Modelo para clasificación de precipitaciones estratiformes y convectivas en zona ecuatorial usando datos de radares meteorológicos

dc.contributor.advisorPerdomo Charry , Cesar Andrey
dc.contributor.authorRomero Ortega, Raúl
dc.contributor.orcidPerdomo Charry, César Andrey [0000-0001-7310-4618]
dc.date.accessioned2024-10-29T15:27:32Z
dc.date.available2024-10-29T15:27:32Z
dc.date.created2024-08-20
dc.descriptionEste documento muestra la propuesta de un modelo de clasificación de precipitaciones estratiformes y convectivas haciendo uso de datos obtenidos por radares meteorológicos en zonas ecuatoriales, especialmente en la geografía colombiana. Se realizará la decodificación de los datos generados por los radares meteorológicos, esto debido a que los datos se obtienen en el formato de la marca fabricante del radar; lo anterior para poder realizar un análisis estadístico de los mismos. Teniendo la información estadísticamente analizada va a permitir seleccionar las variables que van a ser usadas en el proyecto a partir de la información obtenida en el análisis preliminar. Luego se diseñará un modelo conceptual que permita definir las limitantes y relaciones entre los componentes del sistema, para determinar las herramientas adecuadas a usar en el algoritmo de clasificación. Finalmente se realizará el diseño y desarrollo de un protocolo de pruebas que permita validar el modelo de clasificación de precipitaciones estratiformes y convectivas.
dc.description.abstractThis paper shows the proposal of a classification model of stratiform and convective precipitation using data obtained by meteorological radars in equatorial areas, especially in the Colombian geography. The data generated by the meteorological radars will be decoded, this because the data are obtained in the format of the radar manufacturer brand; the above in order to carry out a statistical analysis of them. Having the information statistically analyzed will allow the selection of the variables that will be used in the project from the information obtained in the preliminary analysis. Then, a conceptual model will be designed to define the constraints and relationships between the components of the system, in order to determine the appropriate tools to be used in the classification algorithm. Finally, the design and development of a test protocol will be carried out to validate the classification model of stratiform and convective rainfall.
dc.format.mimetypepdf
dc.identifier.urihttp://hdl.handle.net/11349/42462
dc.language.isospa
dc.relation.referencesAwaka, J., Iguchi, T., Kumagai, H., & Okamoto, K. (1997). Rain type classification algorithm for TRMM precipitation radar. IGARSS’97. 1997 IEEE International Geoscience and Remote Sensing Symposium Proceedings. Remote Sensing - A Scientific Vision for Sustainable Development, 4(2), 1633–1635. https://doi.org/10.1109/IGARSS.1997.608993
dc.relation.referencesBechini, R., Baldini, L., & Chandrasekar, V. (2013). Polarimetric Radar Observations in the Ice Region of Precipitating Clouds at C-Band and X-Band Radar Frequencies. Journal of Applied Meteorology and Climatology, 52(5), 1147–1169. https://doi.org/10.1175/JAMC-D-12-055.1
dc.relation.referencesBechini, R., & Chandrasekar, V. (2015). A Semisupervised Robust Hydrometeor Classification Method for Dual-Polarization Radar Applications. Journal of Atmospheric and Oceanic Technology, 32(1), 22–47. https://doi.org/10.1175/JTECH-D-14-00097.1
dc.relation.referencesBerg, P., Moseley, C., & Haerter, J. O. (2013). Strong increase in convective precipitation in response to higher temperatures. Nature Geoscience, 6(3), 181–185. https://doi.org/10.1038/ngeo1731
dc.relation.referencesBesic, N., Figueras i Ventura, J., Grazioli, J., Gabella, M., Germann, U., & Berne, A. (2016). Hydrometeor classification through statistical clustering of polarimetric radar measurements: a semi-supervised approach. Atmospheric Measurement Techniques, 9(9), 4425–4445. https://doi.org/10.5194/amt-9-4425-2016
dc.relation.referencesBringi, V. N., Williams, C. R., Thurai, M., & May, P. T. (2009). Using dual-polarized radar and dual-frequency profiler for DSD characterization: A case study from Darwin, Australia. Journal of Atmospheric and Oceanic Technology, 26(10), 2107–2122. https://doi.org/10.1175/2009JTECHA1258.1
dc.relation.referencesDolan, B., & Rutledge, S. A. (2009). A Theory-Based Hydrometeor Identification Algorithm for X-Band Polarimetric Radars. Journal of Atmospheric and Oceanic Technology, 26(10), 2071–2088. https://doi.org/10.1175/2009JTECHA1208.1
dc.relation.referencesDolan, B., Rutledge, S. A., Lim, S., Chandrasekar, V., & Thurai, M. (2013). A Robust C-Band Hydrometeor Identification Algorithm and Application to a Long-Term Polarimetric Radar Dataset. Journal of Applied Meteorology and Climatology, 52(9), 2162–2186. https://doi.org/10.1175/JAMC-D-12-0275.1
dc.relation.referencesErnesto Gómez Vargas César A. Perdomo Ch, J. R. C. L. (2020). Ground Clutter Detection and Correction Model for C-band Weather Radars. International Journal of Advanced Science and Technology, 29(05), 11780–11798. http://sersc.org/journals/index.php/IJAST/article/view/25375
dc.relation.referencesErnesto Gómez Vargas, Julián R. Camargo L., & César A. Perdomo Ch. (2020). Hydrometeor Classification Algorithm for Medium Latitudes with a C-band Polarimetric Radar. International Journal of Advanced Science and Technology. 29(3), 14023 - 14038.
dc.relation.referencesFan, J., Farmen, M., & Gijbels, I. (1998). Local Maximum Likelihood Estimation and Inference. Journal of the Royal Statistical Society Series B: Statistical Methodology, 60(3), 591–608. https://doi.org/10.1111/1467-9868.00142
dc.relation.referencesFelipe, A., Montoya, H., José, Ó., & Sánchez, M. (2015). Cambio Climático Y Variabilidad Espacio – Temporal De La Precipitación En Colombia. 131–150. https://doi.org/10.14508/reia.2015.12.24.131-150
dc.relation.referencesFrederic Fabry - Isztar Zawadzki. (1995). Long-Term Radar Observations of the Melting Layer of Precipitation and Their Interpretation.
dc.relation.referencesFundamentos de radar meteorológico. (n.d.). Retrieved February 22, 2018, from https://www.meted.ucar.edu/radar/basic_wxradar_es/print.php
dc.relation.referencesGómez Vargas, E. (2015). Modelo Para La Estimación Cuantitativa De Precipitación a Partir De Datos De Radares Polarimétricos
dc.relation.referencesGonzález-Cerón, F., Olaiz-González, P. R., Mata-Estrada, A., Pro-Martínez, A., Sosa Montes, E., Fernández-de la O, M., Calzada-Marín, J. M., & Rivas-Jacobo, M. A. (2019). Modelación del crecimiento de pollos de engorda criados en pastoreo o confinamiento. Agro Productividad, 12(8). https://doi.org/10.32854/agrop.v0i0.1449
dc.relation.referencesGorgucci, E., Scarchilli, G., Chandrasekar, V., & Bringi, V. N. (2001). Rainfall Estimation from Polarimetric Radar Measurements: Composite Algorithms Immune to Variability in Raindrop Shape–Size Relation. Journal of Atmospheric and Oceanic Technology, 18(11), 1773–1786. https://doi.org/10.1175/1520-0426(2001)018<1773:REFPRM>2.0.CO;2
dc.relation.referencesGrant, W. E., Marín, S. L., & Pedersen, E. K. (2001). Ecología y manejo de recursos naturales: análisis de sistemas y simulación
dc.relation.referencesHurtado-Montoya, A. F., & Mesa-Sánchez, Ó. J. (2014). Reanalysis of monthly precipitation fields in Colombian territory. Dyna, 81(186), 251–258. https://doi.org/10.15446/dyna.v81n186.40419
dc.relation.referencesInternational Union of Radio Science. General Assembly (30th : 2011 : Istanbul, T., International Union of Radio Science., & Institute of Electrical and Electronics Engineers. (2011). General Assembly and Scientific Symposium, 2011 XXXth URSI : date, 13-20 Aug. 2011.
dc.relation.referencesJackson, I. J., & Weinand, H. (1995). Classification of tropical rainfall stations: A comparison of clustering techniques. International Journal of Climatology, 15(9), 985–994. https://doi.org/10.1002/joc.3370150905
dc.relation.referencesJaramillo, Á., & Chaves, B. (2000). Distribución de la precipitación en Colombia analizada mediante conglomeración estadística. Cenicafé, 51(2), 102–113.
dc.relation.referencesJ Smyth, B. T., & Illingworth, A. J. (1998). Radar estimates of rainfall rates at the ground in bright band and non-bright band events (Vol. 124).
dc.relation.referencesKim, G., Cha, D., Park, C., Lee, G., Jin, C., Lee, D., Suh, M., Ahn, J., Min, S., Hong, S., & Kang, H. (2018). Future changes in extreme precipitation indices over Korea. International Journal of Climatology, 38(S1). https://doi.org/10.1002/joc.5414
dc.relation.referencesLam, H. Y., Luini, L., Din, J., Capsoni, C., & Panagopoulos, A. D. (2010). Stratiform and convective rain discrimination for equatorial region. Proceeding, 2010 IEEE Student Conference on Research and Development - Engineering: Innovation and Beyond, SCOReD 2010, SCOReD, 112–116. https://doi.org/10.1109/SCORED.2010.5703983
dc.relation.referencesLaura Angélica Cadena Contreras. (2018). MODELO DE CLASIFICACIÓN DE HIDROMETEOROS PARA ZONAS ECUATORIALES A PARTIR DE OBSERVABLES DE RADAR METEOROLÓGICO. http://hdl.handle.net/11349/8030
dc.relation.referencesLiu, H., & Chandrasekar, V. (2000a). Classification of Hydrometeors Based on Polarimetric Radar Measurements: Development of Fuzzy Logic and Neuro-Fuzzy Systems, and In Situ Verification. Journal of Atmospheric and Oceanic Technology, 17(2), 140–164. https://doi.org/10.1175/1520-0426(2000)017<0140:COHBOP>2.0.CO;2
dc.relation.referencesLiu, H., & Chandrasekar, V. (2000b). Classification of Hydrometeors Based on Polarimetric Radar Measurements: Development of Fuzzy Logic and Neuro-Fuzzy Systems, and In Situ Verification.
dc.relation.referencesLozza, H. F., & Martínez, M. I. (2016). Precipitación Convectiva Y Estratiforme En La Estación Buenos Aires - Observatorio Central: Una Aproximación Más Precisa A Su Discriminación. 41, 33–47.
dc.relation.referencesMaría Paula Hobouchian, Yanina García Skabar, Daniel Barrera, D. V. y P. S. (2017). Validación De La Estimación De Precipitación Por Satélite Aplicando La Técnica Hidroestimador. 42, 3–16.
dc.relation.referencesMarzano, F. S., Scaranari, D., Montopoli, M., & Vulpiani, G. (2008). Supervised Classification and Estimation of Hydrometeors From C-Band Dual-Polarized Radars: A Bayesian Approach. IEEE Transactions on Geoscience and Remote Sensing, 46(1), 85–98. https://doi.org/10.1109/TGRS.2007.906476
dc.relation.referencesNavas, R., Gamazo, P., & Borrero, A. (2022). Evaluación del Efecto de la Densidad de Pluviómetros en la Fusión Radar-Pluviómetro.
dc.relation.referencesNieves Sánchez Guerrero, G. de la. (2003). Técnicas participativas para la planeación : procesos breves de intervención. Fundación ICA.
dc.relation.referencesPark, H. S., Ryzhkov, A. V., Zrnić, D. S., & Kim, K. E. (2009a). The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Weather and Forecasting, 24(3), 730–748. https://doi.org/10.1175/2008WAF2222205.1
dc.relation.referencesPark, H. S., Ryzhkov, A. V., Zrnić, D. S., & Kim, K. E. (2009b). The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Weather and Forecasting, 24(3), 730–748. https://doi.org/10.1175/2008WAF2222205.1
dc.relation.referencesPaul T. Willis - Andrew J. Heymsfield. (1989). Structure of the Melting Layer in Mesoscale Convective System Stratiform Precipitation.
dc.relation.referencesPenide, G., Protat, A., Kumar, V. V., & May, P. T. (2013). Comparison of Two Convective/Stratiform Precipitation Classification Techniques: Radar Reflectivity Texture versus Drop Size Distribution–Based Approach. Journal of Atmospheric and Oceanic Technology, 30(12), 2788–2797. https://doi.org/10.1175/JTECH-D-13-00019.1
dc.relation.referencesQi, Y., & Zhang, J. (2013). Correction of radar QPE errors associated with low and partially observed brightband layers. Journal of Hydrometeorology, 14(6), 1933–1943. https://doi.org/10.1175/JHM-D-13-040.1
dc.relation.referencesQ. Maria - D. Marian. (2004). Art05. 1–11. radar meteorológico: fundamentos. (1997a). http://www.crahi.upc.edu/curs/html_pages/trasp1.html
dc.relation.referencesradar meteorológico: fundamentos. (1997b). http://www.crahi.upc.edu/curs/html_pages/trasp1.html
dc.relation.referencesRamírez, S., & Lizarazo, I. (2019). Detección digital de Sistemas Convectivos de Mesoescala a partir de imágenes meteorológicas multiespectrales.
dc.relation.referencesRibaud, J. ‐F., Bousquet, O., Coquillat, S., Al‐Sakka, H., Lambert, D., Ducrocq, V., & Fontaine, E. (2016). Evaluation and application of hydrometeor classification algorithm outputs inferred from multi‐frequency dual‐polarimetric radar observations collected during HyMeX. Quarterly Journal of the Royal Meteorological Society, 142(S1), 95–107. https://doi.org/10.1002/qj.2589
dc.relation.referencesRonald E. Stewart, J. D. M. , J. C. P. , R. E. C. (1984). Characteristics through the Melting Layer of Stratiform Clouds
dc.relation.referencesRosengaus, M. (1999). Sobre el error en la Estimación utilizando radar meteorológico. Ingeniería Del Agua, 6(junio), 185–198. https://doi.org/10.4995/ia.1999.2785
dc.relation.referencesRulfová, Z., & Kyselý, J. (2014). Trends of Convective and Stratiform Precipitation in the Czech Republic, 1982–2010. Advances in Meteorology, 2014, 1–11. https://doi.org/10.1155/2014/647938
dc.relation.referencesSaaty, T. L. (2008). Decision making with the analytic hierarchy process. International Journal of Services Sciences, 1(1), 83. https://doi.org/10.1504/IJSSCI.2008.017590
dc.relation.referencesSarochar, R. H., Ciappesoni, H. H., & Ruiz, N. E. (2005). Precipitaciones Convectivas Y Estratiformes En La Pampa Húmeda: Una Aproximación a Su Separación Y Aspectos Climatológicos De Ambas. 30(1 y 2), 77–88.
dc.relation.referencesSchuur, T., Heinselman, P., Burgess, D., Schuur, T., Ryzhkov, A., Heinselman, P., Zrnic, D., Burgess, D., & Scharfenberg, K. (2003). Observations and Classification of Echoes with the Polarimetric WSR-88D radar. https://www.researchgate.net/publication/241142902
dc.relation.referencesSocarra, V., Gómez Vargas, E., & Obregon Neira, N. (2014). Calibración de imágenes de radares meteorológicos. Revista Tecnura, 18(41), 12–26. https://doi.org/10.14483/udistrital.jour.tecnura.2014.3.a01
dc.relation.referencesStraka, J. M., Zrnić, D. S., & Ryzhkov, A. V. (2000). Bulk Hydrometeor Classification and Quantification Using Polarimetric Radar Data: Synthesis of Relations. Journal of Applied Meteorology, 39(8), 1341–1372. https://doi.org/10.1175/1520-0450(2000)039<1341:BHCAQU>2.0.CO;2
dc.relation.referencesVivekanandan, J., Martner, B. E., Politovich, M. K., & Guifu Zhang. (1999). Retrieval of atmospheric liquid and ice characteristics using dual-wavelength radar observations. IEEE Transactions on Geoscience and Remote Sensing, 37(5), 2325–2334. https://doi.org/10.1109/36.789629
dc.relation.referencesWang, H., Ran, Y., Deng, Y., & Wang, X. (2017). Study on deep-learning-based identification of hydrometeors observed by dual polarization Doppler weather radars. Eurasip Journal on Wireless Communications and Networking, 2017(1). https://doi.org/10.1186/s13638-017-0965-5
dc.relation.referencesWhite, A. B., Neiman, P. J., Ralph, F. M., Kingsmill, D. E., Ola, P., & Persson, G. (2003). Coastal Orographic Rainfall Processes Observed by Radar during the California Land-Falling Jets Experiment. http://www.etl.noaa.gov/programs/pacjet/
dc.relation.referencesZhang, J., Langston, C., & Howard, K. (2008). Brightband identification based on vertical profiles of reflectivity from the WSR-88D. Journal of Atmospheric and Oceanic Technology, 25(10), 1859–1872. https://doi.org/10.1175/2008JTECHA1039.1
dc.relation.referencesZhang, J., & Qi, Y. (2010). A real-time algorithm for the correction of brightband effects in radar-derived QPE. Journal of Hydrometeorology, 11(5), 1157–1171. https://doi.org/10.1175/2010JHM1201.1
dc.relation.referencesZrnić, D. S., & Ryzhkov, A. (1999). Advantages of Rain Measurements Using Specific Differential Phase. Journal of Atmospheric and Oceanic Technology, 13(2), 454–464. https://doi.org/10.1175/1520-0426(1996)013<0454:AORMUS>2.0.CO;2
dc.relation.referencesZrnić, D. S., Ryzhkov, A., Straka, J., Liu, Y., & Vivekanandan, J. (2001). Testing a Procedure for Automatic Classification of Hydrometeor Types. Journal of Atmospheric and Oceanic Technology, 18(6), 892–913. https://doi.org/10.1175/1520-0426(2001)018<0892:TAPFAC>2.0.CO;2
dc.rights.accesoAbierto (Texto Completo)
dc.rights.accessrightsOpenAccess
dc.subjectRadar meteorológico
dc.subjectPrecipitaciones estratiforme y convectivas
dc.subjectVariables polarimétricas
dc.subjectClasificador de precipitaciones
dc.subject.keywordMeteorological radar
dc.subject.keywordStratiform and convective precipitation
dc.subject.keywordPolarimetric variables
dc.subject.keywordPrecipitation classifier
dc.subject.lembMaestría en Ciencias de la Información y las Comunicaciones -- Tesis y disertaciones académicas
dc.subject.lembRadar meteorológico de polarización dual
dc.subject.lembZonas ecuatoriales
dc.subject.lembModelo estadístico
dc.titleModelo para clasificación de precipitaciones estratiformes y convectivas en zona ecuatorial usando datos de radares meteorológicos
dc.title.titleenglishModel for classification of stratiform and convective precipitation in the equatorial zone using data from meteorological radars
dc.typemasterThesis
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.degreeInvestigación-Innovación
dc.type.driverinfo:eu-repo/semantics/masterThesis

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
Trabajo de grado
Tamaño:
2.74 MB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
Licencia de uso y autorización
Tamaño:
211.91 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
7 KB
Formato:
Item-specific license agreed upon to submission
Descripción: