Quantum as a service en machine learning: una guía educativa de adopción y aplicación frente a la nube tradicional
| dc.contributor.advisor | Ardila Sánchez, Ismael Antonio | |
| dc.contributor.author | Rincón Espinosa, Julian David | |
| dc.contributor.author | Moreno Valero, Juan Diego | |
| dc.date.accessioned | 2025-09-03T16:15:30Z | |
| dc.date.available | 2025-09-03T16:15:30Z | |
| dc.date.created | 2025-07-21 | |
| dc.description | El proyecto tuvo como objetivo desarrollar una guía didáctica como medio para facilitar el aprendizaje de forma progresiva de la computación cuántica mediante Quantum as a Service (QaaS) aplicando su poder en el entrenamiento de modelos de machine learning, una de las ramas que más ha avanzado en el desarrollo tecnológico de los últimos tiempos. La propuesta combina un enfoque pedagógico progresivo con un modelo gráfico accesible, buscando guiar al lector desde los conceptos básicos de la cuántica hasta la práctica de esta mediante ejercicios reales. Para su desarrollo, se usó una metodología de cinco fases: exploración conceptual de la computación cuántica, desarrollo de ejercicios prácticos usando el poder de QaaS, diseño de la guía didáctica con base en los dos anteriores puntos y un sistema progresivo de aprendizaje, seguido por la validación con apoyo de la comunidad universitaria para obtener retroalimentación real de cómo se percibe este tipo de recurso y su uso en entornos reales. La retroalimentación obtenida durante el proceso de validación permitió fortalecer la estructura de la guía, mejorando la claridad de los contenidos y reforzando los puntos donde se evidenció limitaciones o dificultades para comprenderla. A partir de estos aportes se consolidó una versión final alineada con el propósito del proyecto: Ofrecer un recurso de aprendizaje claro, accesible y pertinente frente a los desafíos de comprender la computación cuántica en la nube. | |
| dc.description.abstract | The project aimed to develop a teaching guide as a means to facilitate the progressive learning of quantum computing through Quantum as a Service (QaaS), applying its power in the training of machine learning models, one of the branches that has advanced the most in technological development in recent times. The proposal combines a progressive pedagogical approach with an accessible graphic model, seeking to guide the reader from the basic concepts of quantum computing to its practical application through real exercises. A five-phase methodology was used for its development: conceptual exploration of quantum computing, development of practical exercises using the power of QaaS, design of the teaching guide based on the two previous points and a progressive learning system, followed by validation with the support of the university community to obtain real feedback on how this type of resource is perceived and its use in real environments. The feedback obtained during the validation process allowed us to strengthen the structure of the guide, improving the clarity of the content and reinforcing the points where limitations or difficulties in understanding it were evident. Based on these contributions, a final version was consolidated in line with the purpose of the project: to offer a clear, accessible, and relevant learning resource to address the challenges of understanding quantum computing in the cloud. Translated with DeepL.com (free version) | |
| dc.format.mimetype | ||
| dc.identifier.uri | http://hdl.handle.net/11349/98781 | |
| dc.language.iso | spa | |
| dc.publisher | Universidad Distrital Francisco José de Caldas | |
| dc.relation.references | Bello, S. A., Oyedele, L. O., Akinade, O. O., Bilal, M., Davila Delgado, J. M., Akanbi, L. A., Ajayi, A. O., & Owolabi, H. A. (2021). Cloud computing in construction industry: Use cases, benefits and challenges. Automation in Construction, 122, 103441. https://doi.org/10.1016/j.autcon.2020.103441 | |
| dc.relation.references | Zhang, Q., Cheng, L., & Boutaba, R. (2010). Cloud computing: state-of-the-art and research challenges. Journal of Internet Services and Applications. https://doi.org/10.1007/s13174-010-0007-6 | |
| dc.relation.references | Microsoft. (s.f.). What is Azure? Recuperado de https://azure.microsoft.com/en- us/resources/cloud-computing-dictionary/what-is-azure | |
| dc.relation.references | Sen, J., Mehtab, S., Sen, R., et al. (2022). Machine Learning: Algorithms, Models, and Applications. arXiv. https://doi.org/10.48550/arXiv.2201.01943 | |
| dc.relation.references | Glielmo, A., Husic, B. E., Rodriguez, A., Clementi, C., Noé, F., & Laio, A. (2021). Unsupervised learning methods for molecular simulation data. Chemical Reviews. | |
| dc.relation.references | Matsuo, Y., LeCun, Y., Sahani, M., Precup, D., Silver, D., Sugiyama, M., Uchibe, E., & Morimoto, J. (2022). Deep learning, reinforcement learning, and world models. Neural Networks. https://doi.org/10.1016/j.neunet.2022.03.037 | |
| dc.relation.references | Sutton, R. S., & Barto, A. G. (1998). Reinforcement Learning: An Introduction. MIT Press. https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pd f | |
| dc.relation.references | Databricks. (s.f.). What are Machine Learning Models? Recuperado de https://www.databricks.com/glossary/machine-learning-models | |
| dc.relation.references | Deepchecks. (s.f.). Machine Learning Model Evaluation. Recuperado de https://deepchecks.com/glossary/machine-learning-model-evaluation/ | |
| dc.relation.references | Encyclopaedia Britannica. (2024). Quantum mechanics. Recuperado el 24 de junio de 2024, de https://www.britannica.com/science/quantum-mechanics-physics | |
| dc.relation.references | IBM. (s.f.). What is a qubit? Recuperado de https://www.ibm.com/topics/qubit | |
| dc.relation.references | Bhat, H. A., Malik, G. F. A., & Khanday, F. A. (2022). Design and modelling of silicon quantum dot based single qubit spin quantum gates. International Journal of Theoretical Physics, 61(258), 1–15. https://doi.org/10.1007/s10773-022-05239-y | |
| dc.relation.references | Mukhopadhyay, P. (2024). CS-count-optimal quantum circuits for arbitrary multi-qubit unitaries. Scientific Reports, 14, 13916. https://doi.org/10.1038/s41598- 024-64558-8 | |
| dc.relation.references | Alexeev, Y., Bacon, D., Brown, K. R., Calderbank, R., Carr, L. D., Chong, F. T., DeMarco, B., Englund, D., Farhi, E., Fefferman, B., Houck, A., Kim, J., Kimmel, S., Lange, M., Lloyd, S., Lukin, M. D., Maslov, D., Maunz, P., Preskill, J., Roetteler, M., Savage, M. J., & Thompson, J. (2021). Quantum computer systems for scientific discovery. PRX Quantum, 2(1), 017001. https://doi.org/10.1103/PRXQuantum.2.017001 | |
| dc.relation.references | Kroll, Inc. (2023). Quantum as a Service (QaaS) platforms. Recuperado de https://www.kroll.com/en/insights/publications/cyber/quantum-computing-security | |
| dc.relation.references | Montanaro, A. (2016). Quantum algorithms: an overview. Quantum Information. https://arxiv.org/pdf/1511.04206 | |
| dc.relation.references | University of Melbourne. (s.f.). What is IBM Quantum? Recuperado de https://www.unimelb.edu.au/quantumhub/IBM-quantum | |
| dc.relation.references | IBM. (2024, 15 de mayo). Qiskit: The software for quantum performance. Recuperado de https://www.ibm.com/quantum/blog/quantum-software-vision | |
| dc.relation.references | Cerezo, M., Verdon, G., Huang, H.-Y., Cincio, L., & Coles, P. J. (2022). Challenges and opportunities in quantum machine learning. Nature Computational Science, 2(9), 567–576. https://doi.org/10.1038/s43588-022-00311-3 | |
| dc.relation.references | Nguyen, T., & Sipola, T. (2024). Machine Learning Applications of Quantum Computing: A Review. arXiv. https://doi.org/10.48550/arXiv.2406.13262 | |
| dc.relation.references | Khan, W., Serrano, M., & Moguel, E. (2023). Quantum Cloud Computing: A Review, Open Problems, and Future Directions. arXiv. https://doi.org/10.48550/arXiv.2404.11420 | |
| dc.relation.references | Nguyen, T., & Sipola, T. (2024). A Survey on Quantum Machine Learning: Current Trends, Challenges, Opportunities, and the Road Ahead. arXiv. https://doi.org/10.48550/arXiv.2310.10315 | |
| dc.relation.references | Nature Portfolio. (2023). Quantum as a Service (QaaS) is solving industrial challenges with a hybrid approach. Nature. https://www.nature.com/articles/d42473-023-00415-y | |
| dc.relation.references | La Cour, B. (2023). Advances in quantum computing. Entropy, 25(12), 1633. https://doi.org/10.3390/e25121633 | |
| dc.relation.references | Zeguendry, A., Jarir, Z., & Quafafou, M. (2023). Quantum machine learning: A review and case studies. Entropy, 25(2), 287. https://doi.org/10.3390/e25020287 | |
| dc.relation.references | Creswell, J. W. (2014). Research Design: Qualitative, Quantitative, and Mixed Methods Approaches (4th ed.). SAGE Publications. https://books.google.com/books?id=4uB76IC_pOQC | |
| dc.relation.references | Hernández Sampieri, R., Fernández Collado, C., & Baptista Lucio, P. (2014). Metodología de la Investigación (6a ed.). McGraw-Hill. https://www.mheducation.es/bcv/guide/capitulo/8448606738.pdf | |
| dc.relation.references | Kerlinger, F. N., & Lee, H. B. (2000). Foundations of Behavioral Research (4th ed.). Wadsworth Publishing. https://books.google.com/books?id=SGgvAQAAIAAJ | |
| dc.relation.references | Shadish, W. R., Cook, T. D., & Campbell, D. T. (2002). Experimental and Quasi-Experimental Designs for Generalized Causal Inference. Houghton Mifflin. https://books.google.com/books?id=o4u0BQAAQBAJ | |
| dc.relation.references | Boardman, A. E., Greenberg, D. H., Vining, A. R., & Weimer, D. L. (2017). Cost-Benefit Analysis: Concepts and Practice (4th ed.). Cambridge University Press. https://www.cambridge.org/core/books/costbenefit- analysis/4F9C3E3E5E5F9D1E0E2D5E6F3B1B1E1A | |
| dc.relation.references | Fowler, F. J. (2014). Survey Research Methods (5th ed.). SAGE Publications. https://us.sagepub.com/en-us/nam/survey-research-methods/book239063 | |
| dc.relation.references | Yin, R. K. (2018). Case Study Research and Applications: Design and Methods (6th ed.). SAGE Publications. https://us.sagepub.com/en-us/nam/case- study-research-and-applications/book250150 | |
| dc.rights.acceso | Abierto (Texto Completo) | |
| dc.rights.accessrights | OpenAccess | |
| dc.subject | Computación cuántica | |
| dc.subject | Aprendizaje automático | |
| dc.subject | QaaS | |
| dc.subject | Quantum as a Service | |
| dc.subject | Guía didáctica | |
| dc.subject | Computación en la nube | |
| dc.subject.keyword | Quantum computing | |
| dc.subject.keyword | Machine learning | |
| dc.subject.keyword | QaaS | |
| dc.subject.keyword | Quantum as a Service | |
| dc.subject.keyword | Educational guide | |
| dc.subject.keyword | Cloud computing | |
| dc.subject.lemb | Ingeniería Telemática -- Tesis y disertaciones académicas | |
| dc.subject.lemb | Aprendizaje automático (Inteligencia artificial) | |
| dc.subject.lemb | Informática en la nube | |
| dc.subject.lemb | Computadores cuánticos | |
| dc.title | Quantum as a service en machine learning: una guía educativa de adopción y aplicación frente a la nube tradicional | |
| dc.title.titleenglish | Quantum as a service in machine learning: an educational guide to adoption and application compared to the traditional cloud | |
| dc.type | bachelorThesis | |
| dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
| dc.type.degree | Monografía | |
| dc.type.driver | info:eu-repo/semantics/bachelorThesis |
Archivos
Bloque original
1 - 3 de 3
No hay miniatura disponible
- Nombre:
- RinconEspinosaJulianDavid2025.pdf
- Tamaño:
- 3.61 MB
- Formato:
- Adobe Portable Document Format
No hay miniatura disponible
- Nombre:
- RinconEspinosaJulianDavid2025Anexos.zip
- Tamaño:
- 42.37 MB
- Formato:
No hay miniatura disponible
- Nombre:
- Licencia de uso y publicacion .pdf
- Tamaño:
- 226.82 KB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 7 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:
