COMPUTATION OF EFFECTIVE PROPERTIES IN TWO-PHASE PIEZOCOMPOSITES WITH A RECTANGULAR PERIODIC ARRAY
Fecha
Autor corporativo
Título de la revista
ISSN de la revista
Título del volumen
Editor
Universidad Distrital Francisco José de Caldas
Compartir
Director
Altmetric
Resumen
Descripción
Based on the Asymptotic Homogenization Method, the electromechanical global behavior of a two-phase piezoelectric unidirectional periodic fibrous composite is investigated. The composite is made of homogeneous and linear transversely isotropic piezoelectric materials that belong to the symmetry crystal class 622. The cross-sections of the fibers are circular and are centered in a periodic array of rectangular cells. The composite state is anti-plane shear piezoelectric. Local problems that arise from the two-scale analysis using the Asymptotic Homogenization Method are solved by means of a complex variable, leading to an infinite system of algebraic linear equations. This infinite system is solved here using different truncation orders, allowing a numerical study of the effective properties. Some numerical examples are shown.
Palabras clave
Periodic composites, asymptotic homogenization method, effective properties, infinite systems.
