Modelo para clasificación de precipitaciones estratiformes y convectivas en zona ecuatorial usando datos de radares meteorológicos
| dc.contributor.advisor | Perdomo Charry , Cesar Andrey | |
| dc.contributor.author | Romero Ortega, Raúl | |
| dc.contributor.orcid | Perdomo Charry, César Andrey [0000-0001-7310-4618] | |
| dc.date.accessioned | 2024-10-29T15:27:32Z | |
| dc.date.available | 2024-10-29T15:27:32Z | |
| dc.date.created | 2024-08-20 | |
| dc.description | Este documento muestra la propuesta de un modelo de clasificación de precipitaciones estratiformes y convectivas haciendo uso de datos obtenidos por radares meteorológicos en zonas ecuatoriales, especialmente en la geografía colombiana. Se realizará la decodificación de los datos generados por los radares meteorológicos, esto debido a que los datos se obtienen en el formato de la marca fabricante del radar; lo anterior para poder realizar un análisis estadístico de los mismos. Teniendo la información estadísticamente analizada va a permitir seleccionar las variables que van a ser usadas en el proyecto a partir de la información obtenida en el análisis preliminar. Luego se diseñará un modelo conceptual que permita definir las limitantes y relaciones entre los componentes del sistema, para determinar las herramientas adecuadas a usar en el algoritmo de clasificación. Finalmente se realizará el diseño y desarrollo de un protocolo de pruebas que permita validar el modelo de clasificación de precipitaciones estratiformes y convectivas. | |
| dc.description.abstract | This paper shows the proposal of a classification model of stratiform and convective precipitation using data obtained by meteorological radars in equatorial areas, especially in the Colombian geography. The data generated by the meteorological radars will be decoded, this because the data are obtained in the format of the radar manufacturer brand; the above in order to carry out a statistical analysis of them. Having the information statistically analyzed will allow the selection of the variables that will be used in the project from the information obtained in the preliminary analysis. Then, a conceptual model will be designed to define the constraints and relationships between the components of the system, in order to determine the appropriate tools to be used in the classification algorithm. Finally, the design and development of a test protocol will be carried out to validate the classification model of stratiform and convective rainfall. | |
| dc.format.mimetype | ||
| dc.identifier.uri | http://hdl.handle.net/11349/42462 | |
| dc.language.iso | spa | |
| dc.relation.references | Awaka, J., Iguchi, T., Kumagai, H., & Okamoto, K. (1997). Rain type classification algorithm for TRMM precipitation radar. IGARSS’97. 1997 IEEE International Geoscience and Remote Sensing Symposium Proceedings. Remote Sensing - A Scientific Vision for Sustainable Development, 4(2), 1633–1635. https://doi.org/10.1109/IGARSS.1997.608993 | |
| dc.relation.references | Bechini, R., Baldini, L., & Chandrasekar, V. (2013). Polarimetric Radar Observations in the Ice Region of Precipitating Clouds at C-Band and X-Band Radar Frequencies. Journal of Applied Meteorology and Climatology, 52(5), 1147–1169. https://doi.org/10.1175/JAMC-D-12-055.1 | |
| dc.relation.references | Bechini, R., & Chandrasekar, V. (2015). A Semisupervised Robust Hydrometeor Classification Method for Dual-Polarization Radar Applications. Journal of Atmospheric and Oceanic Technology, 32(1), 22–47. https://doi.org/10.1175/JTECH-D-14-00097.1 | |
| dc.relation.references | Berg, P., Moseley, C., & Haerter, J. O. (2013). Strong increase in convective precipitation in response to higher temperatures. Nature Geoscience, 6(3), 181–185. https://doi.org/10.1038/ngeo1731 | |
| dc.relation.references | Besic, N., Figueras i Ventura, J., Grazioli, J., Gabella, M., Germann, U., & Berne, A. (2016). Hydrometeor classification through statistical clustering of polarimetric radar measurements: a semi-supervised approach. Atmospheric Measurement Techniques, 9(9), 4425–4445. https://doi.org/10.5194/amt-9-4425-2016 | |
| dc.relation.references | Bringi, V. N., Williams, C. R., Thurai, M., & May, P. T. (2009). Using dual-polarized radar and dual-frequency profiler for DSD characterization: A case study from Darwin, Australia. Journal of Atmospheric and Oceanic Technology, 26(10), 2107–2122. https://doi.org/10.1175/2009JTECHA1258.1 | |
| dc.relation.references | Dolan, B., & Rutledge, S. A. (2009). A Theory-Based Hydrometeor Identification Algorithm for X-Band Polarimetric Radars. Journal of Atmospheric and Oceanic Technology, 26(10), 2071–2088. https://doi.org/10.1175/2009JTECHA1208.1 | |
| dc.relation.references | Dolan, B., Rutledge, S. A., Lim, S., Chandrasekar, V., & Thurai, M. (2013). A Robust C-Band Hydrometeor Identification Algorithm and Application to a Long-Term Polarimetric Radar Dataset. Journal of Applied Meteorology and Climatology, 52(9), 2162–2186. https://doi.org/10.1175/JAMC-D-12-0275.1 | |
| dc.relation.references | Ernesto Gómez Vargas César A. Perdomo Ch, J. R. C. L. (2020). Ground Clutter Detection and Correction Model for C-band Weather Radars. International Journal of Advanced Science and Technology, 29(05), 11780–11798. http://sersc.org/journals/index.php/IJAST/article/view/25375 | |
| dc.relation.references | Ernesto Gómez Vargas, Julián R. Camargo L., & César A. Perdomo Ch. (2020). Hydrometeor Classification Algorithm for Medium Latitudes with a C-band Polarimetric Radar. International Journal of Advanced Science and Technology. 29(3), 14023 - 14038. | |
| dc.relation.references | Fan, J., Farmen, M., & Gijbels, I. (1998). Local Maximum Likelihood Estimation and Inference. Journal of the Royal Statistical Society Series B: Statistical Methodology, 60(3), 591–608. https://doi.org/10.1111/1467-9868.00142 | |
| dc.relation.references | Felipe, A., Montoya, H., José, Ó., & Sánchez, M. (2015). Cambio Climático Y Variabilidad Espacio – Temporal De La Precipitación En Colombia. 131–150. https://doi.org/10.14508/reia.2015.12.24.131-150 | |
| dc.relation.references | Frederic Fabry - Isztar Zawadzki. (1995). Long-Term Radar Observations of the Melting Layer of Precipitation and Their Interpretation. | |
| dc.relation.references | Fundamentos de radar meteorológico. (n.d.). Retrieved February 22, 2018, from https://www.meted.ucar.edu/radar/basic_wxradar_es/print.php | |
| dc.relation.references | Gómez Vargas, E. (2015). Modelo Para La Estimación Cuantitativa De Precipitación a Partir De Datos De Radares Polarimétricos | |
| dc.relation.references | González-Cerón, F., Olaiz-González, P. R., Mata-Estrada, A., Pro-Martínez, A., Sosa Montes, E., Fernández-de la O, M., Calzada-Marín, J. M., & Rivas-Jacobo, M. A. (2019). Modelación del crecimiento de pollos de engorda criados en pastoreo o confinamiento. Agro Productividad, 12(8). https://doi.org/10.32854/agrop.v0i0.1449 | |
| dc.relation.references | Gorgucci, E., Scarchilli, G., Chandrasekar, V., & Bringi, V. N. (2001). Rainfall Estimation from Polarimetric Radar Measurements: Composite Algorithms Immune to Variability in Raindrop Shape–Size Relation. Journal of Atmospheric and Oceanic Technology, 18(11), 1773–1786. https://doi.org/10.1175/1520-0426(2001)018<1773:REFPRM>2.0.CO;2 | |
| dc.relation.references | Grant, W. E., Marín, S. L., & Pedersen, E. K. (2001). Ecología y manejo de recursos naturales: análisis de sistemas y simulación | |
| dc.relation.references | Hurtado-Montoya, A. F., & Mesa-Sánchez, Ó. J. (2014). Reanalysis of monthly precipitation fields in Colombian territory. Dyna, 81(186), 251–258. https://doi.org/10.15446/dyna.v81n186.40419 | |
| dc.relation.references | International Union of Radio Science. General Assembly (30th : 2011 : Istanbul, T., International Union of Radio Science., & Institute of Electrical and Electronics Engineers. (2011). General Assembly and Scientific Symposium, 2011 XXXth URSI : date, 13-20 Aug. 2011. | |
| dc.relation.references | Jackson, I. J., & Weinand, H. (1995). Classification of tropical rainfall stations: A comparison of clustering techniques. International Journal of Climatology, 15(9), 985–994. https://doi.org/10.1002/joc.3370150905 | |
| dc.relation.references | Jaramillo, Á., & Chaves, B. (2000). Distribución de la precipitación en Colombia analizada mediante conglomeración estadística. Cenicafé, 51(2), 102–113. | |
| dc.relation.references | J Smyth, B. T., & Illingworth, A. J. (1998). Radar estimates of rainfall rates at the ground in bright band and non-bright band events (Vol. 124). | |
| dc.relation.references | Kim, G., Cha, D., Park, C., Lee, G., Jin, C., Lee, D., Suh, M., Ahn, J., Min, S., Hong, S., & Kang, H. (2018). Future changes in extreme precipitation indices over Korea. International Journal of Climatology, 38(S1). https://doi.org/10.1002/joc.5414 | |
| dc.relation.references | Lam, H. Y., Luini, L., Din, J., Capsoni, C., & Panagopoulos, A. D. (2010). Stratiform and convective rain discrimination for equatorial region. Proceeding, 2010 IEEE Student Conference on Research and Development - Engineering: Innovation and Beyond, SCOReD 2010, SCOReD, 112–116. https://doi.org/10.1109/SCORED.2010.5703983 | |
| dc.relation.references | Laura Angélica Cadena Contreras. (2018). MODELO DE CLASIFICACIÓN DE HIDROMETEOROS PARA ZONAS ECUATORIALES A PARTIR DE OBSERVABLES DE RADAR METEOROLÓGICO. http://hdl.handle.net/11349/8030 | |
| dc.relation.references | Liu, H., & Chandrasekar, V. (2000a). Classification of Hydrometeors Based on Polarimetric Radar Measurements: Development of Fuzzy Logic and Neuro-Fuzzy Systems, and In Situ Verification. Journal of Atmospheric and Oceanic Technology, 17(2), 140–164. https://doi.org/10.1175/1520-0426(2000)017<0140:COHBOP>2.0.CO;2 | |
| dc.relation.references | Liu, H., & Chandrasekar, V. (2000b). Classification of Hydrometeors Based on Polarimetric Radar Measurements: Development of Fuzzy Logic and Neuro-Fuzzy Systems, and In Situ Verification. | |
| dc.relation.references | Lozza, H. F., & Martínez, M. I. (2016). Precipitación Convectiva Y Estratiforme En La Estación Buenos Aires - Observatorio Central: Una Aproximación Más Precisa A Su Discriminación. 41, 33–47. | |
| dc.relation.references | María Paula Hobouchian, Yanina García Skabar, Daniel Barrera, D. V. y P. S. (2017). Validación De La Estimación De Precipitación Por Satélite Aplicando La Técnica Hidroestimador. 42, 3–16. | |
| dc.relation.references | Marzano, F. S., Scaranari, D., Montopoli, M., & Vulpiani, G. (2008). Supervised Classification and Estimation of Hydrometeors From C-Band Dual-Polarized Radars: A Bayesian Approach. IEEE Transactions on Geoscience and Remote Sensing, 46(1), 85–98. https://doi.org/10.1109/TGRS.2007.906476 | |
| dc.relation.references | Navas, R., Gamazo, P., & Borrero, A. (2022). Evaluación del Efecto de la Densidad de Pluviómetros en la Fusión Radar-Pluviómetro. | |
| dc.relation.references | Nieves Sánchez Guerrero, G. de la. (2003). Técnicas participativas para la planeación : procesos breves de intervención. Fundación ICA. | |
| dc.relation.references | Park, H. S., Ryzhkov, A. V., Zrnić, D. S., & Kim, K. E. (2009a). The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Weather and Forecasting, 24(3), 730–748. https://doi.org/10.1175/2008WAF2222205.1 | |
| dc.relation.references | Park, H. S., Ryzhkov, A. V., Zrnić, D. S., & Kim, K. E. (2009b). The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Weather and Forecasting, 24(3), 730–748. https://doi.org/10.1175/2008WAF2222205.1 | |
| dc.relation.references | Paul T. Willis - Andrew J. Heymsfield. (1989). Structure of the Melting Layer in Mesoscale Convective System Stratiform Precipitation. | |
| dc.relation.references | Penide, G., Protat, A., Kumar, V. V., & May, P. T. (2013). Comparison of Two Convective/Stratiform Precipitation Classification Techniques: Radar Reflectivity Texture versus Drop Size Distribution–Based Approach. Journal of Atmospheric and Oceanic Technology, 30(12), 2788–2797. https://doi.org/10.1175/JTECH-D-13-00019.1 | |
| dc.relation.references | Qi, Y., & Zhang, J. (2013). Correction of radar QPE errors associated with low and partially observed brightband layers. Journal of Hydrometeorology, 14(6), 1933–1943. https://doi.org/10.1175/JHM-D-13-040.1 | |
| dc.relation.references | Q. Maria - D. Marian. (2004). Art05. 1–11. radar meteorológico: fundamentos. (1997a). http://www.crahi.upc.edu/curs/html_pages/trasp1.html | |
| dc.relation.references | radar meteorológico: fundamentos. (1997b). http://www.crahi.upc.edu/curs/html_pages/trasp1.html | |
| dc.relation.references | Ramírez, S., & Lizarazo, I. (2019). Detección digital de Sistemas Convectivos de Mesoescala a partir de imágenes meteorológicas multiespectrales. | |
| dc.relation.references | Ribaud, J. ‐F., Bousquet, O., Coquillat, S., Al‐Sakka, H., Lambert, D., Ducrocq, V., & Fontaine, E. (2016). Evaluation and application of hydrometeor classification algorithm outputs inferred from multi‐frequency dual‐polarimetric radar observations collected during HyMeX. Quarterly Journal of the Royal Meteorological Society, 142(S1), 95–107. https://doi.org/10.1002/qj.2589 | |
| dc.relation.references | Ronald E. Stewart, J. D. M. , J. C. P. , R. E. C. (1984). Characteristics through the Melting Layer of Stratiform Clouds | |
| dc.relation.references | Rosengaus, M. (1999). Sobre el error en la Estimación utilizando radar meteorológico. Ingeniería Del Agua, 6(junio), 185–198. https://doi.org/10.4995/ia.1999.2785 | |
| dc.relation.references | Rulfová, Z., & Kyselý, J. (2014). Trends of Convective and Stratiform Precipitation in the Czech Republic, 1982–2010. Advances in Meteorology, 2014, 1–11. https://doi.org/10.1155/2014/647938 | |
| dc.relation.references | Saaty, T. L. (2008). Decision making with the analytic hierarchy process. International Journal of Services Sciences, 1(1), 83. https://doi.org/10.1504/IJSSCI.2008.017590 | |
| dc.relation.references | Sarochar, R. H., Ciappesoni, H. H., & Ruiz, N. E. (2005). Precipitaciones Convectivas Y Estratiformes En La Pampa Húmeda: Una Aproximación a Su Separación Y Aspectos Climatológicos De Ambas. 30(1 y 2), 77–88. | |
| dc.relation.references | Schuur, T., Heinselman, P., Burgess, D., Schuur, T., Ryzhkov, A., Heinselman, P., Zrnic, D., Burgess, D., & Scharfenberg, K. (2003). Observations and Classification of Echoes with the Polarimetric WSR-88D radar. https://www.researchgate.net/publication/241142902 | |
| dc.relation.references | Socarra, V., Gómez Vargas, E., & Obregon Neira, N. (2014). Calibración de imágenes de radares meteorológicos. Revista Tecnura, 18(41), 12–26. https://doi.org/10.14483/udistrital.jour.tecnura.2014.3.a01 | |
| dc.relation.references | Straka, J. M., Zrnić, D. S., & Ryzhkov, A. V. (2000). Bulk Hydrometeor Classification and Quantification Using Polarimetric Radar Data: Synthesis of Relations. Journal of Applied Meteorology, 39(8), 1341–1372. https://doi.org/10.1175/1520-0450(2000)039<1341:BHCAQU>2.0.CO;2 | |
| dc.relation.references | Vivekanandan, J., Martner, B. E., Politovich, M. K., & Guifu Zhang. (1999). Retrieval of atmospheric liquid and ice characteristics using dual-wavelength radar observations. IEEE Transactions on Geoscience and Remote Sensing, 37(5), 2325–2334. https://doi.org/10.1109/36.789629 | |
| dc.relation.references | Wang, H., Ran, Y., Deng, Y., & Wang, X. (2017). Study on deep-learning-based identification of hydrometeors observed by dual polarization Doppler weather radars. Eurasip Journal on Wireless Communications and Networking, 2017(1). https://doi.org/10.1186/s13638-017-0965-5 | |
| dc.relation.references | White, A. B., Neiman, P. J., Ralph, F. M., Kingsmill, D. E., Ola, P., & Persson, G. (2003). Coastal Orographic Rainfall Processes Observed by Radar during the California Land-Falling Jets Experiment. http://www.etl.noaa.gov/programs/pacjet/ | |
| dc.relation.references | Zhang, J., Langston, C., & Howard, K. (2008). Brightband identification based on vertical profiles of reflectivity from the WSR-88D. Journal of Atmospheric and Oceanic Technology, 25(10), 1859–1872. https://doi.org/10.1175/2008JTECHA1039.1 | |
| dc.relation.references | Zhang, J., & Qi, Y. (2010). A real-time algorithm for the correction of brightband effects in radar-derived QPE. Journal of Hydrometeorology, 11(5), 1157–1171. https://doi.org/10.1175/2010JHM1201.1 | |
| dc.relation.references | Zrnić, D. S., & Ryzhkov, A. (1999). Advantages of Rain Measurements Using Specific Differential Phase. Journal of Atmospheric and Oceanic Technology, 13(2), 454–464. https://doi.org/10.1175/1520-0426(1996)013<0454:AORMUS>2.0.CO;2 | |
| dc.relation.references | Zrnić, D. S., Ryzhkov, A., Straka, J., Liu, Y., & Vivekanandan, J. (2001). Testing a Procedure for Automatic Classification of Hydrometeor Types. Journal of Atmospheric and Oceanic Technology, 18(6), 892–913. https://doi.org/10.1175/1520-0426(2001)018<0892:TAPFAC>2.0.CO;2 | |
| dc.rights.acceso | Abierto (Texto Completo) | |
| dc.rights.accessrights | OpenAccess | |
| dc.subject | Radar meteorológico | |
| dc.subject | Precipitaciones estratiforme y convectivas | |
| dc.subject | Variables polarimétricas | |
| dc.subject | Clasificador de precipitaciones | |
| dc.subject.keyword | Meteorological radar | |
| dc.subject.keyword | Stratiform and convective precipitation | |
| dc.subject.keyword | Polarimetric variables | |
| dc.subject.keyword | Precipitation classifier | |
| dc.subject.lemb | Maestría en Ciencias de la Información y las Comunicaciones -- Tesis y disertaciones académicas | |
| dc.subject.lemb | Radar meteorológico de polarización dual | |
| dc.subject.lemb | Zonas ecuatoriales | |
| dc.subject.lemb | Modelo estadístico | |
| dc.title | Modelo para clasificación de precipitaciones estratiformes y convectivas en zona ecuatorial usando datos de radares meteorológicos | |
| dc.title.titleenglish | Model for classification of stratiform and convective precipitation in the equatorial zone using data from meteorological radars | |
| dc.type | masterThesis | |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
| dc.type.degree | Investigación-Innovación | |
| dc.type.driver | info:eu-repo/semantics/masterThesis |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 7 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:
