
dc.relation.referencesKarmakar, N. C. (2010). Handbook of Smart Antennas for RFID Systems. Australia: Wiley.spa
dc.relation.referencesKhan, A. R., Bilal, S. M. & Othman, M. (2012). A performance comparison of open source network simulators for wireless networks. En International Conference on Control System, Computing and Engineering (pp. 34-38).spa
dc.relation.referencesKöksal, M. (2008). A survey of network simulators supporting wireless networks. Middle East Technical University. Ankara, Turquia: Middle East Technical Universityspa
dc.relation.referencesKonishi, Y., Masuyama, H., Kasahara, S. & Takahashi, Y. (2013). Performance analysis of dynamic spectrum handoff scheme with variable bandwidth demand of secondary users for cognitive radio networks. Wireless Networks, 19 (5), 607-617.spa
dc.relation.referencesKumar, K., Prakash, A. & Tripathi, R. (2016). Spectrum handoff in cognitive radio networks: A classification and comprehensive survey. Journal of Network and Computer Applications, 61, 161-188.spa
dc.relation.referencesLaddomada, M., Mesiti, F., Mondin, M. & Daneshgaran, F. (2010). On the throughput performance of multirate IEEE 802.11 networks with variable-loaded stations: analysis, modeling, and a novel Proportionalfairness criterion. IEEE Transactions on Wireless Communications, 9(5), 1594-1607.spa
dc.relation.referencesLe, Y., Ma, L., Cheng, W., Cheng, X.& Chen, B. (2013). A Time Fairness Based MAC Algorithm for Throughput Maximization in 802.11 Networks. Computers, IEEE Transactions on, 99, 1.spa
dc.relation.referencesLeiner, B. M., Cerf, V. G., Clark, D. D., Kahn, R. E., Kleinrock, L., Lynch, D. C. &Wolf, S. (2009). A Brief History of the Internet. ACM SIGCOMM Computer Communication Review, 39 (5), 22-31. DOI //doi.org/10.1145/1629607.1629613spa
dc.relation.referencesLertsinsrubtavee, A. & Malouch, N. (2016). Hybrid Spectrum Sharing Through Adaptive Spectrum Handoff and Selection. IEEE Transactions on Mobile Computing.spa
dc.relation.referencesLi, X., Song, Q., Wang, J., Tao, H. & Zhang, J. (2013). Improved idle channel utilization in distributed multi-channel cognitive radio systems. IEEE Vehicular Technology Conference.spa
dc.relation.referencesLiew, S. & Chang, J. (2008). ProportionalFairness in Multi-Channel Multi-Rate Wireless Networks–Part I: The Case of Deterministic Channels with Application to AP Association Problem in Large-Scale WLAN. IEEE Transactions on Wireless Communications, 7 (9), 3446-3456.spa
dc.relation.referencesLiu, Y.& Knightly, E. (2003). Opportunistic fair scheduling over multiple wireless channels. In IEEE INFOCOM 2003. EnTwenty-second Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE Cat. No.03CH37428) (Vol. 2, pp. 1106-1115).spa
dc.relation.referencesLiu, Y. & Tewfik, A. (2014). Primary Traffic Characterization and Secondary Transmissions. IEEE Transactions on Wireless Communications, 13 (6), 3003-3016.spa
dc.relation.referencesLópez, D. A., García, N. Y. & Herrera, J. F. (2015). Desarrollo de un Modelo Predictivo para la Estimación del Comportamiento de Variables en una Infraestructura de Red. Información Tecnológica, 26 (5), 143-154.spa
dc.relation.referencesLópez, D. A., Trujillo, E. R. & Gualdron, O. E. (2015). Elementos Fundamentales que Componen la Radio Cognitiva y Asignación de Bandas Espectrales. Información Tecnológica, 26 (1), 23-40.spa
dc.relation.referencesMaldonado, D., Hugine, A., Rondeau, T. W. & Bostian, C. W. (2005). Cognitive radio applications to dynamic spectrum allocation: a discussion and an illustrative example. First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, 2005. DySPAN 2005 (pp. 597-600).spa
dc.relation.referencesMarinho, J.& Monteiro, E. (2012). Cognitive radio: Survey on communication protocols, spectrum decision issues, and future research directions. Wireless Networks, 18 (2), 147-164.spa
dc.relation.referencesMicrosoft. (2016). Experimento un rendimiento reducido cuando disfruto juegos de Xbox One en Xbox Live. Recuperado el 17 de abril de 2016, de http://support. xbox.com/es-CO/xbox-one/networking/slow-performance-solutionspa
dc.relation.referencesMishra, A., Banerjee, S. & Arbaugh, W. (2005). Weighted Coloring based Channel Assignment for WLANs. ACM SIGMOBILE Mobile Computing and Communications Review, 19-31.spa
dc.relation.referencesMishra, A., Shrivastava, V., Agrawal, D., Banerjee, S. & Ganguly, S. (2006). Distributed channel management in uncoordinated wireless environments. International conference on Mobile computing and networking (p. 170).spa
dc.relation.referencesMitola, J. (1999). Cognitive radio for flexible mobile multimedia communications. Mobile Networks and Applications, 22102, 3-10.spa
dc.relation.referencesMitola, J. & Maguire, G. Q. (1999). Cognitive radio: making software radios more personal. IEEE Personal Communications, 6 (4), 13-18.spa
dc.relation.referencesNeel, J. O. D. (2006). Analysis and Design of Cognitive Radio Networks and Distributed Radio Resource Management Algorithms. Blacksburg: Polytechnic Institute and State University.spa
dc.relation.referencesNetflix (2016). Netflix: Recomendaciones sobre la velocidad de conexión a Internet. Recuperado el 16 de abril de 2016, de https://help.netflix.com/es/node/306.spa
dc.relation.referencesNolan, K., & Grosspietsch, J. (2005). Cognitive Radio WG. SDR Forum Technical Conference.spa
dc.relation.referencesOMNet++. (2015). User Manual OMNeT++. Recuperado el 19 de agosto de 2015, de https://omnetpp.org/doc/omnetpp/manual/usman.htmspa
dc.relation.referencesOzger, M. & Akan, O. B. (2016). On the utilization of spectrum opportunity in cognitive radio networks. IEEE Communications Letters, 20 (1), 157-160.spa
dc.relation.referencesPaez, F. J. & Ortiz, J. E. (2010). Simulación de enlaces Wi-Fi y UMTS con J-SIM para estimar el BER y PER. Vínculos, 7 (1), 17-24.spa
dc.relation.referencesPark, D. & Caire, G. (2008). Hard fairness versus Proportionalfairness in wireless communications: The multiple-cell case. IEEE International Symposium on Information Theory - Proceedings (pp. 2036–2040).spa
dc.relation.referencesPedraza, L. F., Forero, F., & Páez, I. (2014). Evaluación de ocupación del espectro radioeléctrico en Bogotá-Colombia. Ingeniería y Ciencia, 10 (19), 127-143.spa
dc.relation.referencesPedraza, L. F., Hernández, C., Galeano, K., Rodríguez-Colina, E. & Páez, I. (2016). Ocupación espectral y modelo de radio cognitiva para Bogotá (1a ed.). Bogotá, D.C.: Universidad Distrital Francisco José de Caldas.spa
dc.relation.referencesPedraza, L. F., López, D. & Salcedo, O. (2011). Enrutamiento basado en el algoritmo de Dijkstra para una red de radio cognitiva. Tecnura, 15 (30), 93-100.spa
dc.relation.referencesPeng, X., Xiao, L., Zhong, X., Li, Y. & Zhou, S. (2013). Modeling and Analysis of An Opportunistic Transmission Scheme Based on Channel Quality Information in Multi-Channel Cognitive Networks. En IEEE, 297-302.spa
dc.relation.referencesPingdom (2016). Pingdom Website Speed Test. Recuperado el 17 de abril de 2016, de https://tools.pingdom.com/.spa
dc.relation.referencesQin, L. & Zhao, D. (2015). Channel Time Allocations and Handoff Management for Fair Throughput in Wireless Mesh Networks. IEEE Transactions on Vehicular Technology, 64 (1), 315-326.spa
dc.relation.referencesQin, Y., Zheng, J., Wang, X., Luo, H., Yu, H., Tian, X. & Gan, X. (2013). Opportunistic Scheduling and Channel Allocation in MC-MR Cognitive Radio Networks. IEEE Transactions on Vehicular Technology, 1-17.spa
dc.relation.referencesRahimian, N., Georghiades, C. N., Shakir, M. Z. & Qaraqe, K. A. (2014). On the probabilistic model for primary and secondary user activity for OFDMA-based cognitive radio systems: Spectrum occupancy and system throughput perspectives. IEEE Transactions on Wireless Communications, 13 (1), 356-369.spa
dc.relation.referencesRodríguez-Colina, E., Ramírez, P., Carrillo, A. & Ernesto, C. (2011). Multiple attribute dynamic spectrum decision making for cognitive radio networks. International Conference on Wireless and Optical Communications Networks (pp. 1-5).spa
dc.relation.referencesSanti, P. (2005). Topology control in wireless ad hoc and sensor networks. ACM Computing Surveys, 37 (2), 164-194.spa
dc.relation.referencesSclater, I. (2016). What Are the Bandwidth Specifications for Pandora, Spotify, iTunes Radio, and Beats Music? Recuperado el 15 de abril de 2016, de http:// www.bandwidthplace.com/what-are-the-bandwidth-specifications-for-pandoraspotify-itunes-radio-and-beats-music-article/.spa
dc.relation.referencesSeidel, S., Breinig, R. & Berezdivin, R. (2002). Adaptive Air Interface Waveform for Flexibility and Performance in Commercial Wireless Communications Systems. En World Wireless Research Forum.spa
dc.relation.referencesSgora, A., Vergados, D. & Chatzimisios, P. (2009). IEEE 802.11s wireless Mesh networks: Challenges and Perspectives. En Mobile Lightweight Wireless Systems, 263-271.spa
dc.relation.referencesSimon, M. K. & Alouini, M.-S. (2008a). Digital Communications Over Fading Channels. IEEE Transactions on Information Theory, 54 (7), 3369-3370.spa
dc.relation.referencesSimon, M. K. & Alouini, M.-S. (2008b). Digital Communications Over Fading Channels (M.K. Simon and M.S. Alouini; 2005) [Book Review]. IEEE Transactions on Information Theory, 54 (7), 3369-3370.spa
dc.relation.referencesSklar, B. (2001). Digital communications: fundamentals and applications. Los Ángeles Prentice Hall.spa
dc.relation.referencesSkype (2016). How much bandwidth does Skype need? Recuperado el 16 de abril de2016, de https://support.skype.com/en/faq/FA1417/how-much-bandwidthdoes-skype-need.spa
dc.relation.referencesTan, X., Yin, C. & Ma, L. (2014). Positional Proportionalfairness scheduling based on spectrum aggregation in cognitive radio. En 2014 21st International Conference on Telecommunications, ICT 2014 (pp. 176-180).spa
dc.relation.referencesTsiropoulos, G., Dobre, O., Ahmed, M., & Baddour, K. (2016). Radio Resource Allocation Techniques for Efficient Spectrum Access in Cognitive Radio Networks. IEEE Communications Surveys & Tutorials, 18 (1), 824-847.spa
dc.relation.referencesUniversidad Politécnica de Cataluña. (2004). User Manual OPNET. Recuperado el 19 de agosto de 2015, de http://ansat.es/soporte/docs/fragmentacion/OPNET_Modeler_Manual.pdf.spa
dc.relation.referencesWang, C. W. & Wang, L. C. (2009). Modeling and analysis for proactive-decision spectrum handoff in cognitive radio networks. IEEE International Conference on Communications (pp. 1-6).spa
dc.relation.referencesWang, L.-C., Wang, C.-W. & Chang, C. J. (2012). Modeling and analysis for spectrum handoffs in cognitive radio networks. IEEE Transactions on Mobile Computing, 11 (9), 1499-1513.spa
dc.relation.referencesWayne, L. & Pan, Y. (2006). Resource allocation in next generation wireless networks. New York: Nova Publishers.spa
dc.relation.referencesWu, D., Hou, Y. T., Zhu, W., Zhang, Y. Q. & Peha, J. M. (2001). StreamingStreaming video over the internet: Approaches and directions. IEEE Transactions on Circuits and Systems for Video Technology, 11 (3), 282-300.spa
dc.relation.referencesWu, D., Hou, Y. T., Zhu, W., Zhang, Y. Q. & Peha, J. M. (2001). StreamingStreaming video over the internet: Approaches and directions. IEEE Transactions on Circuits and Systems for Video Technology, 11 (3), 282-300.spa
dc.relation.referencesWu, Y. & Yang, Z. (2010). Multi-channel transmission strategy for dynamic spectrum access. Journal of Electronics, 27 (3), 345-352. DOI: http://doi.org/10.1007/ s11767-010-0337-3spa
dc.relation.referencesXian, X., Shi, W. & Huang, H. (2008). Comparison of OMNET++ and other simulator for WSN simulation. IEEE Conference on Industrial Electronics and Applications (pp. 1439–1443).spa
dc.relation.referencesXiao, Y. & Hu, F. (2008). Cognitive radio networks. New York: CRC Press.spa
dc.relation.referencesXu, Y., Li, Y., Zhao, Y., Zou, H. & Vasilakos, A. V. (2011). Selective sensing and transmission for multi-channel cognitive radio networks. 2011 IEEE Conference on Computer Communications Workshops, INFOCOM WKSHPS 2011 (pp. 47-51).spa
dc.relation.referencesYang, C., Lou, W., Fu, Y., Xie, S. & Yu, R. (2016). On throughput maximization in multichannel cognitive radio networks via generalized access strategy. IEEE Transactions on Communications, 64 (4), 1384-1398.spa
dc.relation.referencesYue, W.& Matsumoto, Y. (2002). Output and Delay Process Analysis of Slotted CSMA/CD Multichannel Local Area Networks. Performance Analysis of Multichannel and Multi-Traffic on Wireless Communication Networks (pp. 149- 167).spa
dc.relation.referencesYue, X., Wong, C. & Chan, S. (2010). A distributed channel assignment algorithm for uncoordinated WLANs. EnConsumer Communications and Networking Conference (CCNC) (pp. 1-5).spa
dc.relation.referencesZhang, Y. & Liew, S. (2008). Proportionalfairness in multi-channel multi-rate wireless networks-part II: the case of time-varying channels with application to OFDM systems. IEEE Transactions on Wireless Communications, 7 (9), 3457-3467.spa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accesoAbierto (Texto Completo)spa
dc.rights.accessrightsOpenAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectRedes de radio cognitivaspa
dc.subjectTecnologías inalámbricasspa
dc.subjectOportunidades espectralesspa
dc.subjectEspectrospa
dc.subjectUsuario secundario (SU)spa
dc.subjectUsuario primario (PU)spa
dc.subject.keywordCognitive radio networksspa
dc.subject.keywordWireless technologiesspa
dc.subject.keywordSpectral opportunitiesspa
dc.subject.keywordSpectrum secondaryspa
dc.subject.keywordUser (SU)spa
dc.subject.keywordPrimary User (PU)spa
dc.subject.lembTelecomunicacionesspa
dc.subject.lembEspectro electromagnéticospa
dc.subject.lembEspectro radioeléctrico -- Medicionesspa
dc.subject.lembSistemas de amplificación multicanalspa
dc.titleModelo de asignación multicanal con equidad para la movilidad espectral en redes de radio cognitivaspa
dc.title.titleenglishMulti-channel allocation model with equity for spectral mobility in cognitive radio networksspa
dc.typebookspa
dc.type.driverinfo:eu-repo/semantics/bookspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1_modelo de asignacioÌ_n.pdf
Tamaño:
7.46 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
7 KB
Formato:
Item-specific license agreed upon to submission
Descripción: