Modelo adaptativo multivariable de handoff espectral para incrementar el desempeño en redes móviles de radio cognitiva

dc.contributor.authorHernández Suárez, Cesar Augusto
dc.contributor.authorPáez-Parra, Ingrid Patricia
dc.contributor.authorGiral Ramírez, Diego Armando
dc.contributor.orcidPáez-Parra, Ingrid Patricia [0009-0008-1033-8714]
dc.contributor.orcidGiral Ramírez, Diego Armando [0000-0001-9983-4555]
dc.contributor.orcidHernández Suárez, César Augusto [0000-0001-9409-8341]
dc.date.accessioned2023-11-30T21:34:54Z
dc.date.available2023-11-30T21:34:54Z
dc.date.created2017-04
dc.descriptionEl handoff espectral, en las redes de radio cognitiva, ocurre cuando el usuario secundario debe dejar el canal de frecuencia que está utilizando y continuar su comunicación en otra oportunidad espectral. Este proceso es un aspecto clave para garantizar una adecuada calidad de servicio y mejorar el desempeño en las comunicaciones del usuario secundario. Este libro de investigación tiene por objetivo presentar una propuesta de modelo adaptativo multivariable de handoff espectral para redes móviles de radio cognitiva. Para lo anterior, se desarrollaron tres algoritmos para la toma de decisiones durante un handoff espectral, con diferentes enfoques: difuso, realimentado y predictivo; estos conforman el modelo adaptativo multivariable de handoff espectral propuesto. Para evaluar el nivel de desempeño de los algoritmos desarrollados se realizó un análisis comparativo entre estos y los algoritmos de handoff espectral más relevantes en la literatura actual. A diferencia de los trabajos relacionados, la evaluación comparativa se validó a través de una traza de datos reales de ocupación espectral capturados en la banda de frecuencia GSM y Wi-Fi, que modelan el comportamiento real de los usuarios primarios. En la fase de validación, se propusieron ocho escenarios de evaluación, al considerar, dos tipos de redes: GSM y Wi-Fi, dos clases de aplicaciones: tiempo-real y mejor-esfuerzo, dos niveles de tráfico: alto y bajo, y diez métricas de evaluación.spa
dc.description.abstractSpectral handoff, in cognitive radio networks, occurs when the secondary user must leave the frequency channel they are using and continue their communication at another spectral opportunity. This process is a key aspect to guarantee adequate quality of service and improve performance in secondary user communications. This research book aims to present a proposal for a multivariate adaptive spectral handoff model for mobile cognitive radio networks. For this purpose, three algorithms were developed for decision-making during a spectral handoff, with different approaches: fuzzy, feedback and predictive; These make up the proposed adaptive multivariate spectral handoff model. To evaluate the level of performance of the developed algorithms, a comparative analysis was carried out between them and the most relevant spectral handoff algorithms in current literature. Unlike related works, the benchmark was validated through a trace of real spectral occupancy data captured in the GSM and Wi-Fi frequency band, which models the real behavior of primary users. In the validation phase, eight evaluation scenarios were proposed, considering two types of networks: GSM and Wi-Fi, two classes of applications: real-time and best-effort, two traffic levels: high and low, and ten evaluation metrics.spa
dc.description.cityBogotáspa
dc.format.mimetypepdfspa
dc.identifier.editorialUniversidad Distrital Francisco José de Caldas. Centro de Investigaciones y Desarrollo Científicospa
dc.identifier.isbn978-958-5434-01-1spa
dc.identifier.urihttp://hdl.handle.net/11349/33023
dc.language.isospaspa
dc.relation.ispartofseriesEspaciosspa
dc.relation.referencesAbbas, N., Nasser, Y., & Ahmad, K. El. (2015). Recent advances on artificial intelligence and learning techniques in cognitive radio networks. EUR ASIP Journal on Wireless Communications and Networking, (1), 1-20.spa
dc.relation.referencesAguilar, J., & Navarro, A. (2011). Radio cognitiva - estado del arte. Sistemas y Telemática, 9(16), 31-53.spa
dc.relation.referencesAhmed, A., Boulahia, L. M., & Gaïti, D. (2014). Enabling vertical handover decisions in heterogeneous wireless networks: A state-of-the-art and a classification. IEEE Communications Surveys and Tutorials, 16(2), 776-811.spa
dc.relation.referencesAhmed, E., Gani, A., Abolfazli, S., Yao, L. J., & Khan, S. U. (2016). Chan nel assignment algorithms in cognitive radio networks: Taxonomy, open issues, and challenges. IEEE Communications Surveys & Tutorials, 18(1), 795-823.spa
dc.relation.referencesAkaike, H. (1973). Information theory and an extension of the maximum likelihood principle. En International Symposium on Information Theory (pp. 267-281). Academinai Kiado, Budapest.spa
dc.relation.referencesAkin, S., & Fidler, M. (2016). On the transmission rate strategies in cognitive radios. IEEE Transactions on Wireless Communications, 15(3), 2335-2350.spa
dc.relation.referencesAkter, L., Natarajan, B., & Scoglio, C. (2008). Modeling and forecasting se condary user activity in cognitive radio networks. En 17th International Conference on Computer Communications and Networks. August 3-7, 2008. (pp. 1-6). St. Thomas, US Virgin Islands.spa
dc.relation.referencesAkyildiz, I. F., & Li, Y. (2006). OCRA: OFDM-based cognitive radio networks. Broadband and Wireless Networking Laboratory Technical Report.spa
dc.relation.referencesAkyildiz, I. F., Lee, W.-Y., & Chowdhury, K. R. (2009). CRAHNs: Cognitive radio ad hoc networks. Ad Hoc Networks, 7(5), 810-836.spa
dc.relation.referencesAkyildiz, I. F., Lee, W.-Y., Vuran, M. C., & Mohanty, S. (2008). A survey on spectrum management in cognitive radio networks. IEEE Communica tions Magazine, 46(4), 40-48.spa
dc.relation.referencesAkyildiz, I. F., Won-Yeol, L., Vuran, M. C., & Mohanty, S. (2006). NeXt generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks, 50(13), 2127-2159.spa
dc.relation.referencesAlmasaeid, H. M., & Kamal, A. E. (2010). Receiver-based channel allocation for wireless cognitive radio mesh networks. In IEEE Symposium on New Frontiers in Dynamic Spectrum (pp. 1-10). 6 Apr - 09 Apr 2010. Singapur, Singapur.spa
dc.relation.referencesAlnwaimi, G., Arshad, K., & Moessner, K. (2011). Dynamic spectrum allo cation algorithm with interference management in co-existing networks. IEEE Communications Letters, 15(9), 932-934.spa
dc.relation.referencesAlsarhan, A., & Agarwal, A. (2009). Cluster-based spectrum management using cognitive radios in wireless mesh network. En Internatonal Conferen ce on Computer Communications and Networks (pp. 1-6). August 3–6, 2009. San Francisco, C.A., Estados Unidos.spa
dc.relation.referencesAl-Surmi, I., Othman, M., & Mohd Ali, B. (2012). Mobility management for IP-based next generation mobile networks: Review, challenge and pers pective. Journal of Network and Computer Applications, 35(1), 295-315.spa
dc.relation.referencesAnderson, T. W. (1980). Maximum likelihood estimation for vector autoregressive moving-average models, directions in time series. Institute of Mathematical Statistics. Stanford University, Stanford, California, Estados Unidos.spa
dc.relation.referencesBâlan, I. M., Moerman, I., Sas, B., & Demeester, P. (2012). Signalling mini mizing handover parameter optimization algorithm for LTE networks. Wireless Networks, 18(3), 295-306.spa
dc.relation.referencesBari, F., & Leung, V. (2007). Application of ELECTRE to network selection in a hetereogeneous wireless network environment. En IEEE Wireless Communications and Networking Conference (pp. 3810-3815). 11-15 march 2007. Hong Kong, China.spa
dc.relation.referencesBennai, M., Sydor, J., & Rahman, M. (2010). Automatic channel selection for cognitive radio systems. En IEEE International Symposium on Personal Indoor and Mobile Radio Communications (pp. 1831-1835). IEEE. 26 Sep - 30 Sep 2010. Estambul, Turquia.spa
dc.relation.referencesBkassiny, M., Li, Y., & Jayaweera, S. K. (2013). A survey on machine-lear ning techniques in cognitive radios. IEEE Communications Surveys and Tu torials, 15(3), 1136-1159.spa
dc.relation.referencesBolstad, W. M. (2007). Introduction to bayesian statistics. John Wiley and Sons. New Jersey, Estados Unidos.spa
dc.relation.referencesBox, G. E. P., & Cox, D. R. (1964). An analysis of transformations. Journal of the Royal Statistical Society, 26(2), 211-252.spa
dc.relation.referencesBox, G. E. P., & Jenkins, G. M. (1976). Time series analysis: Forecasting and control (Revised Ed). Oakland, California: Holden-Day.spa
dc.relation.referencesBrillinger, D. R. (2001). Time series: data analysis and theory. Oakland, Califor nia: Holden-Day.spa
dc.relation.referencesBrockwell, P. J. (2001). On continuous-time ARMA processes. En Handbook of statistics (pp. 249-276). Ámsterdam: Elsevier.spa
dc.relation.referencesBrockwell, P. J., & Davis, R. A. (1991). Time series: theory and methods. Nueva York: Springer Verlag.spa
dc.relation.referencesBrockwell, P. J., & Davis, R. A. (2002). Introduction to time series and forecasting (2.a ed.). Nueva York: Springer.spa
dc.relation.referencesBüyüközkan, G., & Çifçi, G. (2012). A combined fuzzy AHP and fuzzy TOP SIS based strategic analysis of electronic service quality in healthcare industry. Expert Systems with Applications, 39(3), 2341-2354.spa
dc.relation.referencesBüyüközkan, G., Kahraman, C., & Ruan, D. (2004). A fuzzy multi-criteria decision approach for software development strategy selection. Interna tional Journal of General Systems, 33(2-3), 259-280.spa
dc.relation.referencesByun, S. S., Balasingham, I., & Liang, X. (2008). Dynamic spectrum allocation in wireless cognitive sensor networks: Improving fairness and energy efficiency. En IEEE Vehicular Technology Conference. 21-24 Sept. 2008, Calgary, Canada.spa
dc.relation.referencesCárdenas-Juárez, M., Díaz-Ibarra, M. A., Pineda-Rico, U., Arce, A., & Ste vens-Navarro, E. (2016). On spectrum occupancy measurements at 2.4 GHz ISM band for cognitive radio applications. En International Confe rence on Electronics, Communications and Computers (pp. 25-31). 24 Feb - 26 Feb 2016, Cholula, México.spa
dc.relation.referencesChang, D.-Y. (1996). Applications of the extent analysis method on fuzzy AHP. European Journal of Operational Research, 95(3), 649-655. doi:http:// doi.org/10.1016/0377-2217(95)00300-2.spa
dc.relation.referencesChen, D., Zhang, Q., & Jia, W. (2008). Aggregation aware spectrum assign ment in cognitive ad-hoc networks. En International Conference on Cogniti ve Radio Oriented Wireless Networks and Communications. 15 May - 17 May 2008, Singapur, Singapur.spa
dc.relation.referencesChen, T., Zhang, H., Maggio, G. M., & Chlamtac, I. (2007). CogMesh: A cluster-based cognitive radio network. En IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (pp. 168-178). 18 Apr - 20 Apr 2007, Dublin, Irlanda.spa
dc.relation.referencesChen, Y., & Hee-Seok, O. (2016). A survey of measurement-based spectrum occupancy modeling for cognitive radios. IEEE Communications Surveys & Tutorials, 18(1), 848-859.spa
dc.relation.referencesCheng, X., & Jiang, M. (2011). Cognitive radio spectrum assignment based on artificial bee colony algorithm. En IEEE International Conference on Communication Technology (pp. 161-164).spa
dc.relation.referencesCho, J., & Lee, J. (2013). Development of a new technology product eva luation model for assessing commercialization opportunities using Del phi method and fuzzy AHP approach. Expert Systems with Applications, 40(13), 5314-5330.spa
dc.relation.referencesChou, C. T., Shankar, S., Kim, H., & Shin, K. G. (2007). What and how much to gain by spectrum agility? IEEE Journal on Selected Areas in Com munications, 25(3), 576-587.spa
dc.relation.referencesChoudhary, D., & Shankar, R. (2012). An STEEP-fuzzy AHP-TOPSIS fra mework for evaluation and selection of thermal power plant location: A case study from India. Energy, 42(1), 510-521.spa
dc.relation.referencesChristian, I., Moh, S., Chung, I., & Lee, J. (2012). Spectrum mobility in cog nitive radio networks. IEEE Communications Magazine, 50(6), 114-121spa
dc.relation.referencesCorrea, E. (2004). Series de tiempo: conceptos básicos. Medellín: Universidad Nacional de Colombia.spa
dc.relation.referencesCortés, J. (2011). Metodología para la implementación de tecnologías de la informa ción y las comunicaciones TIC’s para soportar una estrategia de cadena de suminis tro esbelta (tesis de maestría). Universidad Nacional de Colombia, Bogotá.spa
dc.relation.referencesCsurgai-Horvath, L., & Bito, J. (2011). Primary and secondary user activi ty models for cognitive wireless network. En International Conference on Telecommunications (pp. 301-306). 08 May - 11 May 2011, Ayia Napa, Cyprus.spa
dc.relation.referencesDadallage, S., Yi, C., & Cai, J. (2016). Joint beamforming, power and channel allocation in multi-user and multi-channel underlay MISO cognitive ra dio networks. IEEE Transactions on Vehicular Technology, 65(5), 3349-3359spa
dc.relation.referencesDadios, E. P. (2012). Fuzzy logic: Algorithms, techniques and implementations. InTech. Rijeka, Croatia.spa
dc.relation.referencesDelgado, M., & Rodríguez, B. (2016). Opportunities for a more efficient use of the spectrum based in cognitive radio. IEEE Latin America Transactions, 14(2), 610-616.spa
dc.relation.referencesDel-Ser, J., Matinmikko, M., Gil-López, S., & Mustonen, M. (2010). A novel Harmony search based spectrum allocation technique for cognitive radio networks. En International Symposium on Wireless Communication Systems (pp. 233-237). 19 Sep - 22 Sep 2010, York, United Kingdom.spa
dc.relation.referencesDevore, J. L. (2001). Probabilidad y estadística para ingeniería y ciencias (5.a ed.). México: Thomson.spa
dc.relation.referencesDing, L., Melodia, T., Batalama, S. N., Matyjas, J. D., & Medley, M. J. (2010). Cross-layer routing and dynamic spectrum allocation in cognitive radio ad hoc networks. IEEE Transactions on Vehicular Technology, 59(4), 1969- 1979.spa
dc.relation.referencesDuan, J., & Li, Y. (2011). An optimal spectrum handoff scheme for cognitive radio mobile ad hoc networks. Advances in Electrical and Computer Enginee ring, 11(3), 11-16.spa
dc.relation.referencesETSI. (2012). 3GPP TS 23.107 version 11.0.0 Release 11.spa
dc.relation.referencesFederal Communications Commission. (2003). Notice of proposed rulemaking and order. Washington, D.C.: autor.spa
dc.relation.referencesFerber, J. (1999). Multi-agent systems: An introduction to distributed artificial intel ligence. Addison-Wesley. Boston, MA, Estados Unidosspa
dc.relation.referencesFerro, R. A., Pedraza, L. F., & Hernández, C. (2011). Maximización del throughput en una red de radio cognitiva basado en la probabilidad de falsa alarma. Tecnura, 15(30), 64-70.spa
dc.relation.referencesFonte, J. P., & Mora, F. E. (2008, June). Implementación de protocolos de capar de enlace de datos en los simuladores Omnet++ Y Ns-2. Quito: EPN..spa
dc.relation.referencesForero, F. (2012). Detección de códigos de usuarios primarios para redes de radio cognitiva en un canal de acceso DCMA. Colombia. Bogotá, Colombia: Uni versidad Distrital Francisco José de Caldas.spa
dc.relation.referencesFraser, A. M. (2008). Hidden Markov models and dynamical systems. SIAM. (So ciety for Industrial and Applied Mathematics). Filadelfia, Estados Unidos.spa
dc.relation.referencesFu, J., Wu, J., Zhang, J., Ping, L., & Li, Z. (2010, October). A novel AHP and GRA based handover decision mechanism in heterogeneous wire less networks. En International Conference on Information Computing and Applications (pp. 213-220). Tangshan, China, October 15-18, 2010.spa
dc.relation.referencesFudenberg, D., & Tirole, J. (1991). Game Theory. MIT Press. Recuperado de https://books.google.com.co/books?id=pFPHKwXro3QCspa
dc.relation.referencesGallardo-Medina, J. R., Pineda-Rico, U., & Stevens-Navarro, E. (2009). VIKOR method for vertical handoff decision in beyond 3G wireless net works. En International Conference on Electrical Engineering, Computing Science and Automatic Control. 10 Nov - 13 Nov 2009, Toluca, México.spa
dc.relation.referencesGarrett, M. W., & Willinger, W. (1994). Analysis, modeling and generation of self-similar VBR video traffic. En ACM Sigcomm (pp. 269-280). En ACM SIGCOMM computer communication review, 24(4), (pp. 269- 280). ACM.spa
dc.relation.referencesGavrilovska, L., Atanasovski, V., Macaluso, I., & Dasilva, L. A. (2013). Lear ning and reasoning in cognitive radio networks. IEEE Communications Surveys and Tutorials, 15(4), 1761-1777.spa
dc.relation.referencesGiupponi, L., & Pérez-Neira, A. I. (2008). Fuzzy-based spectrum handoff in cognitive radio networks. En International Conference on Cognitive Radio Oriented Wireless Networks and Communications. 15 May - 17 May 2008, Singapur, Singapurspa
dc.relation.referencesGódor, G., & Détári, G. (2007). Novel network selection algorithm for va rious wireless network interfaces. En IST Mobile and Wireless Communica tions Summit (pp. 1-5). Budapest, Hungria 01 Jul - 05 Jul 2007.spa
dc.relation.referencesGoldberg, D. E., & Holland, J. H. (1988). Genetic algorithms and machine learning. Machine Learning, 3(2), 95-99.spa
dc.relation.referencesGreen, K. C., Armstrong, J. S., & Graefe, A. (2007). Methods to elicit fore casts from groups: Delphi and prediction markets compared. Social Scien ce Research Network, 8, 17-20.spa
dc.relation.referencesGuerrero, V. M. (2003). Análisis estadístico de series de tiempo económicas (2.a ed.). México: Thomson.spa
dc.relation.referencesHamilton, J. D. (1994). Time series analysis. New Jersey: Princeton University Press.spa
dc.relation.referencesHan, J., Kamber, M., & Pei, J. (2012). Data mining: concepts and techniques. Elsevier. San Francisco, CA, Estados Unidos.spa
dc.relation.referencesHan, Z., & Liu, K. J. R. (2008). Resource allocation for wireless networks: basics, techniques, and applications. Reino Unido: Cambridge University Press. Cambridge, Reino Unido.spa
dc.relation.referencesHarvey, A. C. (1993). Time series models. Pearson. New York, Estados Unidos.spa
dc.relation.referencesHasswa, A., Nasser, N., & Hassanein, H. (2006). Tramcar: A context-aware cross-layer architecture for next generation heterogeneous wireless net works. En IEEE International Conference on Communications (vol. 1, pp. 240-245). 11 Jun - 15 Jun 2006. Estambul, Turquia.spa
dc.relation.referencesHaykin, S. (1998). Neural networks: A Comprehensive foundation (2.a ed.). Up per Saddle River, NJ, Estados Unidos: Prentice Hall PTR. Nueva Jersey, Estados Unidos.spa
dc.relation.referencesHe, A., Bae, K. K., Newman, T. R., Gaeddert, J., Kim, K., Menon, R., et al (2010). A survey of artificial intelligence for cognitive radios. IEEE Tran sactions on Vehicular Technology, 59(4), 1578-1592spa
dc.relation.referencesHernández, C., & Giral, D. (2015). Spectrum mobility analytical tool for cog nitive wireless networks. International Journal of Applied Engineering Re search, 10(21), 42265-42274spa
dc.relation.referencesHernández, C., Giral, D., & Páez, I. (2015a). Benchmarking of the perfor mance of spectrum mobility models in cognitive radio networks. Interna tional Journal of Applied Engineering Research (IJAER), 10(21)spa
dc.relation.referencesHernández, C., Giral, D., & Páez, I. (2015b). Hybrid algorithm for frequency channel selection in Wi-Fi networks. World Academy of Science, Enginee ring and Technology, 9(12), 1212-1215.spa
dc.relation.referencesHernández, C., Giral, D., & Santa, F. (2015). MCDM spectrum handover models for cognitive wireless networks. World Academy of Science, Engi neering and Technology, 9(10), 679-682spa
dc.relation.referencesHernández, C., Páez, I., & Giral, D. (2015). Modelo AHP-VIKOR para han doff espectral en redes de radio cognitiva. Tecnura, 19(45), 29-39spa
dc.relation.referencesHernández, C., Pedraza L. F., & Martínez F. (2016). Algoritmos para asigna ción de espectro en redes de radio cognitiva. Tecnura, 20(48)spa
dc.relation.referencesHernández, C., Pedraza, L. F., & Rodriguez-Colina, E. (2016). Fuzzy fee dback algorithm for the spectral handoff in cognitive radio networks. Re vista Facultad de Ingeniería Universidad de Antioquia, (80), 47-62.spa
dc.relation.referencesHernández, C., Salcedo, O., & Pedraza, L. F. (2009). An ARIMA model for forecasting Wi-Fi data network traffic values. Ingeniería e Investigación, 29(2), 65-69.spa
dc.relation.referencesHernández, C., Salgado, C., & Salcedo, O. (2013). Performance of multiva riable traffic model that allows estimating throughput mean values. Revista Facultad de Ingeniería Universidad de Antioquia, (67), 52-62. Hernández, C., Vasquez, H., & Páez, I. (2015). Proactive spectrum handoff model with time series prediction. International Journal of Applied Engineering Research (IJAER), 10(21), 42259-42264.spa
dc.relation.referencesHernández, C., Salgado, C., López, H., & Rodríguez-Colina, E. (2015). Mul tivariable algorithm for dynamic channel selection in cognitive radio networks. EURASIP Journal on Wireless Communications and Networking, 2015(1), 1-17.spa
dc.relation.referencesHernández-Guillen, J., Rodríguez-Colina, E., Marcelín-Jiménez, R., & Pas coe-Chalke, M. (2012). CRUAM-MAC: A novel cognitive radio MAC protocol for dynamic spectrum access. En IEEE Latin-America Conference on Communications (pp. 1-6). Ecuador: IEEE. Cuenca, Ecuador.spa
dc.relation.referencesHernández-Sampieri, R., Fernández-Collado, C., & Baptista, P. (2006). Meto dología de la investigación. McGraw-Hill. Ciudad de México.spa
dc.relation.referencesHong, M., Kim, J., Kim, H., & Shin, Y. (2008). An adaptive transmission scheme for cognitive radio systems based on interference temperature model. En IEEE Consumer Communications and Networking Conference (pp. 69-73). 10 Jan - 12 Jan 2008, Las Vegas, NV, Estados Unidos.spa
dc.relation.referencesHoven, N., Tandra, R., & Sahai, A. (2005). Some fundamental limits on cog nitive radio. Wireless Foundations EECS, University of California, Berkeley.spa
dc.relation.referencesHöyhtyä, M., Mustonen, M., Sarvanko, H., Hekkala, A., Katz, M., Mäm melä, A., et al. (2008). Cognitive radio: An intelligent wireless communication system. Research Report VTT-R-02219-08.spa
dc.relation.referencesHübner, R. (2007). Strategic supply chain management in process industries: An application to specialty chemicals production network design (vol. 594). Sprin ger Science & Business Media. Berlin, Alemania.spa
dc.relation.referencesIEEE COMSOC. (2008). IEEE Standard definitions and concepts for dynamic spectrum access: terminology relating to emerging wireless networks, system functionality, and spectrum management. IEEE Std 1900.1-2008.spa
dc.relation.referencesIEEE Standards Coordinating Committee 41 on Dynamic Spectrum. (2008). 1900.1-2008 - IEEE standard definitions and concepts for dynamic spectrum access: terminology relating to emerging wireless networks, system functiona lity, and spectrum management. IEEE Standard 1900.1-2008. Recupera do de papers2://publication/uuid/ 6010BFFD-CE4E-4C69-A2B0- 0539E75F5422spa
dc.relation.referencesInwhee, J., Won-Tae, K., & Seokjoon, H. (2007). A network selection al gorithm considering power consumption in hybrid wireless networks. En International Conference on Computer Communications and Networks (pp. 1240-1243). 13 Aug - 16 Aug 2007, Honolulu, HI, Estados Unidos.spa
dc.relation.referencesIssariyakul, T., Pillutla, L. S., & Krishnamurthy, V. (2009). Tuning radio re source in an overlay cognitive radio network for TCP: Greed isn’t good. IEEE Communications Magazine, 47(7), 57-63.spa
dc.relation.referencesJayaweera, S., & Christodoulou, C. (2011). Radiobots: architecture, algorithms and realtime reconfigurable antenna designs for autonomous, self-learning future cogni tive radios. Albuquerque, Nuevo Mexico: Universidad de Nuevo Mexico.spa
dc.relation.referencesJi, Z., & Liu, K. J. R. (2007). Cognitive radios for dynamic spectrum access - dynamic spectrum sharing: a game theoretical overview. IEEE Commu nications Magazine, 45(5), 88-94.spa
dc.relation.referencesJiang, C., Chen, Y., & Liu, K. J. R. (2014). Multi-channel sensing and access game: Bayesian social learning with negative network externality. IEEE Transactions on Wireless Communications, 13(4), 2176-2188.spa
dc.relation.referencesJiménez, G. (2015). Ventajas y desventajas de las simulaciones. Recuperado el 12 de agosto del 2015, de http://www.virtual.unal.edu.co/cursos/sedes/ manizales/4060015/Lecciones/ Capitulo VI/ventajas.htmspa
dc.relation.referencesKaleem, F. (2012). VHITS: vertical handoff initiation and target selection in a he terogeneous wireless network. (Tesis de doctorado). Universidad Internacio nal de Florida.spa
dc.relation.referencesKanodia, V., Sabharwal, A., & Knightly, E. (2004). MOAR: A multi-channel opportunistic auto-rate media access protocol for ad hoc networks. En IEEE International Conference on Broadband Networks (pp. 600-610). 25-29 Oct. 2004, San Jose, California, Estados Unidos.spa
dc.relation.referencesKassar, M., Kervella, B., & Pujolle, G. (2008). An overview of vertical han dover decision strategies in heterogeneous wireless networks. Computer Communications, 31(10), 2607-2620.spa
dc.relation.referencesKaya, T., & Kahraman, C. (2010). Multicriteria renewable energy planning using an integrated fuzzy VIKOR & AHP methodology: The case of Istanbul. Energy, 35(6), 2517-2527.spa
dc.relation.referencesKhan, A. R., Bilal, S. M., & Othman, M. (2012). A performance comparison of open source network simulators for wireless networks. En Internatio nal Conference on Control System, Computing and Engineering (pp. 34-38). 23 Nov. - 25 Nov. 201, 2Penang, Malasia.spa
dc.relation.referencesKibria, M. R., Jamalipour, A., & Mirchandani, V. (2005). A location aware three-step vertical handoff scheme for 4G/B3G networks. En Global Tele communications Conference (vol. 5, pp. 2752-2756). 28 Nov.- 2 Dec. 2005, St. Louis, Estados Unidos.spa
dc.relation.referencesKim, H., & Shin, K. G. (2008). Efficient discovery of spectrum opportunities with MAC-layer sensing in cognitive radio networks. IEEE Transactions on Mobile Computing, 7(5), 533-545.spa
dc.relation.referencesKim, W., Kassler, A. J., Di Felice, M., & Gerla, M. (2010). Urban-X: Towards distributed channel assignment in cognitive multi-radio mesh networks. En IFIP Wireless Days. 20-22 Oct. 2010, Venice, Italia.spa
dc.relation.referencesKöksal, M. (2008). A survey of network simulators supporting wireless networks. Middle East Technical University. Ankara, Turquia.spa
dc.relation.referencesKondareddy, Y. R., Agrawal, P., & Sivalingam, K. (2008). Cognitive radio network setup without a common control channel. En IEEE Military Communications Conference. 16 Nov - 19 Nov 2008, San Diego, CA, Esta dos Unidos.spa
dc.relation.referencesKumar, K., Prakash, A., & Tripathi, R. (2016). Spectrum handoff in cogniti ve radio networks: A classification and comprehensive survey. Journal of Network and Computer Applications, 61, 161-188.spa
dc.relation.referencesLahby, M., Cherkaoui, L., & Adib, A. (2013). Hybrid network selection stra tegy by using M-AHP/E-TOPSIS for heterogeneous networks. En Inter national Conference on Intelligent Systems: Theories and Applications (pp. 1-6). May 8, 2013 - May 9, 2013, Rabat, Marruecos.spa
dc.relation.referencesLahby, M., Leghris, C., & Adib, A. (2011). A hybrid approach for network selection in heterogeneous multi-access environments. En International Conference on New Technologies, Mobility and Security (pp. 1-5). 7 Feb - 10 Feb 2011, Paris, Francia.spa
dc.relation.referencesLee, W. Y., & Akyildiz, I. F. (2008). Optimal spectrum sensing framework for cognitive radio networks. IEEE Transactions on Wireless Communications, 7(10), 3845-3857.spa
dc.relation.referencesLertsinsrubtavee, A., & Malouch, N. (2016). Hybrid spectrum sharing through adaptive spectrum handoff and selection. IEEE Transactions on Mobile Computing, 15(11), 2781-2793.spa
dc.relation.referencesLi, X., & Zekavat, S. A. (2008). Traffic pattern prediction and performan ce investigation for cognitive radio systems. En IEEE Wireless Communi cations and Networking Conference (pp. 894-899). March 31 2008-April 3 2008., Las Vegas, NV, Estados Unidos.spa
dc.relation.referencesLiu, F., Xu, Y., Guo, X., Zhang, W., Zhang, D., & Li, C. (2013). A spec trum handoff strategy based on channel reservation for cognitive radio network. En International Conference on Intelligent System Design and Engineering Applications (pp. 179-182). 6-7 November 2013, Zhangjiajie, Hunan, China.spa
dc.relation.referencesLiu, S. M., Pan, S., Mi, Z. K., Meng, Q. M., & Xu, M. H. (2010). A simple additive weighting vertical handoff algorithm based on SINR and AHP for heterogeneous wireless networks. En International Conference on Intelli gent Computation Technology and Automation (vol. 1, pp. 347-350). 11 May - 12 May 2010, Changsha, China.spa
dc.relation.referencesLiu, Y., & Tewfik, A. (2014). Primary traffic characterization and secondary transmissions. IEEE Transactions on Wireless Communications, 13(6), 3003- 3016.spa
dc.relation.referencesLópez, D. A., García, N. Y., & Herrera, J. F. (2015). Desarrollo de un modelo predictivo para la estimación del comportamiento de variables en una infraestructura de red. Información Tecnológica, 26(5), 143-154.spa
dc.relation.referencesLópez, D. A., Trujillo, E. R., & Gualdrón, O. E. (2015). Elementos funda mentales que Componen la radio cognitiva y asignación de bandas es pectrales. Información Tecnológica, 26(1), 23-40.spa
dc.relation.referencesMa, L., Shen, C. C., & Ryu, B. (2007). Single-radio adaptive channel algo rithm for spectrum agile wireless ad hoc networks. En IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (pp. 547- 558). 18 Apr - 20 Apr 2007, Dublin, Irlanda.spa
dc.relation.referencesMarinho, J., & Monteiro, E. (2012). Cognitive radio: Survey on communica tion protocols, spectrum decision issues, and future research directions. Wireless Networks, 18(2), 147-164.spa
dc.relation.referencesMasonta, M. T., Mzyece, M., & Ntlatlapa, N. (2013). Spectrum decision in cognitive radio networks: a survey. IEEE Communications Surveys & Tuto rials, 15(3), 1088-1107.spa
dc.relation.referencesMatinmikko, M., Del-Ser, J., Rauma, T., & Mustonen, M. (2013). Fuzzy logic based framework for spectrum availability assessment in cognitive radio systems. IEEE Journal on Selected Areas in Communications, 31(11), 2173-2184.spa
dc.relation.referencesMatlab. (2015). Matlab getting starte guide. Recuperado el 19 de agosto del 2015, de http://www.mathworks.com/academia/student_version/lear nmatlab.pdfspa
dc.relation.referencesMehbodniya, A., Kaleem, F., Yen, K. K., & Adachi, F. (2012). A fuzzy MADM ranking approach for vertical mobility in next generation hybrid networks. En International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (pp. 262-267). 03 Oct - 05 Oct 2012, St. Petersburg, Rusia.spa
dc.relation.referencesMéndez, L., Rodríguez-Colina, E., & Medina, C. (2013). Toma de decisiones basadas en el algoritmo de Dijkstra’s. Una solución para radio cognitiva. Redes de Ingeniería, 4(2), 35-42.spa
dc.relation.referencesMir, U., Merghem-Boulahia, L., Esseghir, M., & Gaïti, D. (2011). Dynamic spectrum sharing for cognitive radio networks using multiagent system. En IEEE Conference on Consumer Communications and Networking (pp. 658- 663). 9 Jan - 12 Jan 2011, Las Vegas, NV, Estados Unidos.spa
dc.relation.referencesMiranda, E. (2001). Improving subjective estimates using paired compari sons. IEEE Software, 18(1), 87-91spa
dc.relation.referencesMitola, J., & Maguire, G. Q. (1999). Cognitive radio: making software radios more personal. IEEE Personal Communications, 6(4), 13-18.spa
dc.relation.referencesNa, D.-H., Nan, H., & Yoo, S.-J. (2007). Policy-based dynamic channel selec tion architecture for cognitive radio networks. En International Conference on Communications and Networking in China (pp. 1190-1194). IEEE. 22nd– 24th Aug 2007, Shanghai, China.spa
dc.relation.referencesNisan, N., Roughgarden, T., Tardos, E., & Vazirani, V. V. (2007). Algorithmic game theory (vol. 1). Cambridge, Reino Unido: Cambridge University Press.spa
dc.relation.referencesOMNet++. (2015). User manual OMNeT++. Recuperado el 19 de agosto del 2015, de https://omnetpp.org/doc/omnetpp/manual/usman.htmspa
dc.relation.referencesOrmond, O., Murphy, J., & Muntean, G. (2006). Utility-based intelligent net work selection in beyond 3G systems. En IEEE International Conference on Communications (vol. 4, pp. 1831-1836).spa
dc.relation.referencesOzger, M., & Akan, O. B. (2016). On the utilization of spectrum opportunity in cognitive radio networks. IEEE Communications Letters, 20(1), 157-160.spa
dc.relation.referencesPáez, F. J., & Ortiz, J. E. (2010). Simulación de enlaces Wi-Fi y UMTS con J-SIM para estimar el BER y PER. Vínculos, 7(1), 17-24.spa
dc.relation.referencesPatil, S. K., & Kant, R. (2014). A fuzzy AHP-TOPSIS framework for ran king the solutions of knowledge management adoption in supply chain to overcome its barriers. Expert Systems with Applications, 41(2), 679-693.spa
dc.relation.referencesPedraza, L. F., Forero, F., & Páez, I. (2014). Evaluación de ocupación del espectro radioeléctrico en Bogotá-Colombia. Ingenieria y Ciencia, 10(19), 127-143.spa
dc.relation.referencesPedraza, L. F., Hernández, C., Galeano, K., Rodríguez-Colina, E., & Páez, I. (2016). Ocupación espectral y modelo de radio cognitiva para Bogotá. Bogotá: Universidad Distrital Francisco José de Caldas.spa
dc.relation.referencesPedraza, L. F., López, D., & Salcedo, O. (2011). Enrutamiento basado en el algoritmo de Dijkstra para una red de radio cognitiva. Tecnura, 15(30), 93-100.spa
dc.relation.referencesPetrova, M., Mahonen, P., & Osuna, A. (2010). Multi-class classification of analog and digital signals in cognitive radios using support vector machi nes. En International Symposium on Wireless Communication Systems (pp. 986-990). 19 Sep - 22 Sep 2010M, York, Reino Unido.spa
dc.relation.referencesPham, C., Tran, N. H., Do, C. T., Moon, S. Il, & Hong, C. S. (2014). Spec trum handoff model based on hidden Markov model in cognitive radio networks. En International Conference on Information Networking (pp. 406- 411). IEEE. 10 Feb. - 12 Feb. 2014, Phuket, Tailandia.spa
dc.relation.referencesPla, V., Vidal, J. R., Martínez-Bauset, J., & Guijarro, L. (2010). Modeling and characterization of spectrum white spaces for underlay cognitive radio networks. En IEEE International Conference on Communications. Mayo 23- 17 de 2010, Cape Town, South Africa.spa
dc.relation.referencesRahimian, N., Georghiades, C. N., Shakir, M. Z., & Qaraqe, K. A. (2014). On the probabilistic model for primary and secondary user activity for OFDMA-based cognitive radio systems: Spectrum occupancy and sys tem throughput perspectives. IEEE Transactions on Wireless Communica tions, 13(1), 356-369spa
dc.relation.referencesRamírez Pérez, C., & Ramos Ramos, V. M. (2010). Handover vertical: un problema de toma de decisión múltiple. En Congreso Internacional sobre In novación y Desarrollo Tecnológico. 24 al 26 de noviembre 2010, Cuernavaca, Morelos, México.spa
dc.relation.referencesRamírez-Pérez, C., & Ramos-R, V. (2013). On the effectiveness of multi criteria decision mechanisms for vertical handoff. En International Confe rence on Advanced Information Networking and Applications (pp. 1157-1164). March 25-28, 2013, Barcelona, Spain.spa
dc.relation.referencesRodríguez, A. B., Ramírez, L. J., & Chahuan, J. (2015). Nueva Generación de heurísticas para redes de fibra óptica WDM (Wavelength División Multiplexing) bajo tráfico dinamico. Información Tecnológica, 26(5), 135- 142.spa
dc.relation.referencesRodríguez-Colina, E., Ramírez, P., Carrillo, A., & Ernesto, C. (2011). Multi ple attribute dynamic spectrum decision making for cognitive radio net works. En International Conference on Wireless and Optical Communications Networks (pp. 1-5).spa
dc.relation.referencesSaaty, T. L. (1990). How to make a decision: The analytic hierarchy process. European Journal of Operational Research, 48(1), 9-26.spa
dc.relation.referencesSafavian, S. R., & Landgrebe, D. (1991). A survey of decision tree classifier methodology. IEEE Transactions on Systems, Man and Cybernetics, 21(3), 660-674.spa
dc.relation.referencesSgora, A., Vergados, D. D., & Chatzimisios, P. (2010). An access network se lection algorithm for heterogeneous wireless environments. En The IEEE symposium on Computers and Communications (pp. 890-892). Junio 22 al 25 de 2010, Riccione, Italia.spa
dc.relation.referencesShun-Fang, Y., Jung-Shyr, W., & Hsu-Hung, H. (2008). A vertical media independent handover decision algorithm across Wi-Fi networks. En In ternational Conference on Wireless and Optical Communications Networks. 5-7 May 2008, Surabaya, Indonesia.spa
dc.relation.referencesSong, Q., & Jamalipour, A. (2005). A network selection mechanism for next generation networks. En IEEE International Conference on Communications (vol. 2, pp. 1418-1422).spa
dc.relation.referencesSong, Y., & Xie, J. (2010). Proactive spectrum handoff in cognitive radio ad hoc networks based on common hopping coordination. En IEEE Confe rence on Computer Communications (pp. 1-2). Marzo 15 al 19. San Diego, CA, Estados Unidos.spa
dc.relation.referencesSriram, K., & Whitt, W. (1986). Characterizing superposition arrival pro cesses in packet multiplexers for voice and data. IEEE Journal on Selected Areas in Communications, 4(6), 833-846.spa
dc.relation.referencesSteenkiste, P., Sicker, D., Minden, G., & Raychaudhuri, D. (2009). Future di rections in cognitive radio network research. NSF workshop report. Recuperado de https://www.cs.cmu.edu/~prs/NSF_CRN_Report_Final.pdfspa
dc.relation.referencesStevens-Navarro, E., & Wong, V. (2007). A vertical handoff decision algo rithm for heterogeneous wireless networks. En IEEE Wireless Communica tions and Networking Conference (pp. 3199-3204). Marzo 11 al 15 de 2007, Hong Kong, China.spa
dc.relation.referencesStevens-Navarro, E., & Wong, V. W. S. (2006). Comparison between verti cal handoff decision algorithms for heterogeneous wireless networks. En IEEE Vehicular Technology Conference (vol. 2, pp. 947-951).spa
dc.relation.referencesStevens-Navarro, E., Gallardo-Medina, R., Pineda-Rico, U., & Acosta-Elías, J. (2012). Application of MADM method VIKOR for vertical handoff in heterogeneous wireless networks. IEICE Transactions on Communications, 95(2), 599-602.spa
dc.relation.referencesStevens-Navarro, E., Lin, Y., & Wong, V. W. S. (2008). An MDP-based verti cal handoff decision algorithm for heterogeneous wireless networks. IEEE Transactions on Vehicular Technology, 57(2), 1243-1254.spa
dc.relation.referencesStevens-Navarro, E., Martínez-Morales, J. D., & Pineda-Rico, U. (2012). Evaluation of vertical handoff decision algorightms based on MADM methods for heterogeneous wireless networks. Journal of Applied Research and Technology, 10(4), 534-548.spa
dc.relation.referencesSutton, R. S., & Barto, A. G. (1998). Reinforcement learning: an introduc tion. IEEE Transactions on Neural Networks, 9(5), 1054.spa
dc.relation.referencesTaj, M. I., & Akil, M. (2011). Cognitive radio spectrum evolution prediction using a rtificial neural networks based multivariate time series modelling. En Wireless Conference Sustainable Wireless Technologies (pp. 1-6). VDE. April 27-29, 2011, Vienna, Austria.spa
dc.relation.referencesTanino, T., Tanaka, T., & Inuiguchi, M. (2003). Multi-objective programming and goal programming: theory and applications. Berlin, Alemania: Springer Science & Business Media.spa
dc.relation.referencesTragos, E., Zeadally, S., Fragkiadakis, A., & Siris, V. (2013). Spectrum assig nment in cognitive radio networks: A comprehensive survey. IEEE Com munications Surveys and Tutorials, 15(3), 1108-1135.spa
dc.relation.referencesTrigui, E., Esseghir, M., & Merghem-Boulahia, L. (2012). Multi-agent sys tems negotiation approach for handoff in mobile cognitive radio networks. En International Conference on New Technologies, Mobility and Security (pp. 1-5). 7 May - 10 May, 2012, Estambul, Turquia.spa
dc.relation.referencesTsiropoulos, G., Dobre, O., Ahmed, M., & Baddour, K. (2016). Radio resou rce allocation techniques for efficient spectrum access in cognitive radio networks. IEEE Communications Surveys & Tutorials, 18(1), 824-847.spa
dc.relation.referencesTuan, T. A., Tong, L. C., & Premkumar, A. B. (2010). An adaptive learning automata algorithm for channel selection in cognitive radio network. En IEEE International Conference on Communications and Mobile Computing (vol. 2, pp. 159-163). 12 al 14 de Abril de 2010, Shenzhen, China.spa
dc.relation.referencesUniversidad Politécnica de Cataluña. (2004). User manual OPNET. Recupera do el 19 de agosto del 2015, de http://ansat.es/soporte/docs/fragmen tacion/OPNET_Modeler_Manual.pdfspa
dc.relation.referencesValenta, V., Maršálek, R., Baudoin, G., Villegas, M., Suárez, M., & Robert, F. (2010). Survey on spectrum utilization in Europe: Measurements, analy ses and observations. En International Conference on Cognitive Radio Oriented Wireless Networks (pp. 2-6). Jun 16, 2010 - Jun 18, 2010, Cannes, France.spa
dc.relation.referencesVan, B., Prasad, R. V., & Niemegeers, I. (2012). A survey on handoffs - Les sons for 60 GHz based wireless systems. IEEE Communications Surveys and Tutorials, 14(1), 64-86.spa
dc.relation.referencesVillavicencio, J. (2014). Introducción a series de tiempo. Recuperado el 10 de diciembre de 2014, de http://www.estadisticas.gobierno.pr/iepr/Link Click.aspx?fileticket=4_BxecUaZmg=spa
dc.relation.referencesWang, C. W., & Wang, L. C. (2009). Modeling and analysis for proactive decision spectrum handoff in cognitive radio networks. En IEEE Interna tional Conference on Communications (pp. 1-6).spa
dc.relation.referencesWang, L.-C., & Wang, C.-W. (2008). Spectrum handoff for cognitive radio networks: reactive-sensing or proactive-sensins? En IEEE International Conference on High Performance, Computing and Communications (pp. 343- 348). 25 Sep. - 27 Sep. 2008, Dalian, China.spa
dc.relation.referencesWang, L.-C., Wang, C.-W., & Chang, C.-J. (2012). Modeling and analysis for spectrum handoffs in cognitive radio networks. IEEE Transactions on Mobile Computing, 11(9), 1499-1513.spa
dc.relation.referencesWang, X., Wong, A., & Ho, P.-H. (2010). Dynamically optimized spatiotem poral prioritization for spectrum sensing in cooperative cognitive radio. Wireless Networks, 16(4), 889-901.spa
dc.relation.referencesWei, Q., Farkas, K., Prehofer, C., Mendes, P., & Plattner, B. (2006). Context aware handover using active network technology. Computer Networks, 50(15), 2855-2872.spa
dc.relation.referencesWei, Y., Li, X., Song, M., & Song, J. (2008). Cooperation radio resource management and adaptive vertical handover in heterogeneous wireless networks. En International Conference on Natural Computation (vol. 5, pp. 197-201).spa
dc.relation.referencesWeingart, T., Sicker, D. C., & Grunwald, D. (2007). A statistical method for reconfiguration of cognitive radios. IEEE Wireless Communications, 14(4), 34-40.spa
dc.relation.referencesWillkomm, D., Machiraju, S., Bolot, J., & Wolisz, A. (2008). Primary users in cellular networks: a large-scale measurement study. En IEEE Sympo sium on New Frontiers in Dynamic Spectrum Access Networks (pp. 401-411). 14-17 Oct. 2008, Chicago, Illinois, Estados Unidos.spa
dc.relation.referencesWoods, W. A. (1986). Important issues in knowledge representation. Procee dings of the IEEE, 74(10), 1322-1334.spa
dc.relation.referencesWooldridge, M. (2009). An introduction to multiagent systems. Glasgow, Gran Bretaña: John Wiley & Sons.spa
dc.relation.referencesWu, Y., Yang, K., Zhao, L., & Cheng, X. (2009). Congestion-aware proactive vertical handoff algorithm in heterogeneous wireless networks. IET Communications, 3(7), 1103.spa
dc.relation.referencesWu, Y., Yang, Q., Liu, X., & Kwak, K. (2016). Delay-Constrained optimal transmission with proactive spectrum handoff in cognitive radio networks. IEEE Transactions on Communications. 15(3), 627-640.spa
dc.relation.referencesXian, X., Shi, W., & Huang, H. (2008). Comparison of OMNET++ and other simulator for WSN simulation. En IEEE Conference on Industrial Electro nics and Applications (pp. 1439-1443). 3-5 June 2008. Singapur, Singapur.spa
dc.relation.referencesXu, G., & Lu, Y. (2006). Channel and modulation selection based on support vector machines for cognitive radio. En International Conference on Wireless Communications, Networking and Mobile Computing (pp. 4-7). 22 Sep - 24 Sep 2006, Wuhan, China.spa
dc.relation.referencesXu, Y., Anpalagan, A., Wu, Q., Shen, L., Gao, Z., & Wang, J. (2013). Deci sion-Theoretic distributed channel selection for opportunistic spectrum access: strategies, challenges and solutions. IEEE Communications Surveys & Tutorials, 15(4), 1689-1713.spa
dc.relation.referencesYang, C., Lou, W., Fu, Y., Xie, S., & Yu, R. (2016). On throughput maximi zation in multichannel cognitive radio networks via generalized access strategy. IEEE Transactions on Communications, 64(4), 1384-1398.spa
dc.relation.referencesYang, P., Sun, Y., Liu, C., Li, W., & Wen, X. (2013). A novel fuzzy logic based vertical handoff decision algorithm for heterogeneous wireless net works. En International Symposium on Wireless Personal Multimedia Com munications (pp. 1-5). 24 Jun. - 27 Jun. 2013, Atlantic City, NJ, Estados Unidos.spa
dc.relation.referencesYang, S. F., & Wu, J. S. (2008). A IEEE 802.21 handover design with QOS provision across WLAN and WMAN. En International Conference on Communications, Circuits and Systems (pp. 548-552). 25-27 May 2008, Fu jian, China.spa
dc.relation.referencesYang, S. J., & Tseng, W. C. (2013). Design novel weighted rating of multiple attributes scheme to enhance handoff efficiency in heterogeneous wireless networks. Computer Communications, 36(14), 1498-1514.spa
dc.relation.referencesYi-Bing, L., & Ai-Chun, P. (2000). Comparing soft and hard handoffs. IEEE Transactions on Vehicular Technology, 49(3), 192-798.spa
dc.relation.referencesYifei, W., Yinglei, T., Li, W., Mei, S., & Xiaojun, W. (2013). QoS provisioning energy saving dynamic access policy for overlay cognitive radio networks with hidden Markov channels. China Communications, 10(12), 92-101.spa
dc.relation.referencesYing, W., Jun, Y., Yun, Z., Gen, L., & Ping, Z. (2008). Vertical handover de cision in an enhanced media independent handover framework. En Wire less Communications and Networking Conference (pp. 2693-2698). March 31 2008-April 3 2008, Las Vegas, NV, Estados Unidos.spa
dc.relation.referencesYonghui, C. (2010). Study of the bayesian networks. En IEEE International Conference on E-Health Networking, Digital Ecosystems and Technologies (vol. 1, pp. 172-174). 17 Apr - 18 Apr 2010, Shenzhen, China.spa
dc.relation.referencesYoon, K. P., & Hwang, C.-L. (1995). Multiple attribute decision making: an in troduction (vol. 104). Thousand Oaks, Estados Unidos: Sage Publications.spa
dc.relation.referencesZadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353.spa
dc.relation.referencesZapata, J. A., Arango, M. D., & Adarme, W. (2012). Applying fuzzy exten ded analytical hierarchy (FEAHP) for selecting logistics software. Inge niería e Investigación, 32(1), 94-99.spa
dc.relation.referencesZhang, W. (2004). Handover decision using fuzzy MADM in heterogeneous networks. En IEEE Wireless Communications and Networking Conference (vol. 2, pp. 653-658). 21 al 25 de marzo de 2004, Atlanta, Estados Unidos.spa
dc.relation.referencesZhang, Y., Tay, W. P., Li, K. H., Esseghir, M., & Gaïti, D. (2016). Oppor tunistic Spectrum access with temporal-spatial reuse in cognitive radio networks. En IEEE International Conference on Acoustics, Speech and Signal Processing (pp. 3661-3665). 20 al 25 de marzo de 2016, Shangai, China.spa
dc.relation.referencesZhao, Y., Mao, S., Neel, J. O., & Reed, J. H. (2009). Performance evaluation of cognitive radios: Metrics, utility functions, and methodology. Procee dings of the IEEE, 97(4), 642-658.spa
dc.relation.referencesZheng, H., & Cao, L. (2005). Device-centric spectrum management. En IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Net works (pp. 56-65). 8 Nov. - 11 Nov. 2005. Baltimore, MD, Estados Unidos.spa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accesoAbierto (Texto Completo)spa
dc.rights.accessrightsOpenAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectRedes de radio cognitivaspa
dc.subjectModelo adaptativo multivariablespa
dc.subjectAlgoritmos de toma de decisionesspa
dc.subjectMétricas de evaluaciónspa
dc.subject.keywordCognitive radio networksspa
dc.subject.keywordMultivariable adaptive modelspa
dc.subject.keywordDecision making algorithmsspa
dc.subject.keywordEvaluation Metricsspa
dc.subject.lembEspectro electromagnéticospa
dc.subject.lembEspectro radioeléctricospa
dc.subject.lembTelecomunicacionesspa
dc.subject.lembAlgoritmosspa
dc.titleModelo adaptativo multivariable de handoff espectral para incrementar el desempeño en redes móviles de radio cognitivaspa
dc.title.titleenglishAdaptive multivariate spectral handoff model to increase performance in mobile cognitive radio networksspa
dc.typebookspa
dc.type.driverinfo:eu-repo/semantics/bookspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
pags internas.pdf
Tamaño:
18.13 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
7 KB
Formato:
Item-specific license agreed upon to submission
Descripción: