Metamodelo software para simulación remota interactiva en ambiente Web

dc.contributor.advisorBarón Velandia, Julio
dc.contributor.advisorVanegas Ayala, Sebastián Camilo
dc.contributor.authorPiñeros Ramírez, Jeisson Rodrigo
dc.contributor.orcidPiñeros Ramírez, Jeisson Rodrigo [0009-0006-6809-3292]
dc.contributor.orcidBarón Velandia, Julio [0000-0002-9491-5564]
dc.contributor.orcidVanegas Ayala, Sebastián Camilo [0000-0002-8610-9765]
dc.date.accessioned2025-05-20T23:56:01Z
dc.date.available2025-05-20T23:56:01Z
dc.date.created2025-02-26
dc.descriptionLa simulación desempeña un papel crucial en el apoyo a la comprensión de fenómenos del mundo real, la simulación interactiva con visualización progresiva de eventos es aún más valiosa para este fin, sin embargo, para ciertos tipos de sistemas se requiere de gran disponibilidad de recurso computacional, tanto en memoria como en procesamiento. Una posible solución a este problema es la realización de simulación en ambiente Web, dejando que el cliente realice la visualización progresiva de los resultados obtenidos según el procesamiento de la lógica que se realiza a nivel de servidor. Las soluciones actuales de simulación presentan dificultades para los dispositivos cliente en relación con: bajo nivel de interactividad del usuario en el dispositivo cliente y alto consumo tanto de ancho de banda como de recursos computacionales para procesamiento de la lógica de simulación; haciendo que este tipo de soluciones limiten las posibilidades de interactividad o sean costosas con respecto al procesamiento, memoria y red. ¿Cómo disminuir los requisitos computacionales y de red en el cliente manteniendo altos niveles de interactividad y visualización progresiva en software de simulación? El objetivo de esta propuesta es diseñar un metamodelo software para simulación remota interactiva con visualización progresiva en ambiente Web aplicando una técnica metodológica basada en modelos iterativos e incrementales que permiten obtener resultados en términos conceptuales y de desarrollo.
dc.description.abstractSimulation plays a crucial role in supporting the understanding of real-world phenomena; interactive simulation with progressive event visualization is even more valuable for this purpose. However, certain types of systems require significant computational resources, in terms of both memory and processing. A possible solution to this problem is to conduct simulations in a Web environment, allowing the client to perform progressive visualization of the results obtained from the server-side logic processing. Current simulation solutions present challenges for client devices, including low user interactivity on the client device and high consumption of both bandwidth and computational resources for processing simulation logic. This often makes such solutions limit interactivity or become costly in terms of processing, memory, and network usage. How can computational and network requirements on the client be reduced while maintaining high levels of interactivity and progressive visualization in simulation software? The objective of this proposal is to design a software metamodel for interactive remote simulation with progressive visualization in a Web environment by applying a methodological technique based on iterative and incremental models, which allows for obtaining results in both conceptual and development terms.
dc.format.mimetypepdf
dc.identifier.urihttp://hdl.handle.net/11349/95605
dc.language.isospa
dc.publisherUniversidad Distrital Francisco José de Caldas
dc.relation.referencesBanks, J., Carson II, J. S., Nelson, B. L., & Nicol, D. M. (2014). Discrete-Event System Simulation (5ta ed.). Pearson.
dc.relation.referencesBooch, Grady., Rumbaugh, James., & Jacobson, Ivar. (2000). The unified modeling language user guide (6ta ed.). Addison-Wesley.
dc.relation.referencesBrambilla, M., Cabot, J., & Wimmer, M. (2017). Model-Drive Software Engineering in Practice (2da ed.). Morgan & Claypool publishers. http://www.mdse-book.com,
dc.relation.referencesCassenti, D. N. (2018). Advances in Human Factors in Simulation and Modeling. Advances in Intelligent Systems and Computing, 780. http://www.springer.com/series/11156
dc.relation.referencesCellier, F. E. ., & Kofman, Ernesto. (2006). Continuous system simulation. Springer Science+Business Media
dc.relation.referencesDeniz, C. E. (2016). A Model Driven Approach to Web-based Traffic Simulation. Proceedings of the Symposium on Theory of Modeling and Simulation: DEVS Integrative M&S Symposium (TMS-DEVS) - Mod4Sim(6th International Workshop on Model-driven Approaches for Simulation Engineering) track part of the Spring Simulation Multi-Conference.
