Redes ópticas de acceso convergente

dc.contributor.authorPuerto Leguizamón, Gustavo Adolfo
dc.contributor.orcidPuerto Leguizamón, Gustavo Adolfo [0000-0002-6420-9693]
dc.date.accessioned2023-10-30T20:10:59Z
dc.date.available2023-10-30T20:10:59Z
dc.date.created2016-04
dc.descriptionLa constante evolución de los servicios de telecomunicaciones está impulsando el diseño, desarrollo y despliegue de nuevos conceptos de red en los segmentos de larga distancia, metropolitano y de acceso. Precisamente en este último, el segmento de acceso, se han identificado tendencias evolutivas hacia la ampliación de la capacidad instalada en campo y nuevos estándares se están definiendo con el fin de garantizar interoperabilidad e interconexión. En este contexto, uno de los pilares de dicha evolución en las futuras redes de acceso radica en la capacidad de transportar tráfico proveniente de entornos fijos y móviles, y en particular, para el caso del tráfico móvil, realizar dicho transporte de forma transparente en sus portadoras originales. Este libro presenta dos aspectos de alta relevancia para el desarrollo de redes ópticas de acceso convergente, especialmente la generación de señales convergentes para el proceso de transmisión y el filtrado de dichas señales para el proceso de recepción. Para cada caso se presentan propuestas de implementación y se discuten los alcances de estas.spa
dc.description.abstractThe constant evolution of telecommunications services is driving the design, development and deployment of new network concepts in the long distance, metropolitan and access segments. Precisely in the latter, the access segment, evolutionary trends have been identified towards the expansion of installed capacity in the field and new standards are being defined in order to guarantee interoperability and interconnection. In this context, one of the pillars of this evolution in future access networks lies in the ability to transport traffic from fixed and mobile environments, and in particular, in the case of mobile traffic, carry out said transport in a transparent manner in its original carriers. This book presents two aspects of high relevance for the development of converged access optical networks, especially the generation of convergent signals for the transmission process and the filtering of said signals for the reception process. For each case, implementation proposals are presented and their scope is discussed.spa
dc.description.cityBogotáspa
dc.format.mimetypepdfspa
dc.identifier.editorialUniversidad Distrital Francisco José de Caldas. Centro de Investigaciones y Desarrollo Científicospa
dc.identifier.isbn978-958-8972-04-6spa
dc.identifier.urihttp://hdl.handle.net/11349/32569
dc.relation.ispartofseriesEspaciosspa
dc.relation.referencesAbdallah, I., Rachida, H. y Mohamed, C. B. (2012). Uniform fiber bragg grating modeling and simulation used matrix transfer method. International Journal of Computer Science Issues, 9(1), 368-374.spa
dc.relation.referencesAgrawal, G. P. (2002). Fiber-Optic Communication Systems (3rd ed.). New York: John Wiley & Sons.spa
dc.relation.referencesAli, M., Ellinas, G., Erkan, H., Hadjiantonis, A. y Dorsinville, R. (2010). On the Vision of Complete Fixed-Mobile Convergence. Journal Lightwave Technology, 28(16), 2343-2357.spa
dc.relation.referencesBlumenthal, D. J., Laskar, J., Gaudino, R., Han, S., Shell, M. D y Vaughn, M. D. (1997). Fiber-Optic Links Supporting Baseband Data and Subcarrier-Multiple xed Control Channels and the Impact of MMIC Photonic/Microwave Interfaces. IEEE Transactions on microwave theory and techniques, 45(8), 1443-1spa
dc.relation.referencesBlumenthal, D. J., Olsson, B. E., Rossi, G., Dimmick, T. E. et al. (2000). All-optical label swapping networks and technologies. Journal Lightwave Technology, 18(12), 2058-2074.spa
dc.relation.referencesCarena, A., Vaughn, M. D., Gaudino, R., Shell, M. y Blumenthal, D. J. (1998). OPERA: An Optical Packet Experimental Routing Architecture with Label Swapping Capability. Journal Lightwave Technology, 16(12), 2135-21spa
dc.relation.referencesCapmany, J., Faile, F. J. y Marti, J. (2001). Fundamentos de comunicaciones ópticas (2da. ed.). Madrid: Síntesis.spa
dc.relation.referencesChanclou, P., Belfqih, Z., Charbonnier, B., Duong, T., Frank, F., Genay, N. et al. (2008). Optical access evolutions and their impact on the metropolitan and home networks. In 34th European Conference on Optical Communication, pp.1-3.spa
dc.relation.referencesCisco Systems. (2015). Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2014–2019. USA: Cisco Systems. Recuperado de http://www.cisco. com/c/en/us/solutions/collateral/service-provider/visual-networking-indexvni/white_paper_c11-520862.pdfspa
dc.relation.referencesDagli, N. (1999). Wide bandwidth lasers and modulators for RF photonics. IEEE Transactions on microwave theory and techniques, 47(7), 1151-1171.spa
dc.relation.referencesDat, P., Kanno, A., Inagaki, K. y Kawanishi, T. (2014). High-Capacity Wireless Backhaul Network Using Seamless Convergence of Radio-over-Fiber and 90-GHz Millimeter-Wave. Journal Lightwave Technology, 32(20), 3910-3923.spa
dc.relation.referencesDavey, R., Kani, J., Bourgart, F. y McCammon, K. (2006). Options for Future Optical Access Networks. IEEE Communications Magazine, 44(10), 50-56spa
dc.relation.referencesDevaux, F., Sorel, Y. y Kerdiles, J. F. (1993). Simple measurement of fiber dispersion and of chirp parameter of intensity modulated light emitter. Journal Lightwave Technology, 11(12), 1937-1940.spa
dc.relation.referencesErdogan, T. (1997). Fiber grating spectra. Journal Lightwave Technology, 15(8), 1277-1294.spa
dc.relation.referencesHill, O. H. y Meltz, G. (1997). Fiber Bragg Grating Technology Fundamentals and Overview. Journal Lightwave Technology, 15(8), 1263-1276.spa
dc.relation.referencesHo, K. P. (2005). Generation of arbitrary quadrature signals using one dual drive modulator. Journal Lightwave Technology, 23(2), 764-770.spa
dc.relation.referencesHsueh, Y., Rogge, M., Yamamoto, S. y Kazovsky, L. (2005). A highly flexible and efficient passive optical network employing dynamic wavelength allocation. Journal Lightwave Technology, 23(1), 277-286.spa
dc.relation.referencesIezekiel, S. (2008). Measurement of microwave behavior of optical links. IEEE Microwave Magazine, 9(3), 100-12spa
dc.relation.referencesKani, J. (2010). Enabling Technologies for Future Scalable and Flexible WDM-PON and WDM/TDM-PON Systems. IEEE Journal of Selected Topics in Quantum Electronics, 16(5), 1290-1297spa
dc.relation.referencesKasemet, D. (1990). High frequency Analog Fiber Optic Systems. SPIE, 1371‚ 104-114.spa
dc.relation.referencesKazovsky, L., Shaw, W., Gutierrez, D., Cheng, N. y Wong, S. (2007). Next-Generation Optical Access Networks. Journal Lightwave Technology, 25(11), 3428-344spa
dc.relation.referencesKellerer, W., Kiess, W., Scalia, L., Biermann, T., Choi, C. y Kozu, K. (2012). Novel cellular optical access network and convergence with FTTH. Optical Fiber Communication Conference and Exposition (OFC/NFOEC), pp. 1-3spa
dc.relation.referencesKoonen, T., Tran, N. y Tangdiongga, E. (2011). The merits of reconfigurability in WDM-TDM optical in-building networks. Optical Fiber Communication Conference and Exposition (OFC/NFOEC), pp. 1-3.spa
dc.relation.referencesKyung Woon, L., Jung Ho, P. y Hyun Do, J. (2013). Comparison of digitized and analog radio-over-fiber systems over WDM-PON networks. International Conference on ICT Convergence (ICTC), pp. 705-706.spa
dc.relation.referencesLaraqui, K. (2013). Small cell optical mobile backhauling: architectures, challenges, and solutions. 39th European Conference and Exhibition on Optical Communication, pp. 1-3.spa
dc.relation.referencesLee, H. J., Yoo, S. J. V., Tsui, V. K. y Fong, S. K. H. (2001). A Simple All-Optical Label Detection and Swapping Technique Incorporating a Fiber Bragg Grating Filter. IEEE Photonics Technology Letters, 13(6), 635-637.spa
dc.relation.referencesMeagher, B., Chang, G. K., Ellinas, G., Lin, Y. M. et al. (2000). Design and Implementation of Ultra-Low Latency Optical Label Switching for Packet-Switched WDM Networks. Journal Lightwave Technology, 18(12), 1978-1987.spa
dc.relation.referencesMoeyaert, V. y Maier, G. (2011). Network Technologies for Broadband Access. In Transparent Optical Networks (ICTON) (pp. 1-5). 13th International Conference, Stockholmspa
dc.relation.referencesNguyen-Cac, T., Hyun-Do, J., Okonkwo, C., Tangdiongga, E. y Koonen, T. (2012). Dynamically Delivering Radio Signals by the Active Routing Optical Access Network. IEEE Photonics Technology Letters, 24(3), 182-184.spa
dc.relation.referencesOrtega, B., Mora, J., Puerto, G. y Capmany, J. (2007). Symmetric reconfigurable capacity assignment in a bidirectional DWDM access network. Optics Express, 15(25), 16781-16786.spa
dc.relation.referencesPonzini, F., Giorgi, L., Bianchi, A. y Sabella, R. (2013). Centralized radio access networks over wavelength-division multiplexing: a plug-and-play implementation. IEEE Communications Magazine, 51(9), 94-99.spa
dc.relation.referencesPopov, M., Martínez, A., Capmany, J., Pastor, D., Fonjallaz, P. Y. y Ortega, B. (2005). Fiber-Bragg-Grating-Based Device For Payload And Label Separation in Highly Packed Subcarrier-Multiplexed Optical Label Swapping. IEEE Photonics Technology Letters, 17(11), 2445-2447spa
dc.relation.referencesPopov, M. (2010). The Convergence of Wired and Wireless Services Delivery in Access and Home Networks. Optical Fiber Communication Conference and Exposition (OFC/NFOEC), pp. 1-3.spa
dc.relation.referencesRaman, K. (1999). Fiber Bragg Gratings. San Diego: Academic.spa
dc.relation.referencesRamaswami, R. y Sivarajan, K. (2010). Optical Networks: A Practical Perspective (3ra. ed.). San Francisco: Morgan Kaufmann Publishers.spa
dc.relation.referencesRossi, G., Jerphagnon, O., Olsson, B. E. y Blumenthal, D. J. (2000). Optical SCM Data Extraction using a Fiber-Loop Mirror for WDM Network Systems. IEEE Photonics Technology Letters, 12(7), 897-899.spa
dc.relation.referencesSabella, R. y Lugli, P. (1999). High Speed Optical Communications. Norwell: Kluwer Academic.spa
dc.relation.referencesSchwartz, M. (1990). Information transmission, modulation, and noise (4ta. ed.). New York: McGraw-Hill.spa
dc.relation.referencesSeeds, A. J. y Williams, K. J. (2006). Microwave photonics. Journal Lightwave Technology, 24(12), 4628-4641.spa
dc.relation.referencesStephens, W. E. y Joseph, T. R. (1987). System characteristics of direct modulated and externally modulated RF fiber-optic links. Journal Lightwave Technology, 5(3)‚ 380-387.spa
dc.relation.referencesUrban, P., Huijskens, F., Khoe, G., Koonen, T. y Waardt, H. (2009). Reconfigurable WDM/TDM Access Network Providing 10-Gb/s/Over 27-km SSMF With Colorless ONU. IEEE Photonics Technology Letters, 21(23), 1758-1760spa
dc.relation.referencesVenkatesan, G. y Kulkarni, K. (2008). Wireless backhaul for LTE-requirements, challenges and options. In 2nd International Symposium on Advanced Networks and Telecommunication Systems, pp. 1-3spa
dc.relation.referencesVPI Transmission Maker. (2014). Photonic Modules Reference Manual. Virtual Photonics Systems Inspa
dc.relation.referencesYang, H., Shi, Y., Okonkwo, C., Tangdiongga, E. y Koonen, T. (2010). Dynamic capacity allocation in radio-over-fiber links. IEEE Topical Meeting on Microwave Photonics (MWP), 181-184.spa
dc.relation.referencesYong-Yuk, W., Moon-Ki, H., Yong-Hwan, S. y Sang-Kook, H. (2013). Colorless two different gigabit data access transmissions using optical double sideband suppressed carrier and optical sideband slicing. IEEE/OSA Journal of Optical Communications and Networking, 5(6), 544-553.spa
dc.relation.referencesYoo, S. J. B., Lee, H. J., Pan, Z., Cao, J. et al. (2002). Rapidly Switching All-Optical Packet Routing System With Optical-Label Swapping Incorporating Tunable Wavelength Conversion and a Uniform-Loss Cyclic Frequency AWGR. Photon Technol. Lett., 14(8), 1211-1213.spa
dc.relation.referencesYoshida, S. y Iwshita, K. (1990). Influence of amplitude modulation induced by LD direct modulation on FM signal transmission. IEEE Photonics Technology Letters, 2(12), 929-931.spa
dc.relation.referencesZou, S., Okonkwo, C., Cao, Z., Tran, N. et al. (2012). Dynamic optical routing and simultaneous generation of millimeter-wave signals for in-building access network. Optical Fiber Communication Conference and Exposition (OFC/NFOEC), 1-3.spa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accesoAbierto (Texto Completo)spa
dc.rights.accessrightsOpenAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectIngeniería Eléctricaspa
dc.subjectRedes ópticasspa
dc.subjectInterconexión eléctricaspa
dc.subjectSistemas de interconexiónspa
dc.subject.keywordElectric engineeringspa
dc.subject.keywordOptical networksspa
dc.subject.keywordElectrical interconnectionspa
dc.subject.keywordInterconnection systemsspa
dc.subject.lembIngeniería eléctricaspa
dc.subject.lembRedes ópticasspa
dc.subject.lembSistemas de interconexión eléctrica - Modelos Ispa
dc.titleRedes ópticas de acceso convergentespa
dc.title.titleenglishConverged access optical networksspa
dc.typebookspa
dc.type.coarhttp://purl.org/coar/resource_type/c_2f33
dc.type.driverinfo:eu-repo/semantics/book

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Redes opticaS.pdf
Tamaño:
8.47 MB
Formato:
Adobe Portable Document Format
Descripción:
Libro

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
7 KB
Formato:
Item-specific license agreed upon to submission
Descripción: