The Euler spiral on the roller coaster

dc.contributor.authorGarcía-Matos, Javier Camilospa
dc.contributor.authorAvilán-Vargas, Nicolásspa
dc.date2019-05-06
dc.date.accessioned2019-09-19T21:09:40Z
dc.date.available2019-09-19T21:09:40Z
dc.descriptionThe design of the roller coaster involves a sequence of curves that must be united smoothly, whose parameterization enables the study of its properties. In this paper we study the curvature of the trajectory that a vehicle would follow in mechanical attraction.The discontinuous changes in the curvature along the trajectory imply changes in the normal acceleration that could be unsafe for the passengers, a different parameterization was sought. When we consider a trajectory whose curvature changes linearly with the displacement, it is found that the Euler spiral allows to smoothly connect different segments of the trajectory and design safer mechanical attractions. Finally, the parametrization obtained is compared with the trajectory of the Double Loop attraction in the Salitre Mágico amusement park in Bogotá, finding that its path is formed by sequences of circumferece arcs and sections of the Euler spiral.en-US
dc.descriptionEl diseño de la Montaña Rusa involucra una secuencia de curvas que deben ser unidas suavemente cuya parametrización facilita el estudio de sus propiedades. En este artículo se estudia la curvatura de la trayectoria que seguiría un vehículo en la atracción mecánica.Observando que los cambios discontinuos en la curvatura a lo largo de la trayectoria implican cambios en la aceleración normal que podrían ser inseguros para los pasajeros se buscó una parametrización diferente. Al considerar una trayectoria cuya curvatura cambia linealmente con el desplazamiento se encuentra que la espiral de Euler permite conectar suavemente diferentes segmentos de la trayectoria y diseñar atracciones mecánicas más seguras. Finalmente se compara la parametrización obtenida con la trayectoria de la atracción Doble Loop del parque de diversiones Salitre Mágico de Bogotá, encontrando que su trayectoria está formada por secuencias de arcos de circunferencia y secciones de la espiral de Euler.es-ES
dc.formatapplication/pdf
dc.identifierhttps://revistas.udistrital.edu.co/index.php/revcie/article/view/14775
dc.identifier10.14483/23448350.14775
dc.identifier.urihttp://hdl.handle.net/11349/17007
dc.languagespa
dc.publisherUniversidad Distrital Francisco José de Caldases-ES
dc.relationhttps://revistas.udistrital.edu.co/index.php/revcie/article/view/14775/14772
dc.rightsDerechos de autor 2019 Javier Camilo García Matos, Nicolás Avilán Vargases-ES
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/4.0es-ES
dc.sourceRevista Científica; Vol 2 No 35 (2019): May-August; 225-232en-US
dc.sourceRevista científica; Vol. 2 Núm. 35 (2019): mayo-agosto; 225-232es-ES
dc.source2344-8350
dc.source0124-2253
dc.subjectEuler spiralen-US
dc.subjectcurvatureen-US
dc.subjectnormal accelerationen-US
dc.subjectEspiral de Euleres-ES
dc.subjectcurvaturaes-ES
dc.subjectaceleración normales-ES
dc.titleThe Euler spiral on the roller coasteren-US
dc.titleLa espiral de Euler en la montaña rusaes-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.type.coarhttp://purl.org/coar/resource_type/c_6501

Archivos