dc.relation.referencesDominguez, X., Mantilla-Pérez, P., Gimenez, N., El-Sayed, I., Díaz Millán, M. A., & Arboleya, P. (2021). Web-based simulation environment for vehicular electrical networks. Energies, 14(19). https://doi.org/10.3390/en14196087
dc.relation.referencesFujimoto, R. (2015). Parallel and distributed simulation. Proceedings of the 2015 Winter Simulation Conference.
dc.relation.referencesGamma, E., Helm, R., Johnson, R., & Vlissides, J. (1996). Design Patterns. AddisonWesley
dc.relation.referencesHakiri, A., Berthou, P., & Gayraud, T. (2010). Addressing the Challenge of Distributed Interactive Simulation With Data Distribution Service.
dc.relation.referencesHeer, J., & Robertson, G. G. (2007). Animated Transitions in Statistical Data Graphics.
dc.relation.referencesHernández Sampieri, R., Fernández Collado, C., María del Pilar Baptista Lucio, D., & Méndez Valencia Christian Paulina Mendoza Torres, S. (2014). Metodología de la investigación (6ta ed.). Mc Graw Hill Education.
dc.relation.referencesJouault, F., Allilaire, F., Bézivin, J., & Kurtev, I. (2008). ATL: A model transformation tool. Science of Computer Programming, 72(1–2), 31–39. https://doi.org/10.1016/j.scico.2007.08.002
dc.relation.referencesKnoblauch, A. (2024). IVISIT: An Interactive Visual Simulation Tool for system simulation, visualization, optimization, and parameter management.
dc.relation.referencesKoch, S., Reiche, F., & Heinrich, R. (2018). Towards a Metamodel for Modular Simulation Environments. https://github.com/MoSimEngine
dc.relation.referencesLaw, A. M. . (2015). Simulation modeling and analysis. McGraw-Hill Education.
dc.relation.referencesLoreto, S., & Romano, S. Pietro. (2014). Real-Time Communication with WebRTC.
dc.relation.referencesMell, P. M., & Grance, T. (2011). The NIST definition of cloud computing. https://doi.org/10.6028/NIST.SP.800-145
dc.relation.referencesMenzel, S., Olhofer, M., & Sendhoff, B. (2010). A METAMODEL-DRIVEN INTERACTIVE FRAMEWORK FOR A DESIGNER ASSISTANCE SYSTEM
dc.relation.referencesMetropolis, N., & Ulam, S. (1949). The Monte Carlo Method. Journal of the American Statistical Association, 44(247), 335–341.
dc.relation.referencesMinguiell, M. (2013). Interactividad e interacción. Revista latinoamericana de tecnología educativa, 1.
dc.relation.referencesMondesire, S. C., Angelopoulou, A., Sirigampola, S., & Goldiez, B. (2018). Combining virtualization and containerization to support interactive games and simulations on the cloud. May. https://doi.org/10.1016/j.simpat.2018.08.005
dc.relation.referencesMrozek, M., Sirenko, M., Foks-Ryznar, A., & Sawicki, B. (2022). Interactive Visualization of Agent-Based Pandemic Simulation in Web Browser. 2022 23rd International Conference on Computational Problems of Electrical Engineering, CPEE 2022. https://doi.org/10.1109/CPEE56060.2022.9919642
dc.relation.referencesNg, A., Grimm, H., Lezama, T., Persson, A., Andersson, M., & Jagstam, M. (2008). OPTIMISE: An Internet-Based Platform for Metamodel-Assisted Simulation Optimization. En Advances in Communication Systems and Electrical Engineering (pp. 281–296). Springer.
dc.relation.referencesNielsen, J. (1993). Usability Engineering.
dc.relation.referencesOMG. (2003). MDA Guide Version 1.0.1 (J. Miller & J. Mukerji, Eds.). Object Management Group.
dc.relation.referencesOMG. (2015). OMG Unified Modeling Language (2.5). Object Management Group. http://www.omg.org/spec/UML/2.5
dc.relation.referencesOMG. (2019). OMG Meta Object Facility (MOF) Core Specification (2.5.1). Object Management Group.
dc.relation.referencesPham, H. (2022). A Web-based Interactive and Visualized Approach to Simulations of Operating Systems. Proceedings - 2022 5th International Conference on Information and Computer Technologies, ICICT 2022, 148–152. https://doi.org/10.1109/ICICT55905.2022.00033
dc.relation.referencesPressman, R. S. (2010). Ingenieria del Software. Un Enfoque Practico. www.FreeLibros.me
dc.relation.referencesQi Wu, David Bauer, Michael J. Doyle, & Kwan-Liu Ma. (2024). Interactive Volume Visualization via Multi-Resolution Hash Encoding based Neural Representation.
dc.relation.referencesRorich, D., Bernhard, M., & Handte, T. (2014). Webdemos: An Interactive, Web-Based Visualization and Simulation Framework for Open Access. [IEEE].
dc.relation.referencesRorich, D., Bernhard, M., Handte, T., & Brink, S. (2014). Webdemos: An Interactive, WebBased Visualization and Simulation Framework for Open Access. Institute of Telecommunications University of Stuttgart.
dc.relation.referencesRumbaugh, James., Jacobson, Ivar., & Booch, Grady. (2000). The unified modeling language reference manual. Addison-Wesley Longman.
dc.relation.referencesSoler-Adillon, J. (2012). Principios de diseño de interacción para sistemas interactivos.
dc.relation.referencesStachowiak, Herbert. (1973). Allgemeine Modelltheorie. Springer-Verlag.
dc.relation.referencesSteinberg, D., Budinsky, F., Paternostro, M., & Merks, E. (2009). Eclipse Modeling Framework. Addison-Wesley.
dc.relation.referencesSteuer, J. (1992). Defining Virtual Reality: Dimensions Determining Telepresence. Journal of Communication, 42(4), 73–93. https://doi.org/10.1111/j.1460-2466.1992.tb00812.x
dc.relation.referencesTanenbaum, A. (2007). Distributed Systems (2da ed.). Pearson. www.minix3.org.This
dc.relation.referencesTaylor, S., Khan, A., Morse, K., Tolk, A., Yilmaz, L., Zander, J., & Mosterman, P. (2015). Grand challenges for modeling and simulation: Simulation everywhere - From cyberinfrastructure to clouds to citizens. SIMULATION, 91, 648–665. https://doi.org/10.1177/0037549715590594
dc.relation.referencesUniversidad Europea. (2024). ¿Qué es el diseño responsive? | Blog CC. https://creativecampus.universidadeuropea.com/blog/que-es-diseno-responsive/
dc.relation.referencesVidal, G. A. (2016). Análisis de herramientas de generación automática de código Android a partir de modelos. Universidad Nacional de la Plata.
dc.relation.referencesWarmer, J. B., Kleppe, A. G., & Bast, Wim. (2003). MDA Explained: The Model Driven ArchitectureTM: Practice and Promise Bast, Wim. Addison-Wesley Professional.
dc.relation.referencesZeigler, B., Prähofer, H., & Kim, T. G. (2000). Theory of Modeling and Simulation: Integrating Discrete Event and Continuous Complex Dynamic Systems. 2.
dc.relation.referencesZhou, W., Tang, K., & Jia, J. (2018). S-LPM: segmentation augmented light-weighting and progressive meshing for the interactive visualization of large man-made Web3D models. World Wide Web, 21(5), 1425–1448. https://doi.org/10.1007/s11280-018- 0610-1
dc.rights.accesoAbierto (Texto Completo)
dc.rights.accessrightsOpenAccess
dc.subjectMetamodelo
dc.subjectSimulación
dc.subjectProcesamiento remoto
dc.subjectInteractividad
dc.subjectAmbiente Web
dc.subjectMDA
dc.subject.keywordMetamodel
dc.subject.keywordSimulation
dc.subject.keywordRemote processing
dc.subject.keywordInteractivity
dc.subject.keywordWeb environment
dc.subject.keywordMDA
dc.subject.lembMaestría en Ciencias de la Información y las Comunicaciones -- Tesis y disertaciones académicas
dc.titleMetamodelo software para simulación remota interactiva en ambiente Web
dc.title.titleenglishMetamodel software for interactive remote simulation in Web environment
dc.typemasterThesis
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.degreeInvestigación-Innovación
dc.type.driverinfo:eu-repo/semantics/masterThesis

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
PiñerosRamírezJeissonRodrigo2025.pdf
Tamaño:
759.56 KB
Formato:
Adobe Portable Document Format
Descripción:
Trabajo de Maestría
No hay miniatura disponible
Nombre:
Licencia de uso y publicación.pdf
Tamaño:
213.37 KB
Formato:
Adobe Portable Document Format
Descripción:
Licencia de uso y autorización

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
7 KB
Formato:
Item-specific license agreed upon to submission
Descripción: