Extracting classification rules from an informatic security incidents repository by genetic programming
No hay miniatura disponible
Fecha
Fecha
Director
Título de la revista
ISSN de la revista
Título del volumen
Editor
Universidad Distrital Francisco José de Caldas. Colombia
Descripción
This paper describes the data mining process to obtain classification rules over an information security incident data collection, explaining in detail the use of genetic programming as a mean to model the incidents behavior and representing such rules as decision trees. The described mining process includes several tasks, such as the GP (Genetic Programming) approach evaluation, the individual's representation and the algorithm parameters tuning to upgrade the performance. The paper concludes with the result analysis and the description of the rules obtained, suggesting measures to avoid the occurrence of new informatics attacks. This paper is a part of the thesis work degree: Information Security Incident Analytics by Data Mining for Behavioral Modeling and Pattern Recognition (Carvajal, 2012).
En este artículo se describe la obtención de reglas de clasificación sobre una colección de datos de incidentes de seguridad informática en un proceso de minería de datos, detallando el uso de la programación genética como un medio para modelar el comportamiento de los incidentes y representar las reglas en árboles de decisión. El proceso de extracción descrito incluye varios puntos, como la evaluación del enfoque de programación genética, la forma de representar a los individuos y la afinación de los parámetros del algoritmo para elevar el rendimiento. Se concluye con un análisis de los resultados y la descripción de las reglas obtenidas, considerando las posibles soluciones para minimizar la ocurrencia de los ataques informáticos. El artículo se basa en una parte de la tesis de grado Análisis de Incidentes de Seguridad Informática Mediante Minería de Datos, para Modelado de Comportamiento y Reconocimiento de Patrones (Carvajal, 2012).
En este artículo se describe la obtención de reglas de clasificación sobre una colección de datos de incidentes de seguridad informática en un proceso de minería de datos, detallando el uso de la programación genética como un medio para modelar el comportamiento de los incidentes y representar las reglas en árboles de decisión. El proceso de extracción descrito incluye varios puntos, como la evaluación del enfoque de programación genética, la forma de representar a los individuos y la afinación de los parámetros del algoritmo para elevar el rendimiento. Se concluye con un análisis de los resultados y la descripción de las reglas obtenidas, considerando las posibles soluciones para minimizar la ocurrencia de los ataques informáticos. El artículo se basa en una parte de la tesis de grado Análisis de Incidentes de Seguridad Informática Mediante Minería de Datos, para Modelado de Comportamiento y Reconocimiento de Patrones (Carvajal, 2012).