Modelo para evaluar el impacto que tienen las variables climatológicas y de calidad del aire, en la eficiencia de los paneles solares
| dc.contributor.advisor | Gaona García, Elvis Eduardo | |
| dc.contributor.advisor | Mora Hernández, Johann Alexander | |
| dc.contributor.author | Carrillo Mejía, Luis | |
| dc.contributor.orcid | Gaona García, Elvis Eduardo [0000-0001-5431-8776] | |
| dc.date.accessioned | 2025-08-22T03:14:48Z | |
| dc.date.available | 2025-08-22T03:14:48Z | |
| dc.date.created | 2025-06-13 | |
| dc.description | En un contexto global que impulsa una imperante transición energética, donde la generación solar emerge como una alternativa primordial por su facilidad de instalación y capacidad de generación distribuida, surge la necesidad crítica de comprender y mitigar los factores que afectan su eficiencia. Esta investigación aborda precisamente el impacto de variables climatológicas y de calidad del aire en el rendimiento de los paneles solares, proponiendo un modelo de machine learning capaz de pronosticar su eficiencia. El problema central radica en la vulnerabilidad de la generación fotovoltaica a factores exógenos como la irradiancia, temperatura, presión, humedad y, crucialmente, la suciedad y la contaminación ambiental. La omisión de estos estudios puede llevar a la instalación de sistemas aparentemente viables que, con el tiempo, sufren una rápida degradación de su eficiencia, generando pérdidas económicas y desconexión en zonas que buscan autonomía energética. Para contrarrestar esto, se plantea la construcción de un modelo que, utilizando datos climatológicos y de contaminación ambiental de APIs reconocidas, estudie el comportamiento de la eficiencia en una ubicación preseleccionada de Colombia. La formulación del problema se centró en cómo evaluar el impacto de estas variables, y su sistematización exploró la descripción funcional y estructural del modelo de evaluación y visualización, así como la validación de su capacidad predictiva. Para abordar este desafío, se recopilaron, almacenaron y procesaron variables climatológicas, de calidad del aire e irradiancia. Se evaluaron diversos algoritmos de machine learning para predecir la eficiencia instantánea en siete ubicaciones geográficas de Colombia, con características climatológicas variadas, seleccionando los de mejor rendimiento a partir de qué tantas predicciones correctas el algoritmo es capaz de realizar (R2). Una de las conclusiones más relevantes es que la inclusión de variables de contaminación ambiental en los modelos de predicción mejoró significativamente el rendimiento predictivo, en un 3% para la métrica de evaluación estándar utilizada. El análisis de importancia de características del modelo seleccionado, Random Forest, reveló que la irradiancia (GHI, GDI, DNI), las variables climatológicas (temperatura, humedad, dirección y velocidad del viento) y las variables de calidad del aire (NO2, PM2.5, PM10, CO y O3) fueron las de mayor influencia. Adicionalmente, se encontró una asociación negativa entre la eficiencia instantánea y condiciones de mayor contaminación ambiental, con el NO2, CO, SO2, PM10 y PM2.5 mostrando la mayor influencia, mientras que el O3 exhibió una asociación positiva, independientemente del nivel general de contaminación. Estos hallazgos subrayan la importancia práctica de incorporar variables de calidad del aire en la planeación y operación de sistemas fotovoltaicos, ya que una predicción más precisa de la eficiencia instantánea permite una mejor estimación del rendimiento y optimiza las estrategias de operación y mantenimiento, contribuyendo a un aprovechamiento más efectivo del potencial solar y reforzando la viabilidad de la energía limpia. | |
| dc.description.abstract | In a global context that drives an imperative energy transition, where solar power emerges as a primary alternative due to its ease of installation and distributed generation capabilities, a critical need arises to understand and mitigate the factors affecting its efficiency. This research precisely addresses the impact of climatological and air quality variables on the performance of solar panels, proposing a machine learning model capable of forecasting their efficiency. The central problem lies in the vulnerability of photovoltaic generation to exogenous factors like irradiance, temperature, pressure, humidity, and, crucially, dirt and environmental pollution. Omitting these studies can lead to the installation of seemingly viable systems that, over time, suffer a rapid degradation of efficiency, generating economic losses and disconnection in areas seeking energy autonomy. To counter this, a model is proposed that uses climatological and air pollution data from recognized APIs to study efficiency behavior in a pre-selected location in Colombia. The problem's formulation focused on how to evaluate the impact of these variables, and its systematization explored the functional and structural description of the evaluation and visualization model, as well as the validation of its predictive capacity. To address this challenge, climatological, air quality, and irradiance variables were collected, stored, and processed. Various machine learning algorithms were evaluated to predict instantaneous efficiency in seven geographical locations in Colombia with varied climatological characteristics, selecting the best-performing ones based on the number of correct predictions the algorithm is capable of making (R2). One of the most relevant conclusions is that the inclusion of air pollution variables in the prediction models significantly improved predictive performance, by 3% for the standard evaluation metric used. The feature importance analysis of the selected Random Forest model revealed that irradiance (GHI, GDI, DNI), climatological variables (temperature, humidity, wind direction and speed), and air quality variables (NO2, PM2.5, PM10, CO, and O3) were the most influential. Additionally, a negative association was found between instantaneous efficiency and higher air pollution conditions, with NO2, CO, SO2, PM10 and PM2.5 showing the greatest influence, while O3 exhibited a positive association, regardless of the overall level of pollution. These findings underscore the practical importance of incorporating air quality variables in the planning and operation of photovoltaic systems, since a more accurate prediction of instantaneous efficiency allows for a better estimation of performance and optimizes operation and maintenance strategies, contributing to a more effective use of solar potential and reinforcing the viability of clean energy. | |
| dc.format.mimetype | ||
| dc.identifier.uri | http://hdl.handle.net/11349/98555 | |
| dc.publisher | Universidad Distrital Francisco José de Caldas. | |
| dc.relation.references | Abdel-Basset, Mohamed, Reda Mohamed, Marwa Sharawi, Laila Abdel-Fatah, Mohamed Abouhawwash, and Karam Sallam. 2022. “A Comparative Study of Optimization Algorithms for Parameter Estimation of PV Solar Cells and Modules: Analysis and Case Studies.” Energy Reports 8:13047–65. doi:https://doi.org/10.1016/j.egyr.2022.09.193. | |
| dc.relation.references | Ahmed, Md Shakil, Raihan Karal, Barun K. Das, and Arnob Das. 2023. “Experimental Investigation of Cooling, Wind Velocity, and Dust Deposition Effects on Solar PV Performance in a Tropical Climate in Bangladesh.” Case Studies in Thermal Engineering 50:103409. doi:10.1016/J.CSITE.2023.103409. | |
| dc.relation.references | Air Pollution - OpenWeatherMap. n.d. Retrieved May 3, 2025. https://openweathermap.org/api/air-pollution. | |
| dc.relation.references | Bayrak, Fatih. 2025. “Prediction of Photovoltaic Panel Cell Temperatures: Application of Empirical and Machine Learning Models.” Energy 323:135764. doi:10.1016/J.ENERGY.2025.135764. | |
| dc.relation.references | Chanchangi, Yusuf N., Aritra Ghosh, Hasan Baig, Senthilarasu Sundaram, and Tapas K. Mallick. 2021. “Soiling on PV Performance Influenced by Weather Parameters in Northern Nigeria.” Renewable Energy 180:874–92. doi:10.1016/j.renene.2021.08.090. | |
| dc.relation.references | Chandel, Shyam Singh, Ankit Gupta, Rahul Chandel, and Salwan Tajjour. 2023. “Review of Deep Learning Techniques for Power Generation Prediction of Industrial Solar Photovoltaic Plants.” Solar Compass 8:100061. doi:10.1016/J.SOLCOM.2023.100061. | |
| dc.relation.references | Chintapalli, Naveenswamy, Manoj Kumar Sharma, and Jishnu Bhattacharya. 2020. “Linking Spectral, Thermal and Weather Effects to Predict Location-Specific Deviation from the Rated Power of a PV Panel.” Solar Energy 208:115–23. doi:https://doi.org/10.1016/j.solener.2020.07.080. | |
| dc.relation.references | Página | 89 Cho, Kyunghyun, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. “Learning Phrase Representations Using RNN Encoder–Decoder for Statistical Machine Translation.” Pp. 1724–34 in Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), edited by A. Moschitti, B. Pang, and W. Daelemans. Doha, Qatar: Association for Computational Linguistics. | |
| dc.relation.references | Ghazi, Sanaz, and Kenneth Ip. 2014. “The Effect of Weather Conditions on the Efficiency of PV Panels in the Southeast of UK.” Renewable Energy 69:50–59. doi:https://doi.org/10.1016/j.renene.2014.03.018. | |
| dc.relation.references | Gonçalves, Rui, Vitor Miguel Ribeiro, and Fernando Lobo Pereira. 2023. “Variable Split Convolutional Attention: A Novel Deep Learning Model Applied to the Household Electric Power Consumption.” Energy 274:127321. doi:https://doi.org/10.1016/j.energy.2023.127321. | |
| dc.relation.references | Hassan, Qusay, Sameer Algburi, Aws Zuhair Sameen, Tariq J. Al-Musawi, Ali Khudhair Al-Jiboory, Hayder M. Salman, Bashar Mahmood Ali, and Marek Jaszczur. 2024. “A Comprehensive Review of International Renewable Energy Growth.” Energy and Built Environment. doi:10.1016/J.ENBENV.2023.12.002. | |
| dc.relation.references | Hegedus, Steven S., and Antonio Luque. 2003. “Status, Trends, Challenges and the Bright Future of Solar Electricity from Photovoltaics.” Pp. 1–43 in Handbook of Photovoltaic Science and Engineering. John Wiley & Sons, Ltd. | |
| dc.relation.references | Hochreiter, Sepp, and Jürgen Schmidhuber. 1997. “Long Short-Term Memory.” Neural Computation 9:1735–80. doi:10.1162/neco.1997.9.8.1735. | |
| dc.relation.references | Al Jassasi, Ibrahim S., Hilal S. Al Hashmi, Ali Al Humairi, Yusuf Bulale, Afzal Husain, Marwah Al-Azzawi, and Peter Jung. 2023. “Experimental Investigation of the Soiling Effect on the PV Systems Performance and the Cleaning Intervals in Oman.” Solar Energy Advances 3. doi:10.1016/j.seja.2023.100045. | |
| dc.relation.references | Jeong, Seon-Geun, Quang Vinh Do, and Won-Joo Hwang. 2023. “Short-Term Photovoltaic Power Forecasting Based on Hybrid Quantum Gated Recurrent Unit.” ICT Express. doi:https://doi.org/10.1016/j.icte.2023.12.005. | |
| dc.relation.references | Kosmopoulos, Panagiotis. 2024. “Solar Irradiance and Exploitation of the Sun’s Power.” Planning and Management of Solar Power from Space 1–20. doi:10.1016/B978-0-12-823390-0.00006-5. | |
| dc.relation.references | Lameirinhas, Ricardo A. Marques, João Paulo N. Torres, and João P. de Melo Cunha. 2022. “A Photovoltaic Technology Review: History, Fundamentals and Applications.” Energies 15(5):1–44. https://ideas.repec.org/a/gam/jeners/v15y2022i5p1823-d761979.html. | |
| dc.relation.references | Li, Zheng, Ruosi Xu, Xiaorui Luo, Xin Cao, Shenhui Du, and Hexu Sun. 2022. “Short-Term Photovoltaic Power Prediction Based on Modal Reconstruction and Hybrid Deep Learning Model.” Energy Reports 8:9919–32. doi:10.1016/J.EGYR.2022.07.176. | |
| dc.relation.references | Liang, Lu, Tiecheng Su, Yuxiang Gao, Fengren Qin, and Mingzhang Pan. 2023. “FCDT-IWBOA-LSSVR: An Innovative Hybrid Machine Learning Approach for Efficient Prediction of Short-to-Mid-Term Photovoltaic Generation.” Journal of Cleaner Production 385:135716. doi:https://doi.org/10.1016/j.jclepro.2022.135716. | |
| dc.relation.references | López, Andrea Ruíz, Alexandra Krumm, Lukas Schattenhofer, Thorsten Burandt, Felipe Corral Montoya, Nora Oberländer, and Pao Yu Oei. 2020. “Solar PV Generation in Colombia - A Qualitative and Quantitative Approach to Analyze the Potential of Solar Energy Market.” Renewable Energy 148:1266–79. doi:10.1016/J.RENENE.2019.10.066. | |
| dc.relation.references | Malvoni, Maria, Maria Grazia De Giorgi, and Paolo Maria Congedo. 2017. “Forecasting of PV Power Generation Using Weather Input Data-Preprocessing Techniques.” Pp. 651–58 in Energy Procedia. Vol. 126. Elsevier Ltd. | |
| dc.relation.references | Mejia, F., J. Kleissl, and J. L. Bosch. 2014. “The Effect of Dust on Solar Photovoltaic Systems.” Energy Procedia 49:2370–76. doi:10.1016/J.EGYPRO.2014.03.251. | |
| dc.relation.references | Memiche, Meriem, Chaima Bouzian, Ayoub Benzahia, and Ammar Moussi. 2020. “Effects of Dust, Soiling, Aging, and Weather Conditions on Photovoltaic System Performances in a Saharan Environment—Case Study in Algeria.” Global Energy Interconnection 3(1):60–67. doi:10.1016/J.GLOEI.2020.03.004. | |
| dc.relation.references | NASA POWER | API Pages. n.d. Retrieved May 3, 2025. https://power.larc.nasa.gov/api/pages/. | |
| dc.relation.references | Pastuszak, Justyna, and Paweł Węgierek. 2022. “Photovoltaic Cell Generations and Current Research Directions for Their Development.” Materials 15. doi:10.3390/ma15165542. | |
| dc.relation.references | Prado-Rujas, Ignacio-Iker, Antonio García-Dopico, Emilio Serrano, and María S. Pérez. 2021. “A Flexible and Robust Deep Learning-Based System for Solar Irradiance Forecasting.” IEEE Access 9:12348–61. doi:10.1109/ACCESS.2021.3051839. | |
| dc.relation.references | Saad, Basma, Asmaa El Hannani, Rahhal Errattahi, and Abdelhak Aqqal. 2022. “The Impact of Weather and Panel Characteristics Features on Photovoltaic Power Forecasting.” Materials Today: Proceedings 66:289–94. doi:https://doi.org/10.1016/j.matpr.2022.05.156. | |
| dc.relation.references | Sagheer, Usman, Sadeer Al-Kindi, Shady Abohashem, Colin T. Phillips, Jamal S. Rana, Aruni Bhatnagar, Martha Gulati, Sanjay Rajagopalan, and Dinesh K. Kalra. 2024. “Environmental Pollution and Cardiovascular Disease: Part 1 of 2: Air Pollution.” JACC: Advances 3(2):100805. doi:10.1016/J.JACADV.2023.100805. | |
| dc.relation.references | Sahin, Gökhan, Gültekin Isik, and Wilfried G. J. H. M. van Sark. 2023. “Predictive Modeling of PV Solar Power Plant Efficiency Considering Weather Conditions: A Comparative Analysis of Artificial Neural Networks and Multiple Linear Regression.” Energy Reports 10:2837–49. doi:https://doi.org/10.1016/j.egyr.2023.09.097. | |
| dc.relation.references | Vidyanandan, K. V. 2017a. “An Overview of Factors Affecting the Performance of Solar PV Systems.” Energy Scan (A House Journal of Corporate Planning, NTPC Ltd.) 27:2–8. | |
| dc.relation.references | Vidyanandan, K. V. 2017b. “An Overview of Factors Affecting the Performance of Solar PV Systems.” Energy Scan (A House Journal of Corporate Planning, NTPC Ltd.) 27:2–8. | |
| dc.rights.acceso | Abierto (Texto Completo) | |
| dc.rights.accessrights | OpenAccess | |
| dc.subject | Eficiencia energética en paneles solares | |
| dc.subject | Variables climatológicas | |
| dc.subject | Calidad del aire | |
| dc.subject | Irradiancia solar | |
| dc.subject | Machine learning | |
| dc.subject.keyword | Solar energy efficiency | |
| dc.subject.keyword | Weather variables | |
| dc.subject.keyword | Air quality | |
| dc.subject.keyword | Irradiance | |
| dc.subject.keyword | Machine learning | |
| dc.subject.lemb | Maestría en Ciencias de la Información y las Comunicaciones Metodología Investigación -- Tesis y disertaciones académicas | |
| dc.subject.lemb | Energía fotovoltaica -- Evaluación | |
| dc.subject.lemb | Calidad del aire | |
| dc.subject.lemb | Energía solar | |
| dc.subject.lemb | Redes neuronales (Computadores) | |
| dc.title | Modelo para evaluar el impacto que tienen las variables climatológicas y de calidad del aire, en la eficiencia de los paneles solares | |
| dc.title.titleenglish | A model for assessing the impact of weather and air quality on solar panel efficiency | |
| dc.type | masterThesis | |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
| dc.type.degree | Investigación-Innovación |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 7 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:
