Quantum as a service en machine learning: una guía educativa de adopción y aplicación frente a la nube tradicional

dc.contributor.advisorArdila Sánchez, Ismael Antonio
dc.contributor.authorRincón Espinosa, Julian David
dc.contributor.authorMoreno Valero, Juan Diego
dc.date.accessioned2025-09-03T16:15:30Z
dc.date.available2025-09-03T16:15:30Z
dc.date.created2025-07-21
dc.descriptionEl proyecto tuvo como objetivo desarrollar una guía didáctica como medio para facilitar el aprendizaje de forma progresiva de la computación cuántica mediante Quantum as a Service (QaaS) aplicando su poder en el entrenamiento de modelos de machine learning, una de las ramas que más ha avanzado en el desarrollo tecnológico de los últimos tiempos. La propuesta combina un enfoque pedagógico progresivo con un modelo gráfico accesible, buscando guiar al lector desde los conceptos básicos de la cuántica hasta la práctica de esta mediante ejercicios reales. Para su desarrollo, se usó una metodología de cinco fases: exploración conceptual de la computación cuántica, desarrollo de ejercicios prácticos usando el poder de QaaS, diseño de la guía didáctica con base en los dos anteriores puntos y un sistema progresivo de aprendizaje, seguido por la validación con apoyo de la comunidad universitaria para obtener retroalimentación real de cómo se percibe este tipo de recurso y su uso en entornos reales. La retroalimentación obtenida durante el proceso de validación permitió fortalecer la estructura de la guía, mejorando la claridad de los contenidos y reforzando los puntos donde se evidenció limitaciones o dificultades para comprenderla. A partir de estos aportes se consolidó una versión final alineada con el propósito del proyecto: Ofrecer un recurso de aprendizaje claro, accesible y pertinente frente a los desafíos de comprender la computación cuántica en la nube.
dc.description.abstractThe project aimed to develop a teaching guide as a means to facilitate the progressive learning of quantum computing through Quantum as a Service (QaaS), applying its power in the training of machine learning models, one of the branches that has advanced the most in technological development in recent times. The proposal combines a progressive pedagogical approach with an accessible graphic model, seeking to guide the reader from the basic concepts of quantum computing to its practical application through real exercises. A five-phase methodology was used for its development: conceptual exploration of quantum computing, development of practical exercises using the power of QaaS, design of the teaching guide based on the two previous points and a progressive learning system, followed by validation with the support of the university community to obtain real feedback on how this type of resource is perceived and its use in real environments. The feedback obtained during the validation process allowed us to strengthen the structure of the guide, improving the clarity of the content and reinforcing the points where limitations or difficulties in understanding it were evident. Based on these contributions, a final version was consolidated in line with the purpose of the project: to offer a clear, accessible, and relevant learning resource to address the challenges of understanding quantum computing in the cloud. Translated with DeepL.com (free version)
dc.format.mimetypepdf
dc.identifier.urihttp://hdl.handle.net/11349/98781
dc.language.isospa
dc.publisherUniversidad Distrital Francisco José de Caldas
dc.relation.referencesBello, S. A., Oyedele, L. O., Akinade, O. O., Bilal, M., Davila Delgado, J. M., Akanbi, L. A., Ajayi, A. O., & Owolabi, H. A. (2021). Cloud computing in construction industry: Use cases, benefits and challenges. Automation in Construction, 122, 103441. https://doi.org/10.1016/j.autcon.2020.103441
dc.relation.referencesZhang, Q., Cheng, L., & Boutaba, R. (2010). Cloud computing: state-of-the-art and research challenges. Journal of Internet Services and Applications. https://doi.org/10.1007/s13174-010-0007-6
dc.relation.referencesMicrosoft. (s.f.). What is Azure? Recuperado de https://azure.microsoft.com/en- us/resources/cloud-computing-dictionary/what-is-azure
dc.relation.referencesSen, J., Mehtab, S., Sen, R., et al. (2022). Machine Learning: Algorithms, Models, and Applications. arXiv. https://doi.org/10.48550/arXiv.2201.01943
dc.relation.referencesGlielmo, A., Husic, B. E., Rodriguez, A., Clementi, C., Noé, F., & Laio, A. (2021). Unsupervised learning methods for molecular simulation data. Chemical Reviews.
dc.relation.referencesMatsuo, Y., LeCun, Y., Sahani, M., Precup, D., Silver, D., Sugiyama, M., Uchibe, E., & Morimoto, J. (2022). Deep learning, reinforcement learning, and world models. Neural Networks. https://doi.org/10.1016/j.neunet.2022.03.037
dc.relation.referencesSutton, R. S., & Barto, A. G. (1998). Reinforcement Learning: An Introduction. MIT Press. https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pd f
dc.relation.referencesDatabricks. (s.f.). What are Machine Learning Models? Recuperado de https://www.databricks.com/glossary/machine-learning-models
dc.relation.referencesDeepchecks. (s.f.). Machine Learning Model Evaluation. Recuperado de https://deepchecks.com/glossary/machine-learning-model-evaluation/
dc.relation.referencesEncyclopaedia Britannica. (2024). Quantum mechanics. Recuperado el 24 de junio de 2024, de https://www.britannica.com/science/quantum-mechanics-physics
dc.relation.referencesIBM. (s.f.). What is a qubit? Recuperado de https://www.ibm.com/topics/qubit
dc.relation.referencesBhat, H. A., Malik, G. F. A., & Khanday, F. A. (2022). Design and modelling of silicon quantum dot based single qubit spin quantum gates. International Journal of Theoretical Physics, 61(258), 1–15. https://doi.org/10.1007/s10773-022-05239-y
dc.relation.referencesMukhopadhyay, P. (2024). CS-count-optimal quantum circuits for arbitrary multi-qubit unitaries. Scientific Reports, 14, 13916. https://doi.org/10.1038/s41598- 024-64558-8
dc.relation.referencesAlexeev, Y., Bacon, D., Brown, K. R., Calderbank, R., Carr, L. D., Chong, F. T., DeMarco, B., Englund, D., Farhi, E., Fefferman, B., Houck, A., Kim, J., Kimmel, S., Lange, M., Lloyd, S., Lukin, M. D., Maslov, D., Maunz, P., Preskill, J., Roetteler, M., Savage, M. J., & Thompson, J. (2021). Quantum computer systems for scientific discovery. PRX Quantum, 2(1), 017001. https://doi.org/10.1103/PRXQuantum.2.017001
dc.relation.referencesKroll, Inc. (2023). Quantum as a Service (QaaS) platforms. Recuperado de https://www.kroll.com/en/insights/publications/cyber/quantum-computing-security
dc.relation.referencesMontanaro, A. (2016). Quantum algorithms: an overview. Quantum Information. https://arxiv.org/pdf/1511.04206
dc.relation.referencesUniversity of Melbourne. (s.f.). What is IBM Quantum? Recuperado de https://www.unimelb.edu.au/quantumhub/IBM-quantum
dc.relation.referencesIBM. (2024, 15 de mayo). Qiskit: The software for quantum performance. Recuperado de https://www.ibm.com/quantum/blog/quantum-software-vision
dc.relation.referencesCerezo, M., Verdon, G., Huang, H.-Y., Cincio, L., & Coles, P. J. (2022). Challenges and opportunities in quantum machine learning. Nature Computational Science, 2(9), 567–576. https://doi.org/10.1038/s43588-022-00311-3
dc.relation.referencesNguyen, T., & Sipola, T. (2024). Machine Learning Applications of Quantum Computing: A Review. arXiv. https://doi.org/10.48550/arXiv.2406.13262
dc.relation.referencesKhan, W., Serrano, M., & Moguel, E. (2023). Quantum Cloud Computing: A Review, Open Problems, and Future Directions. arXiv. https://doi.org/10.48550/arXiv.2404.11420
dc.relation.referencesNguyen, T., & Sipola, T. (2024). A Survey on Quantum Machine Learning: Current Trends, Challenges, Opportunities, and the Road Ahead. arXiv. https://doi.org/10.48550/arXiv.2310.10315
dc.relation.referencesNature Portfolio. (2023). Quantum as a Service (QaaS) is solving industrial challenges with a hybrid approach. Nature. https://www.nature.com/articles/d42473-023-00415-y
dc.relation.referencesLa Cour, B. (2023). Advances in quantum computing. Entropy, 25(12), 1633. https://doi.org/10.3390/e25121633
dc.relation.referencesZeguendry, A., Jarir, Z., & Quafafou, M. (2023). Quantum machine learning: A review and case studies. Entropy, 25(2), 287. https://doi.org/10.3390/e25020287
dc.relation.referencesCreswell, J. W. (2014). Research Design: Qualitative, Quantitative, and Mixed Methods Approaches (4th ed.). SAGE Publications. https://books.google.com/books?id=4uB76IC_pOQC
dc.relation.referencesHernández Sampieri, R., Fernández Collado, C., & Baptista Lucio, P. (2014). Metodología de la Investigación (6a ed.). McGraw-Hill. https://www.mheducation.es/bcv/guide/capitulo/8448606738.pdf
dc.relation.referencesKerlinger, F. N., & Lee, H. B. (2000). Foundations of Behavioral Research (4th ed.). Wadsworth Publishing. https://books.google.com/books?id=SGgvAQAAIAAJ
dc.relation.referencesShadish, W. R., Cook, T. D., & Campbell, D. T. (2002). Experimental and Quasi-Experimental Designs for Generalized Causal Inference. Houghton Mifflin. https://books.google.com/books?id=o4u0BQAAQBAJ
dc.relation.referencesBoardman, A. E., Greenberg, D. H., Vining, A. R., & Weimer, D. L. (2017). Cost-Benefit Analysis: Concepts and Practice (4th ed.). Cambridge University Press. https://www.cambridge.org/core/books/costbenefit- analysis/4F9C3E3E5E5F9D1E0E2D5E6F3B1B1E1A
dc.relation.referencesFowler, F. J. (2014). Survey Research Methods (5th ed.). SAGE Publications. https://us.sagepub.com/en-us/nam/survey-research-methods/book239063
dc.relation.referencesYin, R. K. (2018). Case Study Research and Applications: Design and Methods (6th ed.). SAGE Publications. https://us.sagepub.com/en-us/nam/case- study-research-and-applications/book250150
dc.rights.accesoAbierto (Texto Completo)
dc.rights.accessrightsOpenAccess
dc.subjectComputación cuántica
dc.subjectAprendizaje automático
dc.subjectQaaS
dc.subjectQuantum as a Service
dc.subjectGuía didáctica
dc.subjectComputación en la nube
dc.subject.keywordQuantum computing
dc.subject.keywordMachine learning
dc.subject.keywordQaaS
dc.subject.keywordQuantum as a Service
dc.subject.keywordEducational guide
dc.subject.keywordCloud computing
dc.subject.lembIngeniería Telemática -- Tesis y disertaciones académicas
dc.subject.lembAprendizaje automático (Inteligencia artificial)
dc.subject.lembInformática en la nube
dc.subject.lembComputadores cuánticos
dc.titleQuantum as a service en machine learning: una guía educativa de adopción y aplicación frente a la nube tradicional
dc.title.titleenglishQuantum as a service in machine learning: an educational guide to adoption and application compared to the traditional cloud
dc.typebachelorThesis
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.degreeMonografía
dc.type.driverinfo:eu-repo/semantics/bachelorThesis

Archivos

Bloque original

Mostrando 1 - 3 de 3
No hay miniatura disponible
Nombre:
RinconEspinosaJulianDavid2025.pdf
Tamaño:
3.61 MB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
RinconEspinosaJulianDavid2025Anexos.zip
Tamaño:
42.37 MB
Formato:
No hay miniatura disponible
Nombre:
Licencia de uso y publicacion .pdf
Tamaño:
226.82 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
7 KB
Formato:
Item-specific license agreed upon to submission
Descripción: