Un Enfoque de Meta-Optimización para Resolver el Problema de Cobertura de Conjunto
No hay miniatura disponible
Fecha
Fecha
Director
Título de la revista
ISSN de la revista
Título del volumen
Editor
Universidad Distrital Francisco José de Caldas
Descripción
Contexto: En la industria los recursos son cada vez más escasos. Por esta razón debemos hacer un buen uso de ellos.Siendo las herramientas de optimización una buena alternativa que se debe tener presente. Un problema del mundo real lo contituye la ubicación de instalaciones siendo el Problema de Cobertura de Conjuntos uno de los modelos más utilizados. Nuestro interés, es encontrar alternativas de solución a este problema de la vida-real utilizando metaheuristicas.
Método: Uno de los principales problemas a que nos vemos enfrentados al utilizar metaheurísticas es la dificultad de realizar una correcta parametrización con el objetivo de encontrar buenas soluciones. Esta no es una tarea fácil, para lo cual nuestra propuesta es utilizar una metaheurística que permita proporcionar buenos parametros a otra metaheurstica que será la encargada de resolver el Problema de Cobertura de Conjuntos.
Resultados: Para probar nuestra propuesta, utilizamos el set de 65 instancias de OR-Library el cual además fue comparado con otros recientes algoritmos utilizados para resolver el Problema de Cobertura de Conjuntos.
Conclusiones: Nuestra propuesta a demostrado ser muy efectiva logrando producir soluciones de buena calidad evitando además que se tenga que invertir gran cantidad de tiempo en la parametrización de la metaheurística encargada de resolver el problema.
Context: In the industry the resources are increasingly scarce. For this reason, we must make a gooduse of it. Being the optimization tools, a good alternative that it is necessary to bear in mind. A realworldproblem is the facilities location being the Set Covering Problem, one of the most used models.Our interest, it is to find solution alternatives to this problem of the real-world using metaheuristics. Method: One of the main problems which we turn out to be faced on having used metaheuristic is thedifficulty of realizing a correct parametrization with the purpose to find good solutions. This is not aneasy task, for which our proposal is to use a metaheuristic that allows to provide good parameters toanother metaheuristics that will be responsible for resolving the Set Covering Problem. Results: To prove our proposal, we use the set of 65 instances of OR-Library which also was comparedwith other recent algorithms, used to solve the Set Covering Problem. Conclusions: Our proposal has proved to be very effective able to produce solutions of good qualityavoiding also have to invest large amounts of time in the parametrization of the metaheuristic responsiblefor resolving the problem.
Context: In the industry the resources are increasingly scarce. For this reason, we must make a gooduse of it. Being the optimization tools, a good alternative that it is necessary to bear in mind. A realworldproblem is the facilities location being the Set Covering Problem, one of the most used models.Our interest, it is to find solution alternatives to this problem of the real-world using metaheuristics. Method: One of the main problems which we turn out to be faced on having used metaheuristic is thedifficulty of realizing a correct parametrization with the purpose to find good solutions. This is not aneasy task, for which our proposal is to use a metaheuristic that allows to provide good parameters toanother metaheuristics that will be responsible for resolving the Set Covering Problem. Results: To prove our proposal, we use the set of 65 instances of OR-Library which also was comparedwith other recent algorithms, used to solve the Set Covering Problem. Conclusions: Our proposal has proved to be very effective able to produce solutions of good qualityavoiding also have to invest large amounts of time in the parametrization of the metaheuristic responsiblefor resolving the problem.