Metodología para el monitoreo de la subsidencia del suelo en la ciudad de Bogotá D.C con técnicas de interferometría y persistent scatterers

dc.contributor.advisorSuárez Torres, Edilberto
dc.contributor.authorSuarez Jaimes, Paola Andrea
dc.contributor.orcidSuárez Torres Edilberto [0000-0002-7582-1108]
dc.date.accessioned2025-09-12T17:24:34Z
dc.date.available2025-09-12T17:24:34Z
dc.date.created2025-08-26
dc.descriptionEl fenómeno de la Subsidencia es un movimiento vertical de la superficie terrestre, el cual tiene varios factores que lo desencadenan, como la extracción de fluidos, la compactación del terreno, explotaciones de minerales, explotación de reservorios, etc. Este fenómeno se ha venido presentando en países como España, Estados Unidos, Italia, México, China, y Colombia, lo cual ha generado fracturas en el terreno y daños en la infraestructura urbana, así como repercusiones ambientales, sociales y económicas. En la ciudad de Bogotá se ha demostrado la existencia de subsidencia para el periodo comprendido entre 2006 y 2008 evidenciando deformaciones y hundimientos de hasta 7,5 cm/año, siendo las localidades de Puente Aranda, Engativá, Teusaquillo, y Fontibón las más afectadas (Blanco, Barreto, & Dulfay, 2009). Estos estudios se han realizado con interferometría diferencial, esta técnica permite encontrar las deformaciones entre dos momentos de captura de imágenes, pero el distrito capital no tiene herramientas o algoritmos que tengan la tendencia en el tiempo para monitoreo continuo (Bogotá, 2016). Dado que en los últimos años se han venido realizando estudios de subsidencia sobre la ciudad de Bogotá, encontrando que existe una fuerte tendencia de hundimiento en algunos sectores de la ciudad surge la necesidad de implementar uno de los métodos más recientes en el mundo que tenga en cuenta series de tiempo en interferometría el cual se denomina Persistent Scatteres que permita realizar un monitoreo continuo de la deformación de la superficie. Este proyecto busca realizar las primeras pruebas de Persistent Scatteres en la ciudad de Bogotá para viabilizar alternativas metodológicas del seguimiento de la subsidencia en la ciudad de Bogotá a partir de datos de uso libre.
dc.description.abstractThe subsidence phenomenon is a vertical movement of the Earth's surface, triggered by several factors, such as fluid extraction, ground compaction, mineral exploitation, reservoir exploitation, etc. This phenomenon has been occurring in countries such as Spain, the United States, Italy, Mexico, China, and Colombia, causing ground fractures and damage to urban infrastructure, as well as environmental, social, and economic repercussions. In the city of Bogotá, subsidence has been demonstrated for the period between 2006 and 2008, evidencing deformations and subsidence of up to 7.5 cm/year. The localities of Puente Aranda, Engativá, Teusaquillo, and Fontibón were the most affected (Blanco, Barreto, & Dulfay, 2009). These studies have been carried out using differential interferometry. This technique allows deformations to be detected between two image capture moments, but the capital district does not have tools or algorithms that capture time trends for continuous monitoring (Bogotá, 2016). Given that subsidence studies have been conducted in the city of Bogotá in recent years, revealing a strong subsidence trend in some areas of the city, the need arose to implement one of the most recent methods in the world that considers time series interferometry, called Persistent Scatteres, which allows continuous monitoring of surface deformation. This project seeks to conduct the first Persistent Scatteres tests in the city of Bogotá to enable viable methodological alternatives for monitoring subsidence in the city of Bogotá using open-source data.
dc.format.mimetypepdf
dc.identifier.urihttp://hdl.handle.net/11349/98936
dc.language.isospa
dc.publisherUniversidad Distrital Francisco José de Caldas
dc.relation.referencesAbellaneda Lario, M. (2016). Estudio y análisis de la subsidencia del terreno en la cuenca del Alto Guadalentín. Investigaciones previas, evolución, causas y consecuencias. Recuperado a partir de http://rua.ua.es/dspace/handle/10045/54865
dc.relation.referencesArmas, I., Mendes, D.A., Popa, R.G., Gheorghe, M., Popovici, D., 2017. Long-term ground deformation patterns of Bucharest using multi-temporal InSAR and multivariate dynamic analyses: a possible transpressional system? Sci. Rep. 7, 1–13. https://doi.org/ 10.1038/srep43762.
dc.relation.referencesBerardino, P., Fornaro, G., Lanari, R., y Sansosti, E. (2002). A new algorithm for surface deformation monitoring based on small baseline differential sar interferograms. IEEE Transactions on geoscience and remote sensing, 40(11), 2375–2383
dc.relation.referencesBlanco, P., Barreto, G., & Dulfay, O. (2009). DInSAR DIFFERENTIAL INTERFEROMETRY - A TECHNIQUE FOR SUBSIDENCE MONITORING IN BOGOTÁ D . C . ( Knowledge and Reflection ). Dirección de Prevención y Atención de Emergencias de Bogotá - DPAE.
dc.relation.referencesBogotá, A. M. de. (2016). PROYECTO ACTUALIZACIÓN COMPONENTE DE GESTIÓN DEL RIESGO PARA LA REVISIÓN ORDINARIA Y ACTUALIZACIÓN DEL PLAN DE ORDENAMIENTO TERRITORIAL. 8(3), 6–10.
dc.relation.referencesCasagli, N., Cigna, F., Bianchini, S., Hölbling, D., Füreder, P., Righini, G., … Bianchi, M. (2016). Landslide mapping and monitoring by using radar and optical remote sensing: Examples from the EC-FP7 project SAFER. Remote Sensing Applications: Society and Environment, 4, 92–108. https://doi.org/10.1016/j.rsase.2016.07.001
dc.relation.referencesCastellazzi, P., Garfias, J., Martel, R., Brouard, C., Rivera, A., 2017. InSAR to support sustainable urbanization over compacting aquifers: the case of Toluca valley, Mexico. Int. J. Appl. Earth Obs. Geoinf. 63, 33–44. https://doi.org/10.1016/j.jag.2017.06. 011.
dc.relation.referencesCastellazzi, P., Longuevergne, L., Martel, R., Rivera, A., Brouard, C., & Chaussard, E. (2018). Quantitative mapping of groundwater depletion at the water management scale using a combined GRACE/InSAR approach. Remote Sensing of Environment, 205(November 2017), 408–418. https://doi.org/10.1016/j.rse.2017.11.025
dc.relation.referencesCigna, F., Bianchini, S., Casagli, N., 2013. How to assess landslide activity and intensity with Persistent Scatterer Interferometry (PSI): the PSI-based matrix approach. Landslides 10 (3), 267–283, 10.1007/s10346-012-0335-7.
dc.relation.referencesCigna, F., Sowter, A., 2017. The relationship between intermittent coherence and precision of ISBAS InSAR ground motion velocities: ERS-1/2 case studies in the UK. Remote Sens. Environ. 202, 177 198. https://doi.org/10.1016/j.rse.2017.05.016.
dc.relation.referencesCorsini, A., Farina, P., Antonello, G., Barbieri, M., Casagli, N., Coren, F., Guerri, L., Ronchetti, F., Sterzai, P., Tarchi, D., 2006. Space‐borne and ground‐based SAR interferometry as tools for landslide hazard management in civil protection. Int. J. Remote Sens. 27 (12), 2351–2369.
dc.relation.referencesCrosetto, M., Monserrat, O., Cuevas-González, M., Devanthéry, N., & Crippa, B. (2016). Persistent Scatterer Interferometry: A review. In ISPRS Journal of Photogrammetry and Remote Sensing (Vol. 115, pp. 78–89). Elsevier B.V. https://doi.org/10.1016/j.isprsjprs.2015.10.011
dc.relation.referencesCrosetto, M., Castillo, M., Arbiol, R., 2003. Urban subsidence monitoring using radar interferometry: Algorithms and validation. Photogrammetric Engineering and Remote Sensing 69 (7), 775–783.
dc.relation.referencesCurlander, J. C., y McDonough, R. N. (1991). Synthetic aperture radar: systems and signal processing. DePrekel, K., Bouali, E. H., Oommen, T., y cols. (2018). Monitoring the impact of groundwater pumping on infrastructure using geographic information system (gis) and persistent scatterer interferometry (psi). Infrastructures, 3 (4), 57.
dc.relation.referencesDai, F.C., Lee, C.F., 2002. Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology 42, 213–228.
dc.relation.referencesDe Zan, F., & Guarnieri, A. M. (2006). TOPSAR: Terrain observation by progressive scans. IEEE Transactions on Geoscience and Remote Sensing, 44(9), 2352–2360. https://doi.org/10.1109/TGRS.2006.873853
dc.relation.referencesDelgado, J., Sánchez, P., & Hermelín, M. (2011). Monitoreo de la subsidencia en Bogotá utilizando interferometría diferencial SAR. Revista de Geofísica, 42(4), 124–135.
dc.relation.referencesDelgado, J., Vicente, F., García-Tortosa, F., Alfaro, P., Estévez, A., Lopez-Sanchez, J. M., Tomás, R., & Mallorquí, J. J. (2011). A deep seated compound rotational rock slide and rock spread in SE Spain: Structural control and DInSAR monitoring. Geomorphology, 129(3–4), 252–262. https://doi.org/10.1016/J.GEOMORPH.2011.02.019
dc.relation.referencesElachi, C. (1988). Spaceborne radar remote sensing: applications and techniques. New York, IEEE Press, 1988, 285 p.
dc.relation.referencesFernández, M. P. (2009). Determinación de movimientos verticales del terreno mediante técnicas de interferometría Radar DInSAR. Editorial de la Universidad de Granada, Granada.
dc.relation.referencesFerretti, A., Prati, C., & Rocca, F. (2000). Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 38(5 I), 2202–2212. https://doi.org/10.1109/36.868878
dc.relation.referencesFerretti, A., Prati, C., & Rocca, F. (2001). Permanent scatterers in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 39(1), 8–20. https://doi.org/10.1109/36.898661
dc.relation.referencesFialko, Y. (2006). Interseismic strain accumulation and the earthquake potential on the southern San Andreas fault system. Nature, 441(7096), 968–971. https://doi.org/10.1038/nature04797
dc.relation.referencesFletcher, A., Monti-Guarnieri, A., Prati, C., & Rocca, F. (2007). InSAR Principles: Guidelines for SAR Interferometry Processing and Interpretation. ESA.
dc.relation.referencesFletcher, D. M., Brown, G. S., & Naylor, M. A. (2007). Synthetic Aperture Radar and Interferometry for Environmental Monitoring. Environmental Applications of Remote Sensing, 3, 67-92.
dc.relation.referencesFournier, P., & Ridicck. (2010). Duration, magnitude, and frequency of subaerial volcano deformation events: New results from Latin America using InSAR and a global synthesis. Geochemestry Geophysics Geosystems, 11. https://doi.org/10.1029/2009GC002558
dc.relation.referencesGabriel, A. K., Goldstein, R. M., & Zebker, H. A. (1989). Mapping small elevation changes over large areas: differential radar interferometry. Journal of Geophysical Research, 94(B7), 9183–9191. https://doi.org/10.1029/JB094iB07p09183
dc.relation.referencesGalloway, D. L., Jones, D. R., & Ingebritsen, S. E. (Eds.). (1999). Land subsidence in the United States. Reston, VA: U.S. Geological Survey.
dc.relation.referencesHanssen, R. F. (2001). Radar Interferometry: Data Interpretation and Error Analysis. Springer Science & Business Media.
dc.relation.referencesHermelin, M. (2007). Entorno natural de 17 ciudades de Colombia.
dc.relation.referencesHermelín, M. (2007). Impacto de la sobreexplotación de acuíferos en la subsidencia de la Sabana de Bogotá. Revista Geográfica Colombiana, 22(3), 123–136.
dc.relation.referencesHerrera, L., & De, S. M. M. (2008). Estimación de la Subsidencia en Bogotá a partir de mediciones GNSS y nivelación geométrica Generalidades sobre Bogotá.
dc.relation.referencesHooper, A., Spaans, K., Bekaert, D., Cuenca, M. C., & Arıkan, M. (2013). StaMPS / MTI Manual Version 3.3b1. School of Earth and Environment, University of Leeds, 36. Retrieved from moz extension://2784e412-dfc2-4899-9d1f-72c214d6c020/enhanced reader.html?openApp&pdf=http%3A%2F%2Fhomepages.see.leeds.ac.uk%2F~earahoo%2Fstamps %2FStaMPS_Manual_v3.3b1.pdf
dc.relation.referencesIchikawa, Y., & Selvadurai, A. P. S. (2012). Transport Phenomena in Porous Media. https://doi.org/10.1007/978-3-642-25333-1
dc.relation.referencesIGOS, 2004. Geohazards Theme Report: For the Monitoring of our Environment from Space and from Earth. European Space Agency Publication, Rome (Italy), p. 55.
dc.relation.referencesInforme sobre cómo se hunde el terreno en Bogotá - Ciencia - Vida - ELTIEMPO.COM. (n.d.). Retrieved May 1, 2020, from https://www.eltiempo.com/vida/ciencia/informe-sobre-como-se-hunde-el terreno-en-bogota-189448
dc.relation.referencesKampes, B. M. (2005). Displacement parameter estimation using permanent scatterer interferometry
dc.relation.referencesKampes,B.M.,Hanssen,R.F.,2004.Ambiguityresolutionforpermanentscattererinterferometry. IEEETransactions on Geoscience and Remote Sensing 42 (11),2446–2453.
dc.relation.referencesKlees, R., & Massonnet, D. (1998). Deformation measurements using SAR interferometry: potential and limitations. Geologie en Mijnbouw, 77(2), 161–176.
dc.relation.referencesKlees, R., & Massonnet, D. (1998). The application of InSAR to subsidence monitoring: A review. Journal of Applied Geophysics, 40(3), 177–187
dc.relation.referencesLundgren, S., & López, O. (2015). Deep source model for Nevado del Ruiz Volcano,Colombia, constrained by interferometric synthetic aperture radar observations. Geophysical Research Letters, 4816-4823. https://doi.org/10.1002/2015GL063858
dc.relation.referencesMADS. (2014). Código Nacional de Recursos Naturales Renovables y de Protección al Medio Ambiente. Decreto Ley 2811 de 1974. 122. http://parquearvi.org/wp-content/uploads/2016/11/Decreto-Ley 2811-de-1974.pdf
dc.relation.referencesMaghsoudi, Y., van der Meer, F., Hecker, C., Perissin, D., Saepuloh, A., 2018. Using PSInSAR to detect surface deformation in geothermal areas of West Java in Indonesia. Int. J. Appl. Earth Obs. Geoinf. 64, 386–396. https://doi.org/10.1016/j.jag.2017.04. 001.
dc.relation.referencesMartínez, William; Sanchez, Laura; Herrera, Iván; Téllez, L. (2008). Estimación de la Subsidencia en Bogotá a partir de mediciones GNSS y nivelación geométrica Generalidades sobre Bogotá.
dc.relation.referencesMayorga, T. M. (2013). Determinación de la deformación del terreno por movimientos en masa usando interferometría SAR (Radar de Apertura Sintética). Universidad Nacional de Córdoba, Instituto de Altos Estudios Espaciales «Mario Gulich», Comisión Nacional de Actividades Espaciales (CONAE)., 228.
dc.relation.referencesMiller, S., & Shirzaei, M. (2019). Mapping land subsidence before and after Hurricane Harvey using SAR interferometry and high-resolution topographic data. Remote Sensing of Environment, 233, 111307.
dc.relation.referencesOgundare, J. O. (2015). Precision Surveying: The Principles and Geomatics Practice. Hoboken, UNITED STATES: John Wiley & Sons, Incorporated. Recuperado a partir de http://ebookcentral.proquest.com/lib/bibliojaveriana-ebooks/detail.action?docID=4043017
dc.relation.referencesOrd, J. K., & Getis, A. (1995). Local Spatial Autocorrelation Statistics: Distributional Issues and an Application. Geographical Analysis, 27(4), 286–306. https://doi.org/10.1111/J.1538 4632.1995.TB00912.X/ABSTRACT
dc.relation.referencesOsmanoǧlu, B., Dixon, T. H., Wdowinski, S., Cabral-Cano, E., & Jiang, Y. (2011). Mexico City subsidence observed with persistent scatterer InSAR. International Journal of Applied Earth Observation and Geoinformation, 13(1), 1–12. https://doi.org/10.1016/j.jag.2010.05.009
dc.relation.referencesOsmanoglu, B., Bekaert, D., & Crosetto, M. (2011). The application of PSI for subsidence monitoring in urban areas: A case study of Mexico City. Remote Sensing of Environment, 118, 28–40.
dc.relation.referencesParks, B., Mather, P., Amelung, M., & Medina. (2011). Co-eruptive subsidence at Galeras identified during an InSAR survey of Colombian volcanoes (2006–2009). Volcalology and Geothermal Research, 228-240. https://doi.org/10.1016/j.jvolgeores.2011.02.007
dc.relation.referencesProkopovich, N. P. (1986). Classification of land subsidence by origin. En Proceedings of the 3rd international symposium on land subsidence (Vol. 151, pp. 281–290). Recuperado a partir de http://hydrologie.org/redbooks/a151/iahs_151_0281.pdf
dc.relation.referencesRodriguez, E., y Martin, J. (1992). Theory and design of interferometric synthetic aperture radars. En Iee proceedings f (radar and signal processing) (Vol. 139, pp. 147–159).
dc.relation.referencesRosen, P. A., Hensley, S., Joughin, I. R., Li, F. K., Madsen, S. N., Rodriguez, E., y Goldstein, R. M. (2000). Synthetic aperture radar interferometry. Proceedings of the IEEE, 88 (3), 333–382.
dc.relation.referencesSánchez, P. B., Barreto, G., & Ortiz, D. (2010). LA INTERFEROMETRÍA DIFERENCIAL DInSAR – UNA TÉCNICA PARA EL MONITOREO DE LA SUBSIDENCIA EN BOGOTÁ D. C. (Conocimiento y Reflexión).
dc.relation.referencesSánchez, P. B. (2014). Interferometría SAR: Conceptos y Aplicaciones Topográficas. Instituto Cartográfico de Cataluña, 65.
dc.relation.referencesSánchez, P., Arciniegas, G., & Abaunza, D. (2010). Estudio del monitoreo de subsidencia en Bogotá utilizando técnicas DInSAR. Revista de Investigación Geofísica, 25(3), 165–177.
dc.relation.referencesSanz Subirana, Jaime., Hernandez-Pajares, Manuel., & Juan Zornoza, J. Miguel. (2013a). GNSS data processing : Fundamentals and algorithms. European Space Agency.
dc.relation.referencesSanz Subirana, Jaime., Hernandez-Pajares, Manuel., & Juan Zornoza, J. Miguel. (2013b). GNSS data processing : Fundamentals and algorithms. European Space Agency.
dc.relation.referencesSARMAP. (2009). Synthetic Aperture Radar - Guidebook.
dc.relation.referencesSecretaria Distrital de Planeación. (2014). REGIÓN METROPOLITANA DE BOGOTÁ: UNA VISIÓN DE LA OCUPACIÓN DEL SUELO.
dc.relation.referencesSchubert, G. (2015). Treatise on geophysics. Elsevier.
dc.relation.referencesSGC, S. G. C. (2019). Chapter 16. https://doi.org/10.32685/pub.esp.38.2019.16
dc.relation.referencesSillerico, E., Marchamalo, M., Rejas, J. G., & Martínez, R. (2010). La técnica DInSAR: Bases y aplicación a la medición de subsidencias del terreno en la construcción. Informes de La Construccion, 62(519), 47–53. https://doi.org/10.3989/ic.09.063
dc.relation.referencesSillerico, A., Martin, G., & Blume, G. (2010). Subsidence monitoring in Latin American cities: A case study of Bogotá. Journal of Environmental Engineering, 72(4), 201–212.
dc.relation.referencesSousa, J. J., Ruiz, A. M., Hanssen, R. F., Bastos, L., Gil, A. J., Galindo-Zaldívar, J., & Sanz de Galdeano, C. (2010). PS-InSAR processing methodologies in the detection of field surface deformation— Study of the Granada basin (Central Betic Cordilleras, southern Spain). Journal of Geodynamics, 49(3–4), 181–189. https://doi.org/10.1016/J.JOG.2009.12.002
dc.relation.referencesSun, X., Zimmer, A., Mukherjee, S., Kottayil, N. K., Ghuman, P., & Cheng, I. (2020). DeepInSAR-A deep learning framework for SAR interferometric phase restoration and coherence estimation. Remote Sensing, 12(14). https://doi.org/10.3390/rs12142340
dc.relation.referencesSusaki, J., Tsujino, M., & Anahara, T. (2017). Fusion of different frequency SAR images for DInSAR based land subsidence monitoring. En 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (pp. 945-948). https://doi.org/10.1109/IGARSS.2017.8127109
dc.relation.referencesTomás, R., Herrera, G., Delgado, J., & Peña, F. (2009). SUBSIDENCIA DEL TERRENO Ground subsidence CORE View metadata, citation and similar papers at core.ac.uk provided by Revistes Catalanes amb Accés Obert (Vol. 17, Issue 3).
dc.relation.referencesTung, H., & Hu, J. C. (2012). Assessments of serious anthropogenic land subsidence in Yunlin County of central Taiwan from 1996 to 1999 by Persistent Scatterers InSAR. Tectonophysics, 578, 126–135. https://doi.org/10.1016/j.tecto.2012.08.009
dc.relation.referencesUlaby, F. T. (1982). Microwave remote sensing active and passive. Rader remote sensing and surface scattering and emission theory, 848–902
dc.relation.referencesYague-Martinez, N., Prats-Iraola, P., Gonzalez, F. R., Brcic, R., Shau, R., Geudtner, D., Eineder, M., & Bamler, R. (2016). Interferometric Processing of Sentinel-1 TOPS Data. IEEE Transactions on Geoscience and Remote Sensing, 54(4), 2220–2234. https://doi.org/10.1109/TGRS.2015.2497902
dc.relation.referencesYang,C.,Lu, Z.,Zhang,Q., Zhao, C.,Peng,J.,Ji,L.,2018. Deformationatlongyao ground fissure and its surroundings, north China plain, revealed by ALOS PALSAR PS-InSAR. Int. J. Appl. Earth Obs. Geoinf. 67, 1–9. https://doi.org/10.1016/j.jag.2017.12.010.
dc.relation.referencesWang, T., DeGrandpre, K., Lu, Z., Freymueller, J.T., 2018. Complex surface deformation of Akutan volcano, Alaska revealed from InSAR time series. Int. J. Appl. Earth Obs. Geoinf. 64, 171–180. https://doi.org/10.1016/j.jag.2017.09.001.
dc.relation.referencesWasowski, J., Bovenga, F., Nutricato, R., Nitti, D. O., y Chiaradia, M. T. (2018). Advanced satellite radar interferometry for deformation monitoring and infrastructure control in open-cast mines and oil/gas fields. Innovative Infrastructure Solutions, 3(1), 68.
dc.relation.referencesWiley, C. A. (1985). Synthetic aperture radars. IEEE Transactions on Aerospace and Electronic Systems(3), 440–443.
dc.rights.accesoAbierto (Texto Completo)
dc.rights.accessrightsOpenAccess
dc.subjectAmbiental
dc.subjectDInSAR
dc.subjectMonitoreo
dc.subjectSubsidencia
dc.subjectDispersor persistente
dc.subjectInterferometria
dc.subject.keywordEnvironmental
dc.subject.keywordDInSAR
dc.subject.keywordInterferometry
dc.subject.keywordMonitoring
dc.subject.keywordSubsidence
dc.subject.keywordPersistent scatterers
dc.subject.lembMaestría en Ciencias de la Información y las Comunicaciones -- Tesis y disertaciones académicas
dc.titleMetodología para el monitoreo de la subsidencia del suelo en la ciudad de Bogotá D.C con técnicas de interferometría y persistent scatterers
dc.title.titleenglishMethodology for monitoring soil subsidence in the city of Bogotá D.C. using interferometry and persistent scatterer techniques
dc.typemasterThesis
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.degreeInvestigación-Innovación
dc.type.driverinfo:eu-repo/semantics/bachelorThesis

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
SuarezJaimesPaolaAndrea2025.pdf
Tamaño:
2.76 MB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
Licencia de uso y publicación.pdf
Tamaño:
263.48 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
7 KB
Formato:
Item-specific license agreed upon to submission
Descripción: