Descripción histológica del cerebro y órganos sensoriales del milpiés neotropical Pycnotropis sp. (Polydesmida: Aphelidesmidae)
| dc.contributor.advisor | García García, Alexander | |
| dc.contributor.author | Payares Castro, Luisa Fernanda | |
| dc.contributor.orcid | García García, Alexander [0000-0001-9905-003X] | |
| dc.date.accessioned | 2025-09-18T16:22:05Z | |
| dc.date.available | 2025-09-18T16:22:05Z | |
| dc.date.created | 2025-08-22 | |
| dc.description | Los milpiés son componentes clave en los ecosistemas terrestres, que participan activamente en la descomposición de materia orgánica en el suelo, y se distribuyen en gran parte de los bosques tropicales y neotropicales. Sin embargo, parte de su biología es escasa o fragmentaria, y requiere revisión, en especial los aspectos de su neurobiología. Las investigaciones del SN en miriápodos, particularmente aquellas que involucran órganos sensoriales resultan ser importantes desde una perspectiva ecológica como evolutiva, ya que brindan información neuroanatómica comparativa, y permiten identificar aspectos característicos propios de cada grupo. Por lo tanto, el presente estudio se centra en la descripción del cerebro y los órganos sensoriales de la especie de milpiés neotropical aquí corroborada, Pycnotropis taenia (Aphelidesmidae). En la presente investigación se examina detalladamente la estructura y elementos que conforman el cerebro de este milpiés mediante una tinción de hematoxilina y eosina. Además, se caracterizan tipológicamente las sensilas antenales usando microscopia electrónica de barrido. Las observaciones realizadas permitieron identificar un cerebro pequeño y compacto, con tres nuerómeros cerebrales sin separación clara, siendo el protocerebro el neurómero más prominente. Una organización de corteza y neuropilo característicos, y algunos neuropilos asociados como cuerpos pedunculados y glómerulos olfatorios. Así mismo, se distinguieron agrupaciones de células globulares típicas en el cerebro Myriapoda. El análisis a nivel sensilar permitió distinguir siete tipos de sensilas (incluyendo subtipos) en las antenas. Además, se sugiere la división en dos subtipos para las sensilas tricoideas y se describen las variaciones particulares para la especie, incluyendo una terminación dentada del cono apical. Este estudio pionero sirve como base para futuras investigaciones con técnicas de inmunotinción robustas y destaca la necesidad de emplear a los milpiés como modelos neurobiológicos, aún poco explorados. | |
| dc.description.abstract | Millipedes are key components of terrestrial ecosystems, actively participating in the decomposition of organic matter in soil and distributed across much of tropical and neotropical forests. However, aspects of their biology remain scarce or fragmented, requiring further revision, particularly in their neurobiology. Research on the nervous system (NS) in myriapods especially studies involving sensory organs is significant from both ecological and evolutionary perspectives, as it provides comparative neuroanatomical data and helps identify group-specific characteristics. Therefore, this study focuses on describing the brain and sensory organs of the neotropical millipede species Pycnotropis taenia (Aphelidesmidae), here taxonomically confirmed. We examine in detail the brain structure and its components using hematoxylin and eosin staining. Additionally, we characterize antennal sensilla typologically through scanning electron microscopy. Our observations revealed a small, compact brain with three cerebral neuromeres lacking clear separation, where the protocerebrum is the most prominent. The brain exhibits a characteristic cortex-neuropil organization, along with associated neuropils such as mushroom bodies and olfactory glomeruli. Furthermore, typical globular cell clusters, common in Myriapoda brains, were identified. At the sensillar level, seven types of sensilla (including subtypes) were distinguished on the antennae. Notably, we propose a subdivision of trichoid sensilla into two subtypes and describe species-specific variations, including a serrated termination of the apical cone. This pioneering study establishes a foundation for future research using robust immunostaining techniques and underscores the need to further explore millipedes as understudied neurobiological models. | |
| dc.format.mimetype | ||
| dc.identifier.uri | http://hdl.handle.net/11349/99036 | |
| dc.language.iso | spa | |
| dc.publisher | Universidad Distrital Francisco José de Caldas | |
| dc.relation.references | Abreu, S. F., Avila, J. J. R., Cuervo, A. M. G., & García, A. G. (2020). Histología del complejo óptico y cerebro de Eusembrinella (Townsend, 1931) (Diptera: Calliphoridae). Boletín de la SEA, (67), 211-216. | |
| dc.relation.references | Almeida, D. E., Bueno-Villegas, J., & Rafael, J. A. (2021). Taxonomic review of the millipede genus Haematotropis Jeekel, 2000 (Diplopoda, Polydesmida, Aphelidesmidae, Aphelidesminae) with descriptions of thirteen new species. Zootaxa, 5064(1), 1-71. | |
| dc.relation.references | Altner H, Prillinger L (1980) Ultrastructure of invertebrate chemo-, thermo-, and hygroreceptors and its functional significance. International Review of Cytology 67: 69–139. | |
| dc.relation.references | Altner, H., Sass, H., & Altner, I. (1977). Relationship between structure and function of antennal chemo-, hygro-, and thermoreceptive sensilla in Periplaneta americana. Cell and Tissue Research, 176(3), 389-405. | |
| dc.relation.references | Ambarish, C. N., & Sridhar, K. R. (2015). Diurnal periodicity of three giant pill-millipedes (Sphaerotheriida: Arthrosphaera) of the Western Ghats: An ex situ study. J. Trop. Asian Entomol, 4, 1-10. | |
| dc.relation.references | Ansenne, A., Compère, P., & Goffinet, G. (1990). Ultrastructural organization and chemical composition of the mineralized cuticle of Glomeris marginata (Myriapoda, Diplopoda). In A. Minelli (Ed.), Proceedings of the 7th International Congress of Myriapodology (pp. 125–134). Brill. | |
| dc.relation.references | Aso, Y., Hattori, D., Yu, Y., Johnston, R. M., Iyer, N. A., Ngo, T. T., ... & Rubin, G. M. (2014). The neuronal architecture of the mushroom body provides a logic for associative learning. elife, 3, e04577. | |
| dc.relation.references | Bachmann, L., Tomiuk, J., Adis, J., & Vohland, K. (1998). Genetic differentiation of the millipede Pycnotropis epiclysmus inhabiting seasonally inundated and non‐flooded Amazonian forests. Journal of Zoological Systematics and Evolutionary Research, 36(1-2), 65–70. | |
| dc.relation.references | Benchapong, T., Enghoff, H., Likhitrakarn, N., Chanabun, R., Aoonkum, A., & Srisonchai, R. (2025). Three new species of the millipede genus Enghoffosoma Golovatch, 1993 from Thailand (Diplopoda, Polydesmida, Paradoxosomatidae). Zoosystematics and Evolution, 101(2), 509-532. | |
| dc.relation.references | Bitsch, J., & Bitsch, C. (2009). The tritocerebrum and the clypeolabrum in mandibulate arthropods: segmental interpretations. Acta Zoologica, 91(3), 249–266. doi:10.1111/j.1463-6395.2009. 00402.x | |
| dc.relation.references | Bouchebti, S., & Arganda, S. (2020). Insect lifestyle and evolution of brain morphology. Current opinion in insect science, 42, 90-96. | |
| dc.relation.references | Boyan, G., Reichert, H., & Hirth, F. (2003). Commissure formation in the embryonic insect brain. Arthropod Structure & Development, 32(1), 61–77. | |
| dc.relation.references | Brewer, M. S., Sierwald, P., & Bond, J. E. (2012). Millipede taxonomy after 250 years: classification and taxonomic practices in a mega-diverse yet understudied arthropod group. PLoS One, 7(5), e37240. | |
| dc.relation.references | Buehlmann, C., Mangan, M., & Graham, P. (2020). Multimodal interactions in insect navigation. Animal cognition, 23, 1129-1141. | |
| dc.relation.references | Bueno-Villegas, J. (2012). Diplópodos: los desconocidos formadores de suelo. Biodiversitas, 102, 2-5. | |
| dc.relation.references | Carey, C. J., & Bull, C. M. (1986). Recognition of Mates in the Portuguese Millipede, Ommatoiulus-Moreletii. Australian journal of zoology, 34(6), 837-842. | |
| dc.relation.references | Carle, T. (2021). A review of effects of environment on brain size in insects. Insects, 12(5), 461. | |
| dc.relation.references | Chamberlin, R. V., & Bassler, H. (1941). On a collection of millipedes and centipedes from northeastern Peru. Bulletin of the AMNH; v. 78, article 7. | |
| dc.relation.references | Chapman, R. F., Simpson, S. J., & Douglas, A. E. (Eds.). (2013). The insects: structure and function. Cambridge University Press. | |
| dc.relation.references | Chen, Q., Li, L., Kang, G., Zuo, T., Zhang, K., Song, L., ... & Ren, B. (2023). Morphology and ultrastructure of antennal sensilla of the parasitic wasp Baryscapus dioryctriae (Hymenoptera: Eulophidae). Microscopy research and technique, 86(1), 12-27. | |
| dc.relation.references | Chung, K. H., & Moon, M. J. (2006a). Fine structure of the antennal sensilla of the millipede Orthomorphella pekuensis (Polydesmida: Paradoxosomatidae). Entomological Research, 36(3), 172–178. | |
| dc.relation.references | Chung, K. H., & Moon, M. J. (2006b). Antennal sensory organs in the female millipede Orthomorphella pekuensis (Polydesmida: Paradoxosomatidae). Integrative Biosciences, 10(4), 183–189. | |
| dc.relation.references | Chung, K. H., & Moon, M. J. (2009). Microstructure of the Antennal Sensilla in the Millipede Anaulaciulus koreanus koreanus (Julida: julidae). Applied Microscopy, 39(2), 141-147. | |
| dc.relation.references | Chung, K. H., & Moon, M. J. (2011). Microstructure of the antennal sensory organs in female millipede Oxidus gracilis (Polydesmida: Paradoxomatidae). Animal cells and systems, 15(1), 53-61. | |
| dc.relation.references | da Silva Souza, T., Christofoletti, C. A., Bozzatto, V., & Fontanetti, C. S. (2014). The use of diplopods in soil ecotoxicology–A review. Ecotoxicology and Environmental Safety, 103, 68-73. | |
| dc.relation.references | De Almeida, T. M., Shelley, R. M., & Rafael, J. A. (2018). Xanthotropis, a new genus in the Neotropical millipede subfamily Aphelidesminae (Diplopoda, Polydesmida, Aphelidesmidae). Zootaxa, 4471(2), 351-360. | |
| dc.relation.references | Descamps, M., & Lassalle, B. (1983). Influence of putative neurotransmitters on brain electrical activity in Lithobius forficatus L. (Myriapoda Chilopoda). Comparative Biochemistry and physiology. C, Comparative Pharmacology and Toxicology, 76(2), 237-240. | |
| dc.relation.references | Diakova, A. V., & Polilov, A. A. (2020). Sensation of the tiniest kind: the antennal sensilla of the smallest free-living insect Scydosella musawasensis (Coleoptera: Ptiliidae). PeerJ, 8, e10401. | |
| dc.relation.references | Dorkenwald, S., Matsliah, A., Sterling, A. R., Schlegel, P., Yu, S. C., McKellar, C. E., ... & Murthy, M. (2024). Neuronal wiring diagram of an adult brain. Nature, 634(8032), 124-138. | |
| dc.relation.references | Dudai, Y. (1988). Neurogenetic dissection of learning and short-term memory in Drosophila. Annual review of neuroscience. | |
| dc.relation.references | Dürr, V., Berendes, V., & Strube-Bloss, M. (2022). Sensorimotor ecology of the insect antenna: Active sampling by a multimodal sensory organ. In Advances in insect physiology (Vol. 63, pp. 1-105). Academic Press. | |
| dc.relation.references | Echeverri-Rubiano, C.; Pérez, J. D.; Ramírez, G. Cardozo, M. M. y Torres, D. (Comp). (2024). Memorias Congreso Sociedad Colombiana de Entomología. 51 Congreso SOCOLEN. Sociedad Colombiana de Entomología. 10 al 12 julio de 2024, Santiago de Cali, Valle del Cauca, Colombia. 2p. | |
| dc.relation.references | Edgecombe, G. D. (2015). Diplopoda—fossils. In Treatise on Zoology-Anatomy, Taxonomy, Biology. The Myriapoda, Volume 2 (pp. 337-351). Brill. | |
| dc.relation.references | Edgecombe, G. D., Ma, X., & Strausfeld, N. J. (2015). Unlocking the early fossil record of the arthropod central nervous system. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1684), 20150038. https://doi.org/10.1098/rstb.2015.0038 | |
| dc.relation.references | Edwards, T. N., & Meinertzhagen, I. A. (2010). The functional organisation of glia in the adult brain of Drosophila and other insects. Progress in neurobiology, 90(4), 471-497. | |
| dc.relation.references | Enghoff, H. (1990). The ground-plan of chilognathan millipedes (external morphology). In Proceedings of the 7th International Congress of Myriapodology (pp. 1-21). Brill. | |
| dc.relation.references | Erber, J., Masuhr, T. H., & Menzel, R. (1980). Localization of short‐term memory in the brain of the bee, Apis mellifera. Physiological Entomology, 5(4), 343-358. https://doi.org/10.1111/j.1365-3032.1980.tb00244.x | |
| dc.relation.references | Ernst, A., Rosenberg, J., & Hilken, G. (2009). Structure and distribution of antennal sensilla in the centipede Cryptops hortensis (Donovan, 1810) (Chilopoda, Scolopendromorpha). Soil Organisms, 81(3), 399-399. | |
| dc.relation.references | Farris, S. M., & Van Dyke, J. W. (2015). Evolution and function of the insect mushroom bodies: contributions from comparative and model systems studies. Current Opinion in Insect Science, 12, 19-25. | |
| dc.relation.references | Faucheux, M. J., Németh, T., & Kundrata, R. (2020). Comparative antennal morphology of Agriotes (Coleoptera: Elateridae), with special reference to the typology and possible functions of sensilla. Insects, 11(2), 137. https://doi.org/10.3390/insects11020137 | |
| dc.relation.references | Fontanetti, C. S., & Camargo-Mathias, M. I. (2017). External morphology of the antennae of Rhinocricus padbergi Verhoeff, 1938 (Diplopoda, Spirobolida). Journal of Morphological Sciences, 21(2), 73–79. | |
| dc.relation.references | Francisco, A., & Fontanetti, C. S. (2015). Diplopods and agrochemicals—a review. Water, Air, & Soil Pollution, 226(3), 53. | |
| dc.relation.references | Francisco, A., Nocelli, R. C., & Fontanetti, C. S. (2015). The nervous system of the neotropical millipede Gymnostreptus olivaceus Schubart, 1944 (Spirostreptida, Spirostreptidae) shows an additional cell layer. Animal Biology, 65(2), 133-150. | |
| dc.relation.references | Fuhrmann, H. (1922). Beiträge zur Kenntnis der Hautsinnesorgane der Tracheaten. I. Die antennalen Sinnesorgane der Myriapoden. Zeitschrift für wissenschaftliche Zoologie, 119, 1–52. | |
| dc.relation.references | Galizia, C. G., & Rössler, W. (2010). Parallel Olfactory Systems in Insects: Anatomy and Function. Annual Review of Entomology, 55(1), 399–420. doi:10.1146/annurev-ento-112408-085442 | |
| dc.relation.references | Gayubo, S. F. (2004). Antennae of Hexapods. In Encyclopedia of Entomology (pp. 99-102). Springer, Dordrecht. | |
| dc.relation.references | Gkanias, E., McCurdy, L. Y., Nitabach, M. N., & Webb, B. (2022). An incentive circuit for memory dynamics in the mushroom body of Drosophila melanogaster. Elife, 11, e75611. | |
| dc.relation.references | Goaillard, J. M., Moubarak, E., Tapia, M., & Tell, F. (2020). Diversity of axonal and dendritic contributions to neuronal output. Frontiers in cellular neuroscience, 13, 570. | |
| dc.relation.references | Gobernación del Tolima. (s.f.). Municipio de Icononzo. https://tolima.gov.co/tolima/informacion-general/turismo/2016-municipio-de-icononzo | |
| dc.relation.references | Golovatch, S. I. (2002). On two species of the millipede genus Pycnotropis CARL, 1914 from Amapá state, Brazil (Diplopoda, Polydesmida, Aphelidesmidae). Amazoniana: Limnologia et Oecologia Regionalis Systematis Fluminis Amazonas, 17(1/2), 173-176. | |
| dc.relation.references | Golovatch, S. I., & Korotaeva, A. M. (2023). A new, montane record of the millipede, Thrinoxethus verhoeffi (Kraus, 1956) from the Andes of Peru (Diplopoda: Polydesmida: Aphelidesmidae). Russian Entomological Journal, 32(2), 243-251. | |
| dc.relation.references | Golovatch, S. I., Hoffman, R. L., Adis, J., Spelda, J., Vohland, K., & Seitz, D. (2004). The millipede subfamily Aphelidesminae in Amazonia (Diplopoda, Polydesmida, Aphelidesmidae). Amazoniana, 18(1/2), 57-73. | |
| dc.relation.references | Golovatch, S. I., Romero-Rincon, J., Akkari, N., & Alvear, S. (2025). Contributions to the taxonomy of the Neotropical millipede genus Iulidesmus Silvestri, 1895 (Diplopoda: Polydesmida: Paradoxosomatidae: Catharosomatini). Insecta Mundi. | |
| dc.relation.references | Golovatch, S. I., Vohland, K., Hoffman, R. L., Adis, J., Mármol, A., Bachmann, L., & Tomiuk, J. (1998). Review of the neotropical millipede genus Pycnotropis CARL, 1914 (Diplopoda, Polydesmida, Aphelidesmidae). Amazoniana, 15(1/2), 67-102. | |
| dc.relation.references | Hallberg, E., & Hansson, B. S. (1999). Arthropod sensilla: morphology and phylogenetic considerations. Microscopy research and Technique, 47(6), 428-439. | |
| dc.relation.references | Hanström, B. (1928). Vergleichende Anatomie des Nervensystems der wirbellosen Tiere unter Berücksichtigung seiner Funktion. Julius Springer, Berlin. | |
| dc.relation.references | Hartenstein, V. (2006). The neuroendocrine system of invertebrates: a developmental and evolutionary perspective. Journal of endocrinology, 190(3), 555-570. | |
| dc.relation.references | Hartenstein, V. (2011). Structure and development of glia in Drosophila. Glia, 59(9), 1237–1252. https://doi.org/10.1002/glia.21162 | |
| dc.relation.references | Harzsch, S. (2004). The tritocerebrum of Euarthropoda: a “non-drosophilocentric” perspective. Evolution and Development, 6(5), 303–309. doi:10.1111/j.1525-142x.2004.04038.x | |
| dc.relation.references | Harzsch, S. (2006). Neurophylogeny: Architecture of the nervous system and a fresh view on arthropod phyologeny. Integrative and Comparative Biology, 46(2), 162–194. doi:10.1093/icb/icj011 | |
| dc.relation.references | Harzsch, S., & Krieger, J. (2021). Genealogical relationships of mushroom bodies, hemiellipsoid bodies, and their afferent pathways in the brains of Pancrustacea: Recent progress and open questions. Arthropod Structure & Development, 65, 101100. | |
| dc.relation.references | Haupt, J. (1979). Phylogenetic aspects of recent studies on myriapod sense organs. Myriapod biology, 391-406. | |
| dc.relation.references | Heisenberg, M. (2003). Mushroom body memoir: from maps to models. Nature Reviews Neuroscience, 4(4), 266-275. | |
| dc.relation.references | Heisenberg, M., Borst, A., Wagner, S., & Byers, D. (1985). Drosophila mushroom body mutants are deficient in olfactory learning. Journal of neurogenetics, 2(1), 1-30. | |
| dc.relation.references | Heuer, C. M., Kollmann, M., Binzer, M., & Schachtner, J. (2012). Neuropeptides in insect mushroom bodies. Arthropod Structure & Development, 41(3), 199–226. doi: 10.1016/j.asd.2012.02.005 | |
| dc.relation.references | Hoffman, R. L. (1999). Checklist of millipeds of North and Middle America. Virginia Museum of Natural History Special Publications, Martinsville, 584 pp. | |
| dc.relation.references | Hoffman, R.L. (1998) Reassessment of the Platyrhacidae, a family of polydesmidan mllipeds. Myriapodologica, 5, 125–141. | |
| dc.relation.references | Holmgren, n. (1916). Zur vergleichenden Anatomie des Gehirns von Polychaeten, Onychophoren, Xiphosuren, Arachniden, crustaceen, Myriapoden und insekten. Kungliga Svenska Vetenskapsakademiens Handligar, 56, 1–315. | |
| dc.relation.references | Homberg, U. (2008). Evolution of the central complex in the arthropod brain with respect to the visual system. Arthropod structure & development, 37(5), 347-362. | |
| dc.relation.references | Homberg, U., Christensen, T. A., & Hildebrand, J. G. (1989). Structure and Function of the Deutocerebrum in Insects. Annual Review of Entomology, 34(1), 477–501. doi:10.1146/annurev.en.34.010189.002401 | |
| dc.relation.references | Honkanen, A., Adden, A., da Silva Freitas, J., & Heinze, S. (2019). The insect central complex and the neural basis of navigational strategies. Journal of Experimental Biology, 222(Suppl_1), jeb188854. | |
| dc.relation.references | Hopkin, S. P., & Read, H. J. (1992). The biology of millipedes. Oxford University Press. | |
| dc.relation.references | Huang, X., Xu, X. L., Li, R. X., Wang, S., & Tian, L. X. (2023). Ultrastructure and distribution of antennal sensilla of Bombus terrestris (Hymenoptera: Apidae). Zoologischer Anzeiger, 302, 239-247. | |
| dc.relation.references | Ibrahim, H. A., Sawires, S. G., & Hamza, A. F. (2018). Morphological characterization and distribution of antennal sensilla of irradiated female mosquito, Culex pipiens (Diptera: Culicidae) with gamma radiation. Journal of radiation research and applied sciences, 11(4), 291-298. | |
| dc.relation.references | Jager, M., Murienne, J., Clabaut, C., Deutsch, J., Guyader, H. L., & Manuel, M. (2006). Homology of arthropod anterior appendages revealed by Hox gene expression in a sea spider. Nature, 441(7092), 506-508. | |
| dc.relation.references | Jarvis, E., Bruce, H. S., & Patel, N. H. (2012). Evolving specialization of the arthropod nervous system. Proceedings of the National Academy of Sciences, 109(supplement_1), 10634-10639. | |
| dc.relation.references | Jeekel, C. A. W. (2000). Notes on Aphelidesmidae from Guiana, with the description of two new genera and two new species (Diplopoda, Polydesmida). Myriapod Memoranda, 2. | |
| dc.relation.references | Joly, R., & Descamps, M. (1987). Histology and ultrastructure of the myriapod brain. Arthropod brain. Its evolution, development, structure and functions, 135-157. | |
| dc.relation.references | Juberthie-Jupeau, L. (1967). Existence d’organes neuraux intracérébraux chez les Glomérides (diplopodes) épigés et cavernicoles. Comptes rendus Académie des Sciences Série D, 264, 89–92. | |
| dc.relation.references | Kadamannaya, B. S., & Sridhar, K. R. (2009). Diurnal periodicity of three endemic species of pill millipedes (Arthrosphaera) in Western Ghats, India. Tropical and Subtropical Agroecosystems, 10(3), 505-513. | |
| dc.relation.references | Kania, G., & Klapec, T. (2012). Seasonal activity of millipedes (Diplopoda)–their economic and medical significance. Annals of Agricultural and Environmental Medicine, 19(4). | |
| dc.relation.references | Kicaj, H. (2023). Ecology of soil animals (Diplopoda class, Myriapoda group). Scientific Horizons, 5(26), 37-45. | |
| dc.relation.references | Koch, M. (2015). Diplopoda—general morphology. In Treatise on Zoology-Anatomy, Taxonomy, Biology. The Myriapoda, Volume 2 (pp. 7-67). Brill. | |
| dc.relation.references | Korsós, Z., & Golovatch, S. (2025). First description of a male Melapheapamea Hoffman & Lohmander, 1968 from Turkey (Diplopoda, Polydesmida, Xystodesmidae). Biodiversity Data Journal, 13, e156970. | |
| dc.relation.references | Li, F., Lindsey, J. W., Marin, E. C., Otto, N., Dreher, M., Dempsey, G., ... & Rubin, G. M. (2020). The connectome of the adult Drosophila mushroom body provides insights into function. Elife, 9, e62576. | |
| dc.relation.references | Lin, H. H., Lai, J. S. Y., Chin, A. L., Chen, Y. C., & Chiang, A. S. (2007). A map of olfactory representation in the Drosophila mushroom body. Cell, 128(6), 1205-1217. | |
| dc.relation.references | Lin, S. (2023). The making of the Drosophila mushroom body. Frontiers in Physiology, 14, 1091248. | |
| dc.relation.references | Liu, J. Y., Zhang, Y. J., Huang, Z. Y., Dong, Z. S., Duan, Y. B., Lu, W., & Zheng, X. L. (2018). Ultrastructural observations of antennal sensilla in Phauda flammans Walker (Lepidoptera: Zygaenidae). Journal of Entomological Science, 53, 281–294. | |
| dc.relation.references | Liu, L., Wolf, R., Ernst, R., & Heisenberg, M. (1999). Context generalization in Drosophila visual learning requires the mushroom bodies. Nature, 400(6746), 753-756. | |
| dc.relation.references | Loesel, R., Nässel, D. R., & Strausfeld, N. J. (2002). Common design in a unique midline neuropil in the brains of arthropods. Arthropod Structure & Development, 31(1), 77-91. | |
| dc.relation.references | Loesel, R., Wolf, H., Kenning, M., Harzsch, S., & Sombke, A. (2013). Architectural principles and evolution of the arthropod central nervous system. In Arthropod biology and evolution: molecules, development, morphology (pp. 299-342). Berlin, Heidelberg: Springer Berlin Heidelberg. | |
| dc.relation.references | Lorenzo, M. A. (1960). The cephalic nervous system of the centepede arenophilus bipuncticepts (wood) (chilopoda, geophilomorpha, geophilidae). | |
| dc.relation.references | Ma, X., Hou, X., Edgecombe, G. D., & Strausfeld, N. J. (2012). Complex brain and optic lobes in an early Cambrian arthropod. Nature, 490(7419), 258-261. | |
| dc.relation.references | Makarov, S. E. (2015). Diplopoda—integument. Treatise on Zoology-Anatomy, Taxonomy, Biology. The Myriapoda, Volume 2, 69-99. | |
| dc.relation.references | Manuel, M., Jager, M., Murienne, J., Clabaut, C., & Guyader, H. L. (2006). Hox genes in sea spiders (Pycnogonida) and the homology of arthropod head segments. Development Genes and Evolution, 216, 481-491. | |
| dc.relation.references | Marek, P. E., Shear, W. A., & Bond, J. E. (2012). A redescription of the leggiest animal, the millipede Illacme plenipes, with notes on its natural history and biogeography (Diplopoda, Siphonophorida, Siphonorhinidae). ZooKeys, (241), 77. | |
| dc.relation.references | Martin, J. P., Guo, P., Mu, L., Harley, C. M., & Ritzmann, R. E. (2015). Central-complex control of movement in the freely walking cockroach. Current Biology, 25(21), 2795-2803. | |
| dc.relation.references | Masek, P., & Scott, K. (2010). Limited taste discrimination in Drosophila. Proceedings of the National Academy of Sciences, 107(33), 14833-14838. | |
| dc.relation.references | Mauelshagen, J. (1993). Neural correlates of olfactory learning paradigms in an identified neuron in the honeybee brain. Journal of neurophysiology, 69(2), 609-625. | |
| dc.relation.references | Means, J. C., Francis, E. A., Lane, A. A., & Marek, P. E. (2015). A general methodology for collecting and preserving xystodesmid and other large millipedes for biodiversity research. Biodiversity data journal, (3), e5665. | |
| dc.relation.references | Melnitsky, S. I., Valuyskiy, M. Y., Diiak, K. A., & Ivanov, V. D. (2022). Structure of Antennal Sensilla in Scorpionflies (Mecoptera). Entomological Review, 102(7), 971-981. | |
| dc.relation.references | Minelli, A. (Ed.). (2015). Treatise on Zoology-Anatomy, Taxonomy, Biology. The Myriapoda, Volume 2 (Vol. 2). Brill. | |
| dc.relation.references | Mizunami, M., Yokohari, F., & Takahata, M. (1999). Exploration into the adaptive design of the arthropod “microbrain”. Zoological science, 16(5), 703-709. | |
| dc.relation.references | Moritz, L., & Koch, M. (2020). No Tömösváry organ in flat backed millipedes (Diplopoda, Polydesmida). ZooKeys, 930, 103. | |
| dc.relation.references | Müller, C. H., & Sombke, A. (2015). Diplopoda—sense organs. In A. Minelli (Ed.), Treatise on Zoology—Anatomy, Taxonomy, Biology. The Myriapoda (Vol. 2, pp. 181–235). Brill. | |
| dc.relation.references | Nakano, M., Morgan-Richards, M., Clavijo-McCormick, A., & Trewick, S. (2023). Abundance and distribution of antennal sensilla on males and females of three sympatric species of alpine grasshopper (Orthoptera: Acrididae: Catantopinae) in Aotearoa New Zealand. Zoomorphology, 142(1), 51-62. | |
| dc.relation.references | Newport, G. (1843). On the Structure, Relations, and Development of the Nervous and Circulatory Systems, and on the Existence of a Complete Circulation of the Blood in Vessels, in Myriapoda and Macrourous Arachnida. First Series. Philosophical Transactions of the Royal Society of London, 133(0), 243–302. doi:10.1098/rstl.1843.0013 | |
| dc.relation.references | Nguyen duy-Jacquemin, M. (1974). Les organes intracérébraux de Polyxenus lagurus et comparison avec les organes neuraux d’autre diplopodes. Symposia of the Zoological Society of London, 32, 211–216. | |
| dc.relation.references | Nguyen Duy-Jacquemin, M. (1985a). Ultrastructure des cônes sensoriels apicaux et des sensilles basiconiques spiniformes du 7e article des antennes de Typhloblaniulus lorifer et Cylindroiulus punctatus (Diplopodes Iulides). In Annales des sciences naturelles. Zoologie et biologie animale (Vol. 7, No. 2, pp. 67-88). | |
| dc.relation.references | Nguyen Duy-Jacquemin, M. (1997). Fine structure and possible functions of antennal sensilla in Polyxenus lagurus (Diplopoda, Penicillata: Polyxenidae). Entomologica Scandinavica Supplementum, 167-178. | |
| dc.relation.references | Nguyen duy-Jacquemin, M. and Arnold, G. (1991). Spatial organization of the antennal lobe in Cylindroiulus punctatus (Leach) (Myriapoda: diplopoda). International Journal of Insect Morphology and Embryology, 20, 205–214. | |
| dc.relation.references | Nguyen Duy-Jaquemin, M. (1981). Ultrastructure des organes sensoriels de l’antennede Polyxenus lagurus (Diplopode, Pénecillate). I. Les cônes sensoriels apicaux du 8e article antennaire. Annales des Sciences Naturelles, 13e Série, (3), 95–114. | |
| dc.relation.references | Nguyen Duy-Jaquemin, M. (1982). Ultrastructure des organes sensoriels de l’antenne de Polyxenus lagurus (Diplopode, Pénecillate). II. Les sensilles basiconiques des 6e et 7e articles antennaires. Annales des Sciences Naturelles, 13e Série, (4), 211–229. | |
| dc.relation.references | Nguyen Duy-Jaquemin, M. (1983). Ultrastructure des organes sensoriels de l’antenne de Polyxenus lagurus (Diplopode, Pénecillate). III. Les sensilles coeloconiques des 6e et 7e articles antennaires. Annales des Sciences Naturelles, 13e Série, (5), 207–220. | |
| dc.relation.references | Nieder, A. (2021). Neuroethology of number sense across the animal kingdom. Journal of Experimental Biology, 224(6), jeb218289. | |
| dc.relation.references | Norman, W. W. (1898). A comparative study of the functions of the central nervous system of arthropods. A brief summary of the results, by albrecht bethe. Journal of Comparative Neurology, 8(3), 232-238. | |
| dc.relation.references | Nowińska, A., & Brożek, J. (2021). The variability of antennal sensilla in Naucoridae | |
| dc.relation.references | Omoto, J. J., Lovick, J. K., & Hartenstein, V. (2016). Origins of glial cell populations in the insect nervous system. Current opinion in insect science, 18, 96-104. | |
| dc.relation.references | Osorio, D., Bacon, J. P., & Whitington, P. M. (1997). The Evolution of Arthropod Nervous Systems: Modern insects and crustaceans diverged from an ancestor over 500 million years ago, but their neural circuitry retains many common features. American Scientist, 85(3), 244-253. | |
| dc.relation.references | Pacheco, Y. M., Mann, E., Da Silveira, L. F., Bybee, S. M., Branham, M. A., McHugh, J. V., & Stanger-Hall, K. F. (2025). Antennal sensilla diversity in diurnal and nocturnal fireflies (Coleoptera, Lampyridae). PLoS One, 20(6), e0323722. | |
| dc.relation.references | Pérez‐González, S., & Zaballos, J. P. (2013). Antennal morphology of the endogean carabid genus Typhlocharis (Coleoptera: Carabidae: Anillini): description of sensilla and taxonomic implications. Journal of Morphology, 274(7), 809-823. | |
| dc.relation.references | Prabhu, V. K. K. (1961). The structure of the cerebral glands and connective bodies of Jonespeltis splendidus Verhoeff (Myriapoda: Diplopoda). Zeitschrift für Zellforschung und mikroskopische Anatomie, 54, 717-733. | |
| dc.relation.references | Regalado, R. R. H., Buiza, M. D., Ibay, M. C. B., Ramirez, V., & Belasa, A. J. N. (2020). Descriptions of the antennal structures of the millipede Trigoniulus macropygus Silvestri, 1897 (Spirobolida: Pachybolidae) and centipede Scolopendra subspinipes Leach, 1816 (Scolopendromorpha: Scolopendridae) using scanning electron microscopy. BU R&D Journal, 23(1), 75-80. | |
| dc.relation.references | Richter, S., Loesel, R., Purschke, G., Schmidt-Rhaesa, A., Scholtz, G., Stach, T., ... & Harzsch, S. (2010). Invertebrate neurophylogeny: suggested terms and definitions for a neuroanatomical glossary. Frontiers in Zoology, 7, 1-49. | |
| dc.relation.references | Richter, S., Stein, M., Frase, T., & Szucsich, N. U. (2013). The Arthropod Head. Arthropod Biology and Evolution, 223–240. doi:10.1007/978-3-642-36160-9_10 | |
| dc.relation.references | Riquelme, F., Patricio, M. A. H., & Cupul-Magaña, F. (2024). Diplopoda in the world fossil record [Preprint]. bioRxiv. | |
| dc.relation.references | Rosenberg, J., Müller, C. H., & Hilken, G. (2011). Chilopoda—integument and associated organs. The Myriapoda, 1, 67-112. | |
| dc.relation.references | Sahli, F. (1961). Sur une formation hypocérébrale chez les diplopodes julides. Comptes rendus hebdomadaires des Séances de l’Académie des Sciences, Paris, D, 252, 2443-2444. | |
| dc.relation.references | Sahli, F. (1963). Sur le système neurosécréteur des myriapodes diplopodes. En Proceedings of 16th International Congress of Zoology, Washington, D.C. (Vol. 2, p. 149). | |
| dc.relation.references | Sahli, f. (1966). Contribution a l’étude de la périodomorphose et du système neurosécréteur des diplopodes iulides. Thèses Université de dijon. | |
| dc.relation.references | Saint-Remy, G. (1887). Contribution à l’étude du cerveau chez les Arthropodes Trachéates. Archives de Zoologie expérimentale et générale, 2, 1–274. | |
| dc.relation.references | Schmidt-Rhaesa, A., Harzsch, S., & Purschke, G. (2015). Introduction. In Structure and evolution of invertebrate nervous systems (online edn, 24 Mar. 2016). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199682201.003.0001 | |
| dc.relation.references | Scholtz, G. (2004). Bauplane versus groundpatterns, phyla versus monophyla: aspects of patterns and processes in evolutionary developmental biology. Crustacean Issues, 15, 3-18. | |
| dc.relation.references | Scholtz, G., & Edgecombe, G. D. (2006). The evolution of arthropod heads: reconciling morphological, developmental and palaeontological evidence. Development genes and evolution, 216, 395-415. | |
| dc.relation.references | Schönrock, G. U. R. R. (1981). Feinstruktur und Entwicklung der antennalen Sensillen bei Polydesmus coriaceus Porath 1871 (Diplopoda, Polydesmida) [Doctoral dissertation, nombre de la universidad]. | |
| dc.relation.references | Seifert, B. (1932). Anatomie und Biologie des Diplopoden Strongylosoma pallipes Oliv. Zeitschrift für Morphologie und Ökologie der Tiere, 25, 362–507. | |
| dc.relation.references | Sharma, P. P., Tarazona, O. A., Lopez, D. H., Schwager, E. E., Cohn, M. J., Wheeler, W. C., & Extavour, C. G. (2015). A conserved genetic mechanism specifies deutocerebral appendage identity in insects and arachnids. Proceedings of the Royal Society B: Biological Sciences, 282(1808), 20150698. | |
| dc.relation.references | Shear, W. A. (2015). The chemical defenses of millipedes (Diplopoda): biochemistry, physiology and ecology. Biochemical Systematics and Ecology, 61, 78-117. | |
| dc.relation.references | Shelley, R. M. (2003). A revised, annotated, family-level classification of the Diplopoda. Arthropoda Selecta, 11(3), 187-207. | |
| dc.relation.references | Sierwald, P., & Bond, J. E. (2007). Current Status of the Myriapod Class Diplopoda (Millipedes): Taxonomic Diversity and Phylogeny. Annual Review of Entomology, 52(1), 401–420. doi: 10.1146/annurev.ento.52.111805.0 | |
| dc.relation.references | Smarandache-Wellmann, C. R. (2016). Arthropod neurons and nervous system. Current Biology, 26(20), R960-R965. | |
| dc.relation.references | Snodgrass, R. E. (2018). Principles of insect morphology. Cornell University Press. | |
| dc.relation.references | Sombke, A., & Ernst, A. (2014). Structure and distribution of antennal sensilla in Oranmorpha guerinii (Gervais, 1837) (Diplopoda, Polydesmida). Arthropod Structure & Development, 43(1), 77-86. | |
| dc.relation.references | Sombke, A., & Rosenberg, J. (2015a). Diplopoda—nervous and neuroendocrine systems. In A. Minelli (Ed.), Treatise on Zoology—Anatomy, Taxonomy, Biology. The Myriapoda (Vol. 2, pp. 161–179). Brill. | |
| dc.relation.references | Sombke, A., & Rosenberg, J. (2015b). Myriapoda. In Structure and Evolution of Invertebrate Nervous Systems. Oxford. https://doi.org/10.1093/acprof:oso/9780199682201.003.0039. | |
| dc.relation.references | Sombke, A., Harzsch, S., & Hansson, B. (2009). Brain structure of Scutigera coleoptrata: New insights into the evolution of mandibulate olfactory centers-short communication. Soil Organisms, 81(3), 319-325. | |
| dc.relation.references | Sombke, A., Harzsch, S., & Hansson, B. S. (2011a). Organization of deutocerebral neuropils and olfactory behavior in the centipede Scutigera coleoptrata (Linnaeus, 1758) (Myriapoda: Chilopoda). Chemical Senses, 36(1), 43-61. | |
| dc.relation.references | Sombke, A., Lipke, E., Kenning, M., Müller, C. H., Hansson, B. S., & Harzsch, S. (2012). Comparative analysis of deutocerebral neuropils in Chilopoda (Myriapoda): implications for the evolution of the arthropod olfactory system and support for the Mandibulata concept. BMC neuroscience, 13, 1-17. | |
| dc.relation.references | Sombke, A., Rosenberg, J., & Hilken, G. (2011b). 11 Chilopoda–Nervous system. In A. Minelli (Ed.), Treatise on Zoology—Anatomy, Taxonomy, Biology. The Myriapoda (Vol. 1, pp. 217–234). Brill. | |
| dc.relation.references | Souto, P. M., Antunes, A. F., & Nunes, V. C. S. (2021). Insect sensory system. In J. Vonk & T. Shackelford (Eds.), Encyclopedia of animal cognition and behavior. Springer. https://doi.org/10.1007/978-3-319-47829-6_1138-1 | |
| dc.relation.references | Souto, P.M., Antunes, A.F., Nunes, V.C.S. (2021). Insect Sensory System. In: Vonk, J., Shackelford, T. (eds) Encyclopedia of Animal Cognition and Behavior. Springer, Cham. https://doi.org/10.1007/978-3-319-47829-6_1138-1 | |
| dc.relation.references | Strausfeld, N. J. (1999). A brain region in insects that supervises walking. Progress in brain research, 123, 273-284. | |
| dc.relation.references | Strausfeld, N. J. (2009). Brain and Optic Lobes. Encyclopedia of Insects, 121–130. doi:10.1016/b978-0-12-374144-8.00042-4 | |
| dc.relation.references | Strausfeld, N. J. (2012). Arthropod brains: evolution, functional elegance, and historical significance. Harvard University Press. | |
| dc.relation.references | Strausfeld, N. J., Buschbeck, E. K., & Gomez, R. S. (1995). The arthropod mushroom body: Its functional roles, evolutionary enigmas and mistaken identities. In G. A. North & R. D. Chairs (Eds.), The nervous systems of invertebrates: An evolutionary and comparative approach (pp. 349–381). Springer. https://doi.org/10.1007/978-3-0348-9219-3_16 | |
| dc.relation.references | Strausfeld, N. J., Ma, X., & Edgecombe, G. D. (2016). Fossils and the evolution of the arthropod brain. Current Biology, 26(20), R989-R1000. | |
| dc.relation.references | Strauss, R., & Heisenberg, M. (1993). A higher control center of locomotor behavior in the Drosophila brain. Journal of Neuroscience, 13(5), 1852-1861. | |
| dc.relation.references | Tanaka, G., Hou, X., Ma, X., Edgecombe, G. D., & Strausfeld, N. J. (2013). Chelicerate neural ground pattern in a Cambrian great appendage arthropod. Nature, 502(7471), 364-367. | |
| dc.relation.references | Tang, Q. B., Song, W. W., Chang, Y. J., Xie, G. Y., Chen, W. B., & Zhao, X. C. (2019). Distribution of serotonin-immunoreactive neurons in the brain and gnathal ganglion of caterpillar Helicoverpa armigera. Frontiers in Neuroanatomy, 13, 56. | |
| dc.relation.references | Tauc, L. (1967). Transmisión en ganglios de invertebrados y vertebrados. Physiological Reviews, 47(3), 521–593. doi:10.1152/physrev.1967.47.3.521 | |
| dc.relation.references | Telford, M. J., & Thomas, R. H. (1998). Expression of homeobox genes shows chelicerate arthropods retain their deutocerebral segment. Proceedings of the National Academy of Sciences, 95(18), 10671-10675. | |
| dc.relation.references | Thorez, A., Compère, P., & Goffinet, G. (1992). Ultrastructure and mineral composition of the tergite cuticle of the iulid millipede Ophyiulus pilosus (Myriapoda, Diplopoda). Berichte des Naturwissenschaftlich-medizinischen Vereins in Innsbruck, 10, 63–70. | |
| dc.relation.references | Tóth, Z., & Hornung, E. (2019). Taxonomic and functional response of millipedes (Diplopoda) to urban soil disturbance in a metropolitan area. Insects, 11(1), 25. | |
| dc.relation.references | Treviranus, G. R., & Treviranus, L. C. (1817). Vermischte Schriften anatomischen und physiologischen Inhalts II. Röwer. | |
| dc.relation.references | Vohland, K. (1998). Review of the millipede subfamily Amplininae (Diplopoda, Polydesmida, Aphelidesmidae) with remarks on phylogeny and the description of some new South American genera and species. Amazoniana, 15(1/2), 129–163. | |
| dc.relation.references | Vohland, K., & Adis, J. (1999). Life history of Pycnotropis tida (Diplopoda: Polydesmida: Aphelidesmidae) from seasonally inundated forests in Amazonia (Brazil and Peru). Amazoniana, 15(1/2), 129–163. | |
| dc.relation.references | Wesener, T., & Wägele, J. W. (2008). The giant pill-millipedes of Madagascar: Revision of the genus Zoosphaerium (Myriapoda, Diplopoda, Sphaerotheriida). Zoosystema, 30(1), 5–62. | |
| dc.relation.references | Wesener, T., Le, D. M. T., & Loria, S. F. (2014). Integrative revision of the giant pill-millipede genus Sphaeromimus from Madagascar, with the description of seven new species (Diplopoda, Sphaerotheriida, Arthrosphaeridae). ZooKeys, (414), 67. | |
| dc.relation.references | Wolff, G. H., & Strausfeld, N. J. (2015). Genealogical correspondence of mushroom bodies across invertebrate phyla. Current Biology, 25(1), 38-44. | |
| dc.relation.references | Wolff, G. H., Thoen, H. H., Marshall, J., Sayre, M. E., & Strausfeld, N. J. (2017). An insect-like mushroom body in a crustacean brain. elife, 6, e29889. | |
| dc.relation.references | Wongthamwanich, N., Panha, S., Sitthicharoenchai, D., Pradatsundarasar, A. O., Seelanan, T., Enghoff, H., & Thirakhupt, K. (2012). Daily activities of the giant pill-millipede Zephronia cf. viridescens Attems, 1936 (Diplopoda: Sphaerotheriida: Zephroniidae) in a deciduous forest in northern Thailand. Zoological Studies, 51(7), 913-926. | |
| dc.relation.references | Zars, T. (2000). Behavioral functions of the insect mushroom bodies. Current opinion in neurobiology, 10(6), 790-795. | |
| dc.relation.references | Zhu, L., Mangan, M., & Webb, B. (2020). Spatio-temporal memory for navigation in a mushroom body model. In Biomimetic and biohybrid systems: 9th International Conference, Living Machines 2020, Freiburg, Germany, July 28–30, 2020, Proceedings (pp. 415–426). Springer International Publishing. | |
| dc.rights.acceso | Abierto (Texto Completo) | |
| dc.rights.accessrights | OpenAccess | |
| dc.subject | Diplopoda | |
| dc.subject | Microscopia electrónica de barrido (MEB) | |
| dc.subject | Sistema nervioso | |
| dc.subject | Sensila antenal | |
| dc.subject | Tinción | |
| dc.subject.keyword | Antennal sensilla | |
| dc.subject.keyword | Diplopoda | |
| dc.subject.keyword | Nervous system | |
| dc.subject.keyword | Scanning electron microscopy (SEM) | |
| dc.subject.keyword | Staining | |
| dc.subject.lemb | Biología -- Tesis y disertaciones académicas | |
| dc.subject.lemb | Diplópodos | |
| dc.subject.lemb | Anatomía | |
| dc.subject.lemb | Sistema nervioso -- Invertebrados | |
| dc.subject.lemb | Neurobiología | |
| dc.title | Descripción histológica del cerebro y órganos sensoriales del milpiés neotropical Pycnotropis sp. (Polydesmida: Aphelidesmidae) | |
| dc.title.titleenglish | Histological description of the brain and sensory organs of the neotropical millipede Pycnotropis sp. (Polydesmida: Aphelidesmidae) | |
| dc.type | bachelorThesis | |
| dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
| dc.type.degree | Investigación-Innovación | |
| dc.type.driver | info:eu-repo/semantics/bachelorThesis |
Archivos
Bloque original
1 - 2 de 2
No hay miniatura disponible
- Nombre:
- LuisaFernandaPayaresCastro2025.pdf
- Tamaño:
- 2 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Trabajo de grado
No hay miniatura disponible
- Nombre:
- Licencia de uso y publicación.pdf
- Tamaño:
- 663.32 KB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 7 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:
