Dualidad de curvas, ecuaciones diferenciales binarias y la transformada de Legendre
dc.contributor.advisor | Barajas Sichacá, Martín | |
dc.contributor.author | Orduz Baez, Camilo | |
dc.contributor.orcid | Barajas Sichacá, Martín [0000-0001-9442-5015] | |
dc.date.accessioned | 2025-07-23T16:01:29Z | |
dc.date.available | 2025-07-23T16:01:29Z | |
dc.date.created | 2025-07-02 | |
dc.description | Se consideran las ecuaciones diferenciales binarias de la forma a(x, y)(dy)^2 + 2b(x, y)dxdy + c(x, y)(dx)^2 = 0 con a, b, c funciones suaves que se anulan en (0, 0). En particular, en puntos donde (b(x, y))^2 − a(x, y)c(x, y)) ≥ 0. Bajo dichas condiciones existe una clasificación vía difeomorfismos con el espacio de jets de las formas normales de tales ecuaciones dada por : 1. Lemon: y(dy)^2 + 2xdxdy − y(dx)^2 = 0 2. Star: y(dy)^2 − 2xdxdy − y(dx)^2 = 0 3. Monstar: y(dy)^2 + 1/2 xdxdy − y(dx)^2 = 0 Al aplicar la transformada de Legendre a los modelos obtenemos la forma de las curvas integrales de los mismos, debido a la dualidad entre éstas y su transformada de Legendre. El propósito de este trabajo es exponer la construcción de dicha clasificación y su dualidad con la transformada de Legendre. | |
dc.description.abstract | We consider binary differential equations of the form a(x, y)(dy)^2 + 2b(x, y)dxdy + c(x, y)(dx)^2 = 0 where a,b,c are smooth functions that vanish at (0,0). In particular, we consider points where (b(x, y))^2 − a(x, y)c(x, y))≥ 0. Under those conditions there exists a classification up to diffeomorphism with the jet space of the normal forms of the equations given by: 1. Lemon: y(dy)^2 + 2xdxdy − y(dx)^2 = 0 2. Star: y(dy)^2 − 2xdxdy − y(dx)^2 = 0 3. Monstar: y(dy)^2 + 1/2 xdxdy − y(dx)^2 = 0 Applying the Legendre transform to the models, we obtain their integral curves due to duality with the corresponding curves of the Legendre transform. The purpose of this work is to show the construction of the classification and the duality of those models under the Legendre transformation. | |
dc.format.mimetype | ||
dc.identifier.uri | http://hdl.handle.net/11349/98223 | |
dc.language.iso | spa | |
dc.publisher | Universidad Distrital Francisco José de Caldas | |
dc.relation.references | Goursat E. A course in mathematical analysis, Vol.1. Ginn, Boston, 1917. | |
dc.relation.references | Whitney H. On singularities of mappings of euclidean spaces. The Annals of Mathematics, 62(374- 410), 1955. | |
dc.relation.references | Arnold V. Geometrical Methods in the theory of Ordinary Differential Equiations. Springer, 1983. | |
dc.relation.references | Arnold V. Mathematical Methods of Classical Mechanics. Springer, 1988. | |
dc.relation.references | Bruce J W. A note in first order differential equations of degree greater than one and wavefront evolution. Bull.London Math.Soc, 16(139-144), 1984. | |
dc.relation.references | Bruce J W and Fidal D. On binary differential equations and umbilics. Proc. R. Soc. Edinburg, 111A:147–68, 1989. | |
dc.relation.references | Bruce J W and Tari F. On binary differential equations. Nonlinearity, 8(255-271), 1995. | |
dc.relation.references | Bruce J W and Tari F. Duality and implicit differential equations. Nonlinearity, 13(791-811), 2000. | |
dc.rights.acceso | Abierto (Texto Completo) | |
dc.rights.accessrights | OpenAccess | |
dc.subject | Ecuaciones diferenciales binarias | |
dc.subject | Transformada de Legendre | |
dc.subject | Ecuaciones diferenciales implicitas | |
dc.subject | Dualidad proyectiva | |
dc.subject.keyword | Binary differential equations | |
dc.subject.keyword | Legendre transformation | |
dc.subject.keyword | Implicit differential equations | |
dc.subject.keyword | Projective duality | |
dc.subject.lemb | Matemáticas -- Tesis y disertaciones académicas | |
dc.title | Dualidad de curvas, ecuaciones diferenciales binarias y la transformada de Legendre | |
dc.title.titleenglish | Curves duality, binary differential equations and the Legendre trasnformation | |
dc.type | bachelorThesis | |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
dc.type.degree | Monografía | |
dc.type.driver | info:eu-repo/semantics/bachelorThesis |
Archivos
Bloque original
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 7 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: