Products recommendation based on interpretable user profiles

Fecha

Autor corporativo

Título de la revista

ISSN de la revista

Título del volumen

Editor

Universidad Distrital Francisco José de Caldas. Colombia

Compartir

Director

Altmetric

Resumen

Descripción

Recommender systems allow users to have a personalized view of large sets of products, relieving the overload problem of choice in e-commerce sites. Usually, recommendations are obtained using the technique called "collaborative filtering". This technique filters the products the users wish, from those they don´t want, inferring affinities between products and users in a space of abstract features, also called a latent space. These techniques have proven to be of great predictive value, but these created profiles are neither understandable, nor editable for users, enclosing users in a bubble, in which they only receive collaborative recommendations conditioned by their historical behaviors. In our work we propose a method to build user profiles, defined in interpretable spaces, or defined in terms of collaborative tags or keywords (i.e. words extracted from the descriptions of the product), which can be interpreted and modified by users. The model proposed generate linear profiles, whose coefficients, positive or negative, reflect the user's affinity towards tags or keywords, according to the space selected. To test our hypothesis, we used the dataset of research in movie recommender systems from the University of Minnesota: Movielens. The results show that the predictive ability of the model, based on interpretable user profiles, is comparable to those models based on abstract profiles with the added benefit that these profiles are interpretable.
Los sistemas de recomendación automática de productos permiten que los usuarios tengan una visión personalizada de grandes conjuntos de productos, lo cual alivia el problema de la sobrecarga de opciones en los sitios de comercio electrónico. Usualmente las recomendaciones se obtienen usando la técnica denominada “filtrado colaborativo”. Esta técnica permite filtrar los productos que el usuario desea de aquellos que no desea, infiriendo las afinidades entre productos, y usuarios, en un espacio de características abstracto. Si bien estas técnicas han mostrado ser de gran valor predictivo, su baja (o nula) interpretabilidad hace que el usuario, al no poder modificar su perfil, quede encerrado en una especie de burbuja, en la cual solo recibe recomendaciones colaborativas condicionadas por su comportamiento histórico. En este trabajo proponemos construir perfiles de usuario definidos en espacios interpretables como el de las etiquetas colaborativas (tags) o bien palabras claves extractadas automáticamente de las descripciones de los productos, que al ser interpretables permitan al usuario modificar su propio perfil. Este modelo se basa en la obtención de perfiles usando modelos lineales, cuyos coeficientes, positivos o negativos, reflejan la afinidad del usuario hacia la etiqueta o a la palabra clave. Para probar nuestra hipótesis, utilizamos el conjunto de datos de investigación en sistemas de recomendación de películas de la Universidad de Minnesota, MovieLens; los resultados obtenidos muestran que la capacidad predictiva del modelo es comparable a la de los métodos no interpretables, con el beneficio adicional de la interpretabilidad.

Palabras clave

collaborative filtering, collaborative tagging systems, recommender systems, social tagging, user interfaces, etiquetado social, filtrado colaborativo, interfaces de usuario, sistemas de etiquetado colaborativo, sistemas de recomendación

Citación

Colecciones