Identificación de emociones relacionadas al espacio geográfico a partir de datos de redes sociales y procesamiento de lenguaje natural

dc.contributor.advisorRocha Salamanca, Luz Angela
dc.contributor.advisorBonilla Huerfano, Johnatan Estiven
dc.contributor.authorOviedo Yate, Brayan Stiven
dc.contributor.orcidRocha Salamanca, Luz Angela [0000-0001-5274-4819]
dc.date.accessioned2025-10-28T17:50:35Z
dc.date.available2025-10-28T17:50:35Z
dc.date.created2025-09-29
dc.descriptionEl objetivo de este trabajo es identificar la distribución espacial de las emociones sobre el espacio geográfico en Colombia que tienen los usuarios de Twitter (X), haciendo uso de técnicas de Procesamiento de Lenguaje Natural (PLN) como el Reconocimiento de Entidades Nombradas (REN) y el Análisis de Emociones (AE), adaptándolas al español de Colombia, que, como mencionan autores como Mora et al. (2004) y Bonilla (2023) tiene una gran variación lingüística como distintos dialectos, hablas populares y formas diferentes de nombrar al espacio. Por ejemplo, el uso de distintas variantes de una palabra para referirse a localizaciones geográficas como “montaña”, “cerro”, “filo” o “peña”, o para referirse a emociones como “ativo”, “fachoso” o “acoquinado” son una muestra del desafío que representa realizar estudios de emociones sobre el espacio en el contexto colombiano con herramientas de PLN. Por consiguiente, la presente investigación desarrolla un flujo de trabajo teórico- metodológico que permite la identificación de emociones en tweets localizados basados en el contenido y los lugares que se menciona en los tweets. Para ello, se parte por la elaboración de dos corpus etiquetados: 1) un corpus con entidades de localización para Colombia con formas de referirse al espacio, topónimos y sobrenombres de Colombia, con 2000 frases, para realizar afinamiento sobre un modelo REN para detección de localizaciones; 2) un segundo corpus etiquetado con emociones sobre tweets que hacen referencia al espacio mediante las entidades extraídas por el modelo REN, con el que se realiza afinamiento de un modelo de AE basado en BERT. Estos modelos de lenguaje se integran a la investigación y se utilizan en la detección de entidades y emociones en un corpus de Twitter recolectado por Jimenez et al. (2018) y Rodriguez-Diaz et al. (2018), generando como resultado final una base de datos geolocalizada de alrededor de 3.800.000 tweets, con su respectiva clasificación de emociones y un mapa web que permite la visualización de estos, adicionalmente, se calcularon métricas de correlación espacial como el índice de Morán y densidades de Kernel. Se encontró una mejora en rendimiento de los modelos luego del proceso de afinamiento aplicado, para REN pasando de un 44% de exactitud a más del 90%, mientras que, para AE, se pasa de una exactitud de 41.72% a 72.66%. En cuanto al índice de Morán, se encuentra una correlación espacial positiva moderada (> 0.1), lo cual indica la no existencia de aleatoriedad espacial en la distribución de las emociones en Colombia. Los resultados de esta investigación serán recursos valiosos para investigadores enfocados en estudios relacionados al espacio geográfico, así como para planificadores urbanos y tomadores de decisiones que necesiten acceder a información subjetiva sobre las ciudades de Colombia de manera rápida, apoyándose en datos de redes sociales.
dc.description.abstractThe aim of this study is to explore the spatial distribution of emotions associated with geographic space in Colombia as expressed by Twitter (X) users. The research integrates Natural Language Processing (NLP) techniques—specifically Named Entity Recognition (NER) and Emotion Analysis (EA)—that have been adapted to Colombian Spanish, a variety characterized by strong regional and dialectal diversity (Mora et al., 2004; Bonilla, 2023). This linguistic heterogeneity poses significant challenges for computational approaches to emotion and place, given the range of expressions used to refer both to locations (e.g., montaña, cerro, filo, peña) and to emotional states (e.g., ativo, fachoso, acoquinado). To address these challenges, the study proposes a theoretical–methodological workflow for identifying emotions in geographically referenced tweets based on both their content and the places they mention. Two annotated corpora were developed: (1) a 2,000-sentence location corpus that includes place names, nicknames, and common spatial references in Colombia, used to fine-tune a NER model for place detection; and (2) a second corpus of emotion-labeled tweets linked to geographic entities extracted by the NER model, used to fine-tune a BERT-based emotion classifier. The fine-tuned language models were applied to a large Twitter dataset compiled by Jiménez et al. (2018) and Rodríguez-Díaz et al. (2018), producing a georeferenced database of approximately 3.8 million tweets classified by emotion. These results were integrated into an interactive web map for visualization, and further analyzed using spatial correlation metrics such as Moran’s I and Kernel density estimations. After fine-tuning, the NER model improved from 44% to over 90% accuracy, while the emotion classifier rose from 41.72% to 72.66%. The spatial autocorrelation results show a moderate positive relationship (Moran’s I > 0.1), suggesting that the spatial distribution of emotions in Colombia is not random. The findings provide valuable resources for researchers in geographic and linguistic studies, as well as for urban planners and decision-makers seeking rapid access to subjective, emotion-based insights about Colombian cities derived from social media data.
dc.format.mimetypepdf
dc.identifier.urihttp://hdl.handle.net/11349/99588
dc.language.isospa
dc.publisherUniversidad Distrital Francisco José de Caldas
dc.relation.referencesAbbasi, M. M., & Beltiukov, A. (2019). Summarizing Emotions from Text Using Plutchik’s Wheel of Emotions.
dc.relation.referencesAFINN Sentiment Lexicon. (n.d.). Http://Corpustext.Com/Reference/Sentiment_afinn.Html.
dc.relation.referencesAlmotiri, S. (2021). Twitter Sentiment Analysis during the Lockdown on New Zealand. In International Journal of Computer and Information Engineering (Vol. 15, Issue 12). https://www.researchgate.net/publication/357763391
dc.relation.referencesAlShammari, N., & AlMansour, A. (2022). Aspect-based Sentiment Analysis and Location Detection for Arabic Language Tweets. Applied Computer Systems, 27(2), 119–127. https://doi.org/10.2478/acss-2022-0013
dc.relation.referencesAlvarado, J. P. (2022). Herramienta-de-visualizacion-de-riesgo-de-pacientes-Covid-19-en-una-zona-urbana. Universidad de Chile.
dc.relation.referencesAmazon Web Services. (n.d.). What are Large Language Models? Https://Aws.Amazon.Com/What-Is/Large-Language-Model/.
dc.relation.referencesArcgis Experience Builder. (n.d.). Https://Www.Esri.Com/Es-Es/Arcgis/Products/Arcgis-Experience-Builder/Overview.
dc.relation.referencesAvendaño Arias, J. A. (2020). Bichas,Ganchos Y Territorios De La Droga En Bogotá: Toporrepresentaciones De Una Forma De Esclavitud. Revista Colombiana de Sociologia, 43(2), 129–155. https://doi.org/10.15446/rcs.v43n2.82880
dc.relation.referencesAvendaño, J. (2016). Representaciones territoriales de inseguridad, delincuencia y miedo en el espacio urbano de Bogotá : formas simbólicas de apropiación y vivencialidad de la ciudad.
dc.relation.referencesAvendaño, J. (2017). Representaciones socio-espaciales (toporrepresentaciones) de Bogotá: perspectivas de la (in)seguridad. Sociedad y Economía.
dc.relation.referencesAvendaño, J., Forero Jaime, Trujillo Maira, & Oviedo Brayan. (2017). BREVE GEOHISTORIA DE LOS ESPACIOS DEL MIEDO EN BOGOTÁ: DEL CARTUCHO AL BRONX. 1117–1132.
dc.relation.referencesBajjali, W. (2023). Geocoding. In ArcGIS Pro and ArcGIS Online: Applications in Water and Environmental Sciences (pp. 169–182). Springer International Publishing. https://doi.org/10.1007/978-3-031-42227-0_9
dc.relation.referencesBalaguer, A., Benara, V., Cunha, R. L. de F., Filho, R. de M. E., Hendry, T., Holstein, D., Marsman, J., Mecklenburg, N., Malvar, S., Nunes, L. O., Padilha, R., Sharp, M., Silva, B., Sharma, S., Aski, V., & Chandra, R. (2024). RAG vs Fine-tuning: Pipelines, Tradeoffs, and a Case Study on Agriculture. http://arxiv.org/abs/2401.08406
dc.relation.referencesBingnan Li, Zi Chen, & Samsung Lim. (2020). Geolocation Inference Using Twitter Data: A Case Study of COVID-19 in the Contiguous United State. In Geographical Information Systems Theory, Applications and Management (pp. 119–140).
dc.relation.referencesBonilla, J. E. (2023). Superdialects, Dialects and Subdialects of Colombian Spanish. Lexis (Peru), 47(2), 536–564. https://doi.org/10.18800/lexis.202302.002
dc.relation.referencesBonilla, J. E. (2024). tweet_col_new. Https://Huggingface.Co/Datasets/Johnatanebonilla/Tweet_col_new.
dc.relation.referencesBonilla, J. E., & Chávez, J. A. B. (2020). Modelamiento de una base de datos espacial para el Atlas Lingüístico-Etnográfico de Colombia. Revista Signos, 53(103), 346–368. https://doi.org/10.4067/S0718-09342020000200346
dc.relation.referencesBravo Márquez, F. (2023). Un recorrido por los modelos de lenguaje. Revista Bits de Ciencia, 25, 16–27.
dc.relation.referencesBrent Hecht, Lichan Hong, Bongwon Suh, & Ed Chi. (2011). Tweets from Justin Bieber’s Heart: The Dynamics of the “Location” Field in User Profiles. CHI ’11: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 237–246.
dc.relation.referencesButtimer, A. (1980). The Human Experience of Space and Place (A. Buttimer & D. Seamon, Eds.).
dc.relation.referencesChataway, M. L., Hart, T. C., Coomber, R., & Bond, C. (2017). The geography of crime fear: A pilot study exploring event-based perceptions of risk using mobile technology. Applied Geography, 86, 300–307. https://doi.org/10.1016/j.apgeog.2017.06.010
dc.relation.referencesChowdhary, K. R. (2020). Fundamentals of artificial intelligence. In Fundamentals of Artificial Intelligence. Springer India. https://doi.org/10.1007/978-81-322-3972-7
dc.relation.referencesCoNLL-U Format. (n.d.). Https://Universaldependencies.Org/Format.Html.
dc.relation.referencesDalvi, A., Shah, V., Gandhi, D., Shah, S., & Bhirud, S. G. (2022). Name Entity Recognition (NER) Based Drug Related Page Classification on Dark Web. 2022 International Conference on Trends in Quantum Computing and Emerging Business Technologies, TQCEBT 2022. https://doi.org/10.1109/TQCEBT54229.2022.10041261
dc.relation.referencesDavis, M. (2001). Control urbano, la ecología del miedo: más allá de Blade Runner.
dc.relation.referencesDelgado Viñas, C. (2016). PENSAR LAS CIUDADES DESDE LA GEOGRAFÍA. In PAISAJE, CULTURA TERRITORIAL Y VIVENCIA DE LA GEOGRAFÍA Libro homenaje al profesor Alfredo Morales Gil.
dc.relation.referencesDevlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. http://arxiv.org/abs/1810.04805
dc.relation.referencesDiaz, C., & Silva, Y. (2008). Comprensión de emociones secundarias: Amor y culpa, en niños de 6 a 8 años.
dc.relation.referencesEkman, P. (1992). An Argument for Basic Emotions. Cognition and Emotion, 6(3–4), 169–200. https://doi.org/10.1080/02699939208411068
dc.relation.referencesEllard, C. (2015). Places of the heart. The psycogeography of everyday life.
dc.relation.referencesEllard, C. (2016). Psicogeografía. La influencia de los lugares en la mente y en el corazón (1st ed.). Bellevue Literary Press.
dc.relation.referencesEssam, N., Moussa, A. M., Elsayed, K. M., Abdou, S., Rashwan, M., Khatoon, S., Hasan, M. M., Asif, A., & Alshamari, M. A. (2021). Location analysis for arabic covid-19 twitter data using enhanced dialect identification models. Applied Sciences (Switzerland), 11(23). https://doi.org/10.3390/app112311328
dc.relation.referencesFahey, E. A. (2023). BEYOND THE PICTURE: AN ANALYSIS OF EMOTIONAL ATTACHMENT IN RELATION TO MEANINGFUL NATURAL SPACES. University Of Wellington.
dc.relation.referencesFan, C., Wu, F., & Mostafavi, A. (2020). A Hybrid Machine Learning Pipeline for Automated Mapping of Events and Locations from Social Media in Disasters. IEEE Access, 8, 10478–10490. https://doi.org/10.1109/ACCESS.2020.2965550
dc.relation.referencesFernández Martínez, N. (2020). A LINGUISTICALLY-AWARE COMPUTATIONAL APPROACH TO MICROTEXT LOCATION DETECTION [Universidad de Granada]. http://hdl.handle.net/10481/64577iiACKNOWLEDGMENTS
dc.relation.referencesFernandez, R. (2023a). El uso de Internet a nivel mundial– Datos estadísticos. Https://Es.Statista.Com/Temas/9795/El-Uso-de-Internet-En-El-Mundo/#topicOverview.
dc.relation.referencesFernandez, R. (2023b). Número de usuarios mensuales de redes sociales a nivel mundial entre 2019 y 2028. Https://Es.Statista.Com/Estadisticas/512920/Numero-Mundial-Usuarios-Redes-Sociales/.
dc.relation.referencesFitriany, A. A., Flatau, P. J., Khoirunurrofik, K., & Riama, N. F. (2021). Assessment on the use of meteorological and social media information for forest fire detection and prediction in riau, indonesia. Sustainability (Switzerland), 13(20). https://doi.org/10.3390/su132011188
dc.relation.referencesFlórez, L., Montes Giraldo, J. J., Mora Monroy, S. C., Rodríguez de Montes, M. L., Figueroa Lorza, J., Lozano Ramírez, M., Ramírez Caro, R. A., Espejo Olaya, M. B., & Duarte Huertas, G. E. (1981). Atlas Lingüístico Etnográfico de Colombia /. Instituto Caro y Cuervo, [Litografía Arco].
dc.relation.referencesFrinkel, J., Grenader, T., & Manning, C. (2005). Incorporating Non-local Information into Information Extraction Systems by Gibbs Sampling. . Proceedings of the 43nd Annual Meeting of the Association for Computational Linguistics (ACL 2005), 363–370.
dc.relation.referencesGarcía-Díaz, J. A., Colomo-Palacios, R., & Valencia-García, R. (2021). UMUTeam at EmoEvalEs 2021: Emotion Analysis for Spanish based on Explainable Linguistic Features and Transformers.
dc.relation.referencesGarcía-Vega, M., Carlos Díaz-Galiano, M., García-Cumbreras, M. Á., Plaza Del Arco, F. M., Montejo-Ráez, A., María Jiménez-Zafra, S., Cámara, E. M., Aguilar, A., Antonio, M., Cabezudo, S., Chiruzzo, L., & Moctezuma, D. (2020). Overview of TASS 2020: Introducing Emotion Detection. https://www.ujaen.es/
dc.relation.referencesGarske, S. I., Elayan, S., Sykora, M., Edry, T., Grabenhenrich, L. B., Galea, S., Lowe, S. R., & Gruebner, O. (2021). Space-time dependence of emotions on twitter after a natural disaster. International Journal of Environmental Research and Public Health, 18(10). https://doi.org/10.3390/ijerph18105292
dc.relation.referencesgoogle developers. (n.d.). Introducción a los modelos de lenguaje grandes. Https://Developers.Google.Com/Machine-Learning/Resources/Intro-Llms?Hl=es-419#what_is_a_language_model.
dc.relation.referencesHan, B., Yepes, A. J., Mackinlay, A., & Chen, Q. (2014). Identifying Twitter Location Mentions. Proceedings of Australasian Language Technology Association Workshop, 157–162. https://online.justice.vic.gov.au/
dc.relation.referencesHaug, S. (2021). A Thirdspace approach to the ‘Global South’: insights from the margins of a popular category. Third World Quarterly, 42(9), 2018–2038. https://doi.org/10.1080/01436597.2020.1712999
dc.relation.referencesHauthal, E., Burghardt, D., & Dunkel, A. (2019). Analyzing and visualizing emotional reactions expressed by emojis in location-based social media. ISPRS International Journal of Geo-Information, 8(3). https://doi.org/10.3390/ijgi8030113
dc.relation.referencesHauthal, E., Dunkel, A., & Burghardt, D. (2021). Emojis as contextual indicants in location-based social media posts. ISPRS International Journal of Geo-Information, 10(6). https://doi.org/10.3390/ijgi10060407
dc.relation.referencesHonnibal, M., & Montani, I. (2017). spaCy 2: Natural language understanding with Bloom embeddings, convolutional neural networks and incremental parsing.
dc.relation.referencesHu, Y., Mai, G., Cundy, C., Choi, K., Lao, N., Liu, W., Lakhanpal, G., Zhou, R. Z., & Joseph, K. (2023). Geo-knowledge-guided GPT models improve the extraction of location descriptions from disaster-related social media messages. International Journal of Geographical Information Science, 37(11), 2289–2318. https://doi.org/10.1080/13658816.2023.2266495
dc.relation.referencesIguaran, J., Perez, J. M., & Rosati, G. (2024). Identification of emotions on Twitter during the 2022 electoral process in Colombia. https://openai.com/
dc.relation.referencesImran, M., Qazi, U., & Ofli, F. (2022). TBCOV: Two Billion Multilingual COVID-19 Tweets with Sentiment, Entity, Geo, and Gender Labels. Data, 7(1). https://doi.org/10.3390/data7010008
dc.relation.referencesInstituto Caro y Cuervo. (2017). Atlas Lingüístico Etnográfico de Colombia. Https://Alec.Caroycuervo.Gov.Co/Alec-Digital.Php. https://alec.caroycuervo.gov.co/alec-digital.php
dc.relation.referencesInstituto Geográfico Agustín Codazzi (IGAC). (n.d.). Diccionario geográfico de Colombia. Https://Diccionario.Igac.Gov.Co/.
dc.relation.referencesJiang, K., & Lu, X. (2020). Natural Language Processing and Its Applications in Machine Translation: A Diachronic Review. Proceedings of 2020 IEEE 3rd International Conference of Safe Production and Informatization, IICSPI 2020, 210–214. https://doi.org/10.1109/IICSPI51290.2020.9332458
dc.relation.referencesJimenez, S., Dueñas, G., Gelbukh, A., Rodriguez-Diaz, C., & Mancera, S. (2018). Automatic Detection of Regional Words for Pan-Hispanic Spanish on Twitter. Advances in Artificial Intelligence - IBERAMIA 2018 , 404–416.
dc.relation.referencesJyoti Gautam, M. A. N. M. A. B. R. N. S. A. G. (2021). Twitter Data Sentiment Analysis Using Naive Bayes Classifier and Generation of Heat Map for Analyzing Intensity Geographically. In Advances in Applications of Data-Driven Computing (pp. 129–141).
dc.relation.referencesKang, Y. (2023). Understanding Human Perception of Place with Geospatial Data Science.
dc.relation.referencesKang, Y., Abraham, J., Ceccato, V., Duarte, F., Gao, S., Ljungqvist, L., Zhang, F., Näsman, P., & Ratti, C. (2023). Assessing differences in safety perceptions using GeoAI and survey across neighbourhoods in Stockholm, Sweden. Landscape and Urban Planning, 236. https://doi.org/10.1016/j.landurbplan.2023.104768
dc.relation.referencesKang, Y., Zhang, F., Gao, S., Peng, W., & Ratti, C. (2021). Human settlement value assessment from a place perspective: Considering human dynamics and perceptions in house price modeling. Cities, 118. https://doi.org/10.1016/j.cities.2021.103333
dc.relation.referencesKaushal, R., & Chadha, R. (2022). State of the Art, Recent Developments, and Future Directions in Applying Deep Learning to Part of Speech Tagging in NLP. Proceedings - 2022 International Conference on Computational Modelling, Simulation and Optimization, ICCMSO 2022, 38–41. https://doi.org/10.1109/ICCMSO58359.2022.00021
dc.relation.referencesKim, S.-M., & Hovy, E. (2004). Determining the Sentiment of Opinions.
dc.relation.referencesKoliska, M., & Roberts, J. (2021). Space, Place, and the Self: Reimagining Selfies as Thirdspace. Social Media and Society, 7(2). https://doi.org/10.1177/20563051211027213
dc.relation.referencesKosonogov, V., De Zorzi, L., Honoré, J., Martínez-Velázquez, E. S., Nandrino, J. L., Martinez-Selva, J. M., & Sequeira, H. (2017). Facial thermal variations: A new marker of emotional arousal. PLoS ONE, 12(9). https://doi.org/10.1371/journal.pone.0183592
dc.relation.referencesLang, P. J. (1995). The Emotion Probe Studies of Motivation and Attention.
dc.relation.referencesLe Meur, C., Galliano, S., & Geoffrois, E. (2004). Conventions d’annotations en Entités Nommées. ESTER.
dc.relation.referencesLefebvre, H. (1974). La producción del espacio.
dc.relation.referencesLiddy, E. D. (2001). Natural Language Processing. https://surface.syr.edu/istpub
dc.relation.referencesLiu Zhiyuan and Sun, M. (2023). Representation Learning and NLP. In Y. and S. M. Liu Zhiyuan and Lin (Ed.), Representation Learning for Natural Language Processing (pp. 1–27). Springer Nature Singapore. https://doi.org/10.1007/978-981-99-1600-9_1
dc.relation.referencesLubang, J. A., Cruz, D., Arleth Dela Cruz, J., Hendrickx, I., & Larson, M. (2023). Understanding Fine-tuned BERT Models for Flood Location Extraction on Twitter Data. MediaEval’22: Multimedia Evaluation Workshop. http://ceur-ws.org
dc.relation.referencesLynch, K. (1960). La imagen de la ciudad.
dc.relation.referencesMao, H., Thakur, G., Sparks, K., Sanyal, J., & Bhaduri, B. (2019). Mapping near-real-time power outages from social media. International Journal of Digital Earth, 12(11), 1285–1299. https://doi.org/10.1080/17538947.2018.1535000
dc.relation.referencesMaría Jiménez-Zafra, S., Rangel, F., & Montes-Y-Gómez, M. (2023). Overview of IberLEF 2023: Natural Language Processing Challenges for Spanish and other Iberian Languages. http://ceur-ws.org
dc.relation.referencesMartinez, M. (2022). MÉTODOS EFICACES DE BÚSQUEDA Y CORRECCIÓN DE DIRECCIONES DE PACIENTES COVID-19. Universidad de Chile.
dc.relation.referencesMedhat, W., Hassan, A., & Korashy, H. (2014). Sentiment analysis algorithms and applications: A survey. Ain Shams Engineering Journal, 5(4), 1093–1113. https://doi.org/10.1016/j.asej.2014.04.011
dc.relation.referencesMelita Cruces, L. A. (2024). EVALUACIÓN DEL USO DE FINE-TUNING EN MODELOS DE LENGUAJE GRANDE COMO HERRAMIENTA DE APRENDIZAJE AJUSTADA A LAS ÁREAS DE FÍSICA Y MATEMÁTICAS EN LA EDUCACIÓN [Universidad de Concepción]. https://repositorio.udec.cl/server/api/core/bitstreams/68a9279d-bd26-49da-993d-86c0cd572d0f/content
dc.relation.referencesMerayo, N., Ayuso-Lanchares, A., & Gonzalez-Sanguino, C. (2025). Revealing Emotional Insights from Mental Health Discussions on Instagram and TikTok Using BERT Models. IEEE Transactions on Affective Computing. https://doi.org/10.1109/TAFFC.2025.3568074
dc.relation.referencesMeskó, B. (2023). Prompt Engineering as an Important Emerging Skill for Medical Professionals: Tutorial. Journal of Medical Internet Research, 25(1). https://doi.org/10.2196/50638
dc.relation.referencesMeta AI. (2024). LLaMA 3 8B. In https://ai.meta.com/llama.
dc.relation.referencesMiranker, M., & Giordano, A. (2020). Text mining and semantic triples: Spatial analyses of text in applied humanitarian forensic research. Digital Geography and Society, 1. https://doi.org/10.1016/j.diggeo.2020.100005
dc.relation.referencesMishra, P. (2020). Geolocation of Tweets with a BiLSTM Regression Model. Proceedings Ofthe 7th VarDial Workshop on NLP for Similar Languages, Varieties and Dialects, 283–289.
dc.relation.referencesMolina-Villegas, A., Muñiz-Sanchez, V., Arreola-Trapala, J., & Alcántara, F. (2021). Geographic Named Entity Recognition and Disambiguation in Mexican News using word embeddings. Expert Systems with Applications, 176. https://doi.org/10.1016/j.eswa.2021.114855
dc.relation.referencesMora, S., Lozano, M., Ramirez, R., Espejo, M., & Duarte, G. (2004). Caracterización léxica de los dialectos del español de Colombia según el «ALEC». Instituto Caro y Cuervo.
dc.relation.referencesMoreno-Jiménez, L. G., & Torres-Moreno, J. M. (2020). Lisss: A new multi-annotated multi-emotion corpus of literary spanish sentences. Computacion y Sistemas, 24(3), 1139–1147. https://doi.org/10.13053/CYS-24-3-3474
dc.relation.referencesMossad, N., Mohamed, Y., Fares, A., & Zaky, A. B. (2024). Arabic text sentiment analysis and emotion classification using transformers. 131–137. https://doi.org/10.1109/jac-ecc61002.2023.10479609
dc.relation.referencesMunezero, M., Montero, C. S., Sutinen, E., & Pajunen, J. (2014). Are they different? affect, feeling, emotion, sentiment, and opinion detection in text. IEEE Transactions on Affective Computing, 5(2), 101–111. https://doi.org/10.1109/TAFFC.2014.2317187
dc.relation.referencesMuñoz-Basols, J., Palomares Marín, M. D. M., & Moreno Fernández, F. (2024). The Digital Linguistic Bias (DLB) in Artificial Intelligence: Implications for Large Language Models in Spanish. Lengua y Sociedad, 23(2), 623–647. https://doi.org/10.15381/lengsoc.v23i2.28665
dc.relation.referencesNaciones Unidas. (2018). La Agenda 2030 y los Objetivos de Desarrollo Sostenible: una oportunidad para América Latina y el Caribe. www.issuu.com/publicacionescepal/stacks
dc.relation.referencesNielsen, F. Å. (2011). A new ANEW: Evaluation of a word list for sentiment analysis in microblogs. http://arxiv.org/abs/1103.2903
dc.relation.referencesNothman, J., Ringland, N., Radford, W., Murphy, T., & Curran, J. R. (2013). Learning multilingual named entity recognition from Wikipedia. Artificial Intelligence, 194, 151–175. https://doi.org/10.1016/j.artint.2012.03.006
dc.relation.referencesOlmos López, A. (2023). Recognition of Named Entities in Spanish Legal Texts. Universidad Complutense de Madrid.
dc.relation.referencesOpen Geospatial Consortium. (2001). OGC Geocoding Service Specification (OGC 01-026r1). Https://Portal.Ogc.Org/Files/?Artifact_id=1031.
dc.relation.referencesOpenAI. (n.d.). What are tokens and how to count them? Https://Help.Openai.Com/En/Articles/4936856-What-Are-Tokens-and-How-to-Count-Them.
dc.relation.referencesOsorio, J. (2014). CODIFICACIÓN AUTOMATIZADA DE EVENTOS A PARTIR DE TEXTO ESCRITO EN ESPAÑOL.
dc.relation.referencesOwusu, C., Lan, Y., Zheng, M., & Delmelle, E. (2018). Geocoding Fundamentals and Associated Challenges. In H. Karimi & B. Karimi (Eds.), Geospatial Data Science Techniques and Applications (pp. 40–62).
dc.relation.referencesOyana, & Tonny J. (2021). Spatial Analysis with R Statistics, Visualization, and Computational Methods Second Edition (Segunda edicion).
dc.relation.referencesPan, R., García-Díaz, J. A., Rodríguez-García, M. Á., & Valencia-García, R. (2024). Spanish MEACorpus 2023: A multimodal speech–text corpus for emotion analysis in Spanish from natural environments. Computer Standards and Interfaces, 90. https://doi.org/10.1016/j.csi.2024.103856
dc.relation.referencesPelias. (n.d.). Pelias. Https://Pelias.Io/.
dc.relation.referencesPeña, T. (2013). Análisis de imaginarios y percepciones asociados a fenómenos naturales para una adecuada gestión del riesgo.
dc.relation.referencesPenagos, D. (2022). Modelado de temas y analisis de sentimientos utilizando inteligencia artificial. Universidad Distrital Francisco José de Caldas.
dc.relation.referencesPérez, J. M., Rajngewerc, M., Giudici, J. C., Furman, D. A., Luque, F., Alemany, L. A., & Martínez, M. V. (2021). pysentimiento: A Python Toolkit for Opinion Mining and Social NLP tasks. http://arxiv.org/abs/2106.09462
dc.relation.referencesPerozo, N., Gonzalez, G., Rodriguez, L., & Torrejon, H. (2024). Analysis of Emotions on Twitter(X) Through MASOES Affective Model. Proceedings - 2024 50th Latin American Computing Conference, CLEI 2024. https://doi.org/10.1109/CLEI64178.2024.10700082
dc.relation.referencesPhillips, A., Canters, F., & Khan, A. Z. (2022). Analyzing spatial inequalities in use and experience of urban green spaces. Urban Forestry and Urban Greening, 74. https://doi.org/10.1016/j.ufug.2022.127674
dc.relation.referencesPlaza-Del-Arco, F. M., Strapparava, C., Ureña, L. A., Ureña-López, U., & Martín-Valdivia, M. T. (2020). EmoEvent: A Multilingual Emotion Corpus based on different Events. https://www.tweepy.org/
dc.relation.referencesPlutchik-wheel es.svg . (n.d.). Https://Es.m.Wikipedia.Org/Wiki/Archivo:Plutchik-Wheel_es.Svg#filelinks.
dc.relation.referencesRajarshi SinhaRoy. (2021). A Study on the journey of Natural Language Processing models: from Symbolic Natural Language Processing to Bidirectional Encoder Representations from Transformers. International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 331–345. https://doi.org/10.32628/cseit217688
dc.relation.referencesRen Yebing and Li, W. and L. W. and D. J. and C. Y. and X. S. (2021). Geocoding Accelerated Approach to Estimate the Sensor Coverage Ratio of Internet of Things. In L. and Y. Y. and Z. J. Wang Yue and Xu (Ed.), Signal and Information Processing, Networking and Computers (pp. 817–826). Springer Singapore.
dc.relation.referencesResch, B., Summa, A., Zeile, P., & Strube, M. (2016). Citizen-centric urban planning through extracting emotion information from twitter in an interdisciplinary space-time-linguistics algorithm. Urban Planning, 1(2), 114–127. https://doi.org/10.17645/up.v1i2.617
dc.relation.referencesRoberts, H., Resch, B., Sadler, J., Chapman, L., Petutschnig, A., & Zimmer, S. (2018). Investigating the emotional responses of individuals to urban green space using twitter data: A critical comparison of three different methods of sentiment analysis. Urban Planning, 3(1), 21–33. https://doi.org/10.17645/up.v3i1.1231
dc.relation.referencesRobles, D. (2022). Extracción de contexto geográfico a partir de NLP para información de tránsito en redes sociales.
dc.relation.referencesRocha, L. A., Bonilla, J., Bernal, J., Duarte, C., & Rodriguez, A. (2017). Design and implementation of the web Linguistic and Ethnographic Atlas of Colombia. https://doi.org/10.5194/ica-proc-1-96-2017
dc.relation.referencesRodriguez-Diaz, C. A., Jimenez, S., Dueñas, G., Bonilla, J. E., & Gelbukh, A. (2018). Dialectones: Finding statistically significant dialectal boundaries using twitter data. Computacion y Sistemas, 22(4), 1213–1222. https://doi.org/10.13053/CyS-22-4-3104
dc.relation.referencesRojas-Galeano, S. (2024). Zero-Shot Spam Email Classification Using Pre-trained Large Language Models. https://doi.org/10.1007/978-3-031-74595-9_1
dc.relation.referencesRussell, J. A. (2003). Core Affect and the Psychological Construction of Emotion. Psychological Review, 110(1), 145–172. https://doi.org/10.1037/0033-295X.110.1.145
dc.relation.referencesSalazar, D. (2025). Modelo de clasificación automática de texto en idioma indígena Wayuunaiki que incorpora características gramaticales. Univerisidad Distrital Francisco Jose de Caldas.
dc.relation.referencesSalmerón-Ríos, A., García-Díaz, J. A., Pan, R., & Valencia-García, R. (2024). Fine grain emotion analysis in Spanish using linguistic features and transformers. PeerJ Computer Science, 10. https://doi.org/10.7717/PEERJ-CS.1992
dc.relation.referencesSandagiri, S. P. C. W., Kumara, B. T. G. S., & Kuhaneswaran, B. (2020). Detecting crime related twitter posts using artificial neural networks based approach. 20th International Conference on Advances in ICT for Emerging Regions, ICTer 2020 - Proceedings, 95–100. https://doi.org/10.1109/ICTer51097.2020.9325485
dc.relation.referencesSanjaya, H., Kusrini, K., Yuana, K. A., Setyanto, A., Artha Agastya, I. M., Marotta, S. M., & Martínez Salio, J. R. (2025). FOREST FIRE LOCATION AND TIME RECOGNITION IN SOCIAL MEDIA TEXT USING XLM-ROBERTA. JITK (Jurnal Ilmu Pengetahuan Dan Teknologi Komputer), 10(4), 749–758. https://doi.org/10.33480/jitk.v10i4.6194
dc.relation.referencesSantis, H., & Gangas, M. (2004). La aproximación humanística en Geografía. Revista de Geografía Norte Grande, 31, 31–52. www.xfer.com/entry/609615
dc.relation.referencesSavci, P., & Das, B. (2024). Structured Named Entity Recognition (NER) in Biomedical Texts Using Pre-Trained Language Models. 2024 12th International Symposium on Digital Forensics and Security (ISDFS), 1–5. https://doi.org/10.1109/ISDFS60797.2024.10527329
dc.relation.referencesSerere, H. N., & Resch, B. (2023). Syntactical Text Analysis to Disambiguate between Twitter Users’ In-situ and Remote Location. GeoExT 2023: First International Workshop on Geographic Information Extraction from Texts at ECIR 2023. https://spacy.io/
dc.relation.referencesSerere, H. N., Resch, B., Havas, C. R., & Petutschnig, A. (2021). Extracting and Geocoding Locations in Social Media Posts: A Comparative Analysis. GI_Forum, 9(2), 167–173. https://doi.org/10.1553/giscience2021_02_s167
dc.relation.referencesShouse, E. (2005). Feeling, Emotion, Affect. M/C Journal, 8(6).
dc.relation.referencesSimanjuntak, L. F., Mahendra, R., & Yulianti, E. (2022). We Know You Are Living in Bali: Location Prediction of Twitter Users Using BERT Language Model. Big Data and Cognitive Computing, 6(3). https://doi.org/10.3390/bdcc6030077
dc.relation.referencesSociedad Española de Procesamiento de Lenguaje Natural. (2020). TASS 2020 Workshop on Semantic Analysis at SEPLN 2020. Http://Tass.Sepln.Org/2020/.
dc.relation.referencesSoja, E. (1996). Thirdspace: Journeys to Los Angeles and Other Real-and-Imagined Places (1st ed.).
dc.relation.referencesSossa, V. S. M., & Guzmán, E. L. (2023). Supervised Fine-Grained Entity Recognition Model for Legal Documents in Spanish. 4th International Conference on Electrical, Communication and Computer Engineering, ICECCE 2023. https://doi.org/10.1109/ICECCE61019.2023.10441921
dc.relation.referencesSpacy Documentation. (n.d.). Https://Spacy.Io/Models/Es.
dc.relation.referencesStanford NLP Group. (n.d.). Named Entity Recognizer. Https://Stanfordnlp.Github.Io/CoreNLP/Tools_crf_ner.Html#spanish.
dc.relation.referencesStock, K., Jones, C. B., Russell, S., Radke, M., Das, P., & Aflaki, N. (2022). Detecting geospatial location descriptions in natural language text. International Journal of Geographical Information Science, 36(3), 547–584. https://doi.org/10.1080/13658816.2021.1987441
dc.relation.referencesSuat-Rojas, N. (2021). Extracción y análisis de información de accidentes de tránsito desde redes sociales.
dc.relation.referencesSuat-Rojas, N., Gutierrez-Osorio, C., & Pedraza, C. (2022). Extraction and Analysis of Social Networks Data to Detect Traffic Accidents. Information (Switzerland), 13(1). https://doi.org/10.3390/info13010026
dc.relation.referencesSubgerencia Cultural del Banco de la República. (n.d.). Ciudades de Colombia: sobrenombres. Https://Enciclopedia.Banrepcultural.Org/Index.Php?Title=Ciudades_de_Colombia:_sobrenombres.
dc.relation.referencesSuleman, M., Asif, M., Zamir, T., Mehmood, A., Khan, J., Ahmad, N., & Ahmad, K. (2023, December 31). Floods Relevancy and Identification of Location from Twitter Posts using NLP Techniques. MediaEval’22: Multimedia Evaluation Workshop. http://arxiv.org/abs/2301.00321
dc.relation.referencesTan, M. J., & Guan, C. H. (2021). Are people happier in locations of high property value? Spatial temporal analytics of activity frequency, public sentiment and housing price using twitter data. Applied Geography, 132. https://doi.org/10.1016/j.apgeog.2021.102474
dc.relation.referencesTangarife Patiño, A. M. (2024). Modelo semántico y computacional para análisis del conflicto armado en Colombia. Universitat Pompeu Fabra.
dc.relation.referencesTenzer, M., & Schofield, J. (2023). Using Topic Modelling to Reassess Heritage Values from a People-centred Perspective: Applications from the North of England. Cambridge Archaeological Journal. https://doi.org/10.1017/S0959774323000203
dc.relation.referencesThrift, N. (2008). Space: The Fundamental Stuff of Human Geography Definition. In Key Concepts in Geography (pp. 95–107).
dc.relation.referencesTibaduiza, O. (2009). LA CONSTRUCCIÓN DEL CONCEPTO DE ESPACIO GEOGRÁFICOA PARTIR DELCOMPORTAMIENTO Y LA PERCEPCIÓN. Tiempo y Espacio, 23, 25–44.
dc.relation.referencesTran, L. (2025). LARGE LANGUAGE MODELs - Frequently Asked Questions. Https://Bookdown.Org/Tranhungydhcm/Mybook/#.
dc.relation.referencesTuan, Y. F. (1974). Topofilia Un estudio sobre percepciones, actitudes y valores medioambientales.
dc.relation.referencesUN-Habitat. (2022). Envisaging the Future of Cities.
dc.relation.referencesUnidad Administrativa Especial de Catastro Distrital. (n.d.). Ideca - La Infraestructura de Datos Espaciales de Bogotá. Https://Www.Ideca.Gov.Co/. Retrieved June 14, 2025, from https://www.ideca.gov.co/
dc.relation.referencesVaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polosukhin, I. (2017). Attention Is All You Need. http://arxiv.org/abs/1706.03762
dc.relation.referencesVera, D. (2021). GSI-UPM at IberLEF2021: Emotion Analysis of Spanish Tweets by Fine-tuning the XLM-RoBERTa Language Model. https://github.
dc.relation.referencesWallgrün, J. O., Karimzadeh, M., MacEachren, A. M., & Pezanowski, S. (2018). GeoCorpora: building a corpus to test and train microblog geoparsers. International Journal of Geographical Information Science, 32(1), 1–29. https://doi.org/10.1080/13658816.2017.1368523
dc.relation.referencesWang, J., Hu, Y., & Joseph, K. (2020). NeuroTPR: A neuro-net toponym recognition model for extracting locations from social media messages. Transactions in GIS, 24(3), 719–735. https://doi.org/10.1111/tgis.12627
dc.relation.referencesWang Jindong and Chen, Y. (2023). Pre-Training and Fine-Tuning. In Introduction to Transfer Learning: Algorithms and Practice (pp. 125–140). Springer Nature Singapore. https://doi.org/10.1007/978-981-19-7584-4_8
dc.relation.referencesWisniewski, P., Badillo-Urquiola, K., Ashtorab, Z., & Vitak, J. (2020). Happiness and Fear. ACM Transactions on Social Computing, 3(4), 1–25. https://doi.org/10.1145/3414825
dc.relation.referencesWNUT_17. (n.d.). Https://Huggingface.Co/Datasets/Wnut_17.
dc.relation.referencesXu, S., Li, S., & Huang, W. (2020). A spatial-temporal-semantic approach for detecting local events using geo-social media data. Transactions in GIS, 24(1), 142–173. https://doi.org/10.1111/tgis.12589
dc.relation.referencesYanti, R. M., Santoso, I., & Suadaa, L. H. (2021). Application of Named Entity Recognition via Twitter on SpaCy in Indonesian (Case Study: Power Failure in the Special Region of Yogyakarta). In Indonesian Journal of Information Systems (IJIS) (Vol. 4, Issue 1).
dc.relation.referencesYong, Y. F., Tan, C. K., Tan, I. K. T., & Tan, S. W. (2024). Kernel density-based radio map optimization using human trajectory for indoor localization. Journal of Ambient Intelligence and Humanized Computing, 15(11), 3745–3757. https://doi.org/10.1007/s12652-024-04850-7
dc.relation.referencesZhan, T., Shi, C., Shi, Y., Li, H., & Lin, Y. (n.d.). Optimization Techniques for Sentiment Analysis Based on LLM (GPT-3).
dc.rights.accesoAbierto (Texto Completo)
dc.rights.accessrightsOpenAccess
dc.subjectAnálisis de emociones
dc.subjectEspañol de Colombia
dc.subjectProcesamiento de lenguaje natural
dc.subjectReconocimiento de entidades nombradas
dc.subjectEspacio geográfico
dc.subject.keywordEmotion Analysis
dc.subject.keywordColombian Spanish
dc.subject.keywordNatural Language Processing
dc.subject.keywordNamed Entity Recognition
dc.subject.keywordGeographic Space
dc.subject.lembMaestría en Ciencias de la Información y las Comunicaciones Metodología Investigación -- Tesis y disertaciones académicas
dc.subject.lembProceso en lenguaje natural (Informática)
dc.subject.lembRedes sociales
dc.subject.lembEmociones
dc.subject.lembLenguaje
dc.titleIdentificación de emociones relacionadas al espacio geográfico a partir de datos de redes sociales y procesamiento de lenguaje natural
dc.title.titleenglishIdentifying Emotions Related to Geographic Space through Social Media Data and Natural Language Processing
dc.typemasterThesis
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.degreeInvestigación-Innovación
dc.type.driverinfo:eu-repo/semantics/masterThesis

Archivos

Bloque original

Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
OviedoYateBrayanStiven2025.pdf
Tamaño:
2.61 MB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
Licencia de uso y publicacion.pdf
Tamaño:
144.64 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
7 KB
Formato:
Item-specific license agreed upon to submission
Descripción: