Caracterización del microbioma asociado a muestras de cálculo dental de un individuo del periodo Muisca Tardío
| dc.contributor.advisor | Rodríguez Saza, Freddy | |
| dc.contributor.author | Largo López, Julián Andrés | |
| dc.contributor.orcid | Rodríguez Saza, Fredy [0000-0001-9709-4258] | |
| dc.date.accessioned | 2025-09-18T17:05:10Z | |
| dc.date.available | 2025-09-18T17:05:10Z | |
| dc.date.created | 2025-08-27 | |
| dc.description | El microbioma oral constituye uno de los ecosistemas más diversos del cuerpo humano, con más de 1.200 especies bacterianas distribuidas en múltiples nichos bucales, como dientes, lengua y encías, cuyas condiciones ambientales favorecen la formación de biofilms y dinámicas microbianas complejas. Su estudio ha cobrado relevancia por su impacto en la salud sistémica, incluyendo enfermedades cardiovasculares y periodontales. El desarrollo de técnicas de secuenciación de nueva generación (NGS), especialmente la secuenciación shotgun de metagenoma completo (WMS), ha permitido caracterizar comunidades microbianas sin necesidad de cultivo, identificar perfiles genéticos funcionales y establecer bases de datos como HOMD, donde actualmente se ha caracterizado el 57% de las bacterias orales. La metagenómica también ha abierto nuevas perspectivas en el análisis de ADN antiguo (aDNA), destacando el cálculo dental como un sustrato arqueológico excepcional por su capacidad de preservar microbiota, ADN endógeno, proteínas y señales dietarias. Sin embargo, el estudio de aDNA enfrenta retos asociados a la fragmentación molecular y contaminación, lo que ha impulsado el desarrollo de herramientas bioinformáticas para autenticar secuencias antiguas y minimizar falsos positivos. Complementariamente, la microscopía electrónica de barrido (SEM) ha permitido caracterizar morfologías bacterianas y evaluar daños tafonómicos. Hasta la fecha, los estudios sobre microbiomas orales antiguos se concentran principalmente en Europa y Norteamérica, con aportes limitados en América Latina, donde solo México, Chile y Puerto Rico han desarrollado investigaciones en este campo. En Colombia no existen estudios sobre el microbioma oral antiguo a partir de cálculo dental, lo que genera un vacío en el conocimiento sobre las comunidades prehispánicas andinas. Este proyecto propone una exploración inicial en la región de la Sabana de Bogotá, utilizando metagenómica y análisis de aDNA, en conjunto con técnicas histológicas para aportar información inédita sobre la diversidad microbiana ancestral y su relación con la salud, dieta y entorno de poblaciones antiguas. | |
| dc.description.abstract | The oral microbiome constitutes one of the most diverse ecosystems in the human body, with more than 1,200 bacterial species distributed across multiple oral niches, such as teeth, tongue, and gums, whose environmental conditions favor the formation of biofilms and complex microbial dynamics. Its study has gained relevance due to its impact on systemic health, including cardiovascular and periodontal diseases. The development of next-generation sequencing (NGS) techniques, especially whole metagenome shotgun sequencing (WMS), has made it possible to characterize microbial communities without the need for culture, identify functional genetic profiles, and establish databases such as HOMD, where 57% of oral bacteria have currently been characterized. Metagenomics has also opened new perspectives in the analysis of ancient DNA (aDNA), highlighting dental calculus as an exceptional archaeological substrate due to its ability to preserve microbiota, endogenous DNA, proteins, and dietary signals. However, the study of aDNA faces challenges associated with molecular fragmentation and contamination, which has driven the development of bioinformatic tools to authenticate ancient sequences and minimize false positives. Complementarily, scanning electron microscopy (SEM) has enabled the characterization of bacterial morphologies and the assessment of taphonomic damage. To date, studies on ancient oral microbiomes have been concentrated mainly in Europe and North America, with limited contributions in Latin America, where only Mexico, Chile, and Puerto Rico have developed research in this field. In Colombia, there are no studies on the ancient oral microbiome based on dental calculus, which creates a gap in knowledge about pre-Hispanic Andean communities. This project proposes an initial exploration in the Bogotá Savanna region, using metagenomics and aDNA analysis, together with histological techniques, to provide novel information on ancestral microbial diversity and its relationship with the health, diet, and environment of ancient populations. | |
| dc.format.mimetype | ||
| dc.identifier.uri | http://hdl.handle.net/11349/99039 | |
| dc.language.iso | spa | |
| dc.publisher | Universidad Distrital Francisco José de Caldas | |
| dc.relation.references | 1. Achtman, M., & Zhou, Z. (2020). Metagenomics of the modern and historical human oral microbiome with phylogenetic studies on Streptococcus mutans and Streptococcus sobrinus. Philosophical Transactions of the Royal Society B, 375(1812), 20190573. | |
| dc.relation.references | 2. Ai, D., Huang, R., Wen, J., Li, C., Zhu, J., & Xia, L. C. (2017). Integrated metagenomic data analysis demonstrates that a loss of diversity in oral microbiota is associated with periodontitis. BMC genomics, 18(Suppl 1), 1041. | |
| dc.relation.references | 3. Assis, S., Santos, A. L., & Keenleyside, A. (2016). Paleohistology and the study of human remains: past, present and future approaches. Revista argentina de antropología biológica, 18(2), 0-0. | |
| dc.relation.references | 4. Baker, J. L., Mark Welch, J. L., Kauffman, K. M., McLean, J. S., & He, X. (2024). The oral microbiome: diversity, biogeography and human health. Nature Reviews Microbiology, 22(2), 89-104. | |
| dc.relation.references | 5. Belda‐Ferre, P., Williamson, J., Simón‐Soro, Á., Artacho, A., Jensen, O. N., & Mira, A. (2015). The human oral metaproteome reveals potential biomarkers for caries disease. Proteomics, 15(20), 3497-3507 | |
| dc.relation.references | 6. Dewhirst, F. E., Chen, T., Izard, J., Paster, B. J., Tanner, A. C., Yu, W. H., ... & Wade, W. G. (2010). The human oral microbiome. Journal of bacteriology, 192(19), 5002- 5017. | |
| dc.relation.references | 7. Elgin, E. (2023). Dental Calculus: Future in Forensics. | |
| dc.relation.references | 8. Fellows Yates, J. A. (2022). Evolution of the human oral microbiome and resource development for ancient metagenomics. PhD Thesis, Friedrich Schiller University Jena, Faculty of Biosciences, Jena. | |
| dc.relation.references | 9. Gancz, A. S., Wright, S. L., & Weyrich, L. S. (2024). Ancient human dental calculus metadata collection and sampling strategies: Recommendations for best practices. American Journal of Biological Anthropology, 183(4), e24871. | |
| dc.relation.references | 10. Ginolhac, A., Rasmussen, M., Gilbert, M. T. P., Willerslev, E., & Orlando, L. (2011). mapDamage: testing for damage patterns in ancient DNA sequences. Bioinformatics, 27(15), 2153-2155. | |
| dc.relation.references | 11. Góralczyk-Bińkowska, A., Szmajda-Krygier, D., & Kozłowska, E. (2022). The microbiota–gut–brain axis in psychiatric disorders. International journal of molecular sciences, 23(19), 11245. | |
| dc.relation.references | 12. Granehäll, L., Huang, K. D., Tett, A., Manghi, P., Paladin, A., O’Sullivan, N., ... & Maixner, F. (2021). Metagenomic analysis of ancient dental calculus reveals unexplored diversity of oral archaeal Methanobrevibacter. Microbiome, 9(1), 197. | |
| dc.relation.references | 13. Herrema, H., Nieuwdorp, M., & Groen, A. K. (2020). Microbiome and Cardiovascular Disease. In A. von Eckardstein (Eds.) et. al., Prevention and Treatment of Atherosclerosis: Improving State-of-the-Art Management and Search for Novel Targets. (pp. 311–334). Springer. | |
| dc.relation.references | 14. Hugenholtz, P., & Tyson, G. W. (2008). Metagenomics. Nature, 455(7212), 481-483. | |
| dc.relation.references | 15. Human Microbiome Project Consortium (2012). Structure, function and diversity of the healthy human microbiome. Nature, 486(7402):207–214.). https://doi.org/10.1038/nature11234 | |
| dc.relation.references | 16. Jenkinson, H. F. (2011). Beyond the oral microbiome. Environmental microbiology, 13(12), 3077-3087. | |
| dc.relation.references | 17. Kilian, M. (2018). The oral microbiome–friend or foe?. European journal of oral sciences, 126, 5-12. | |
| dc.relation.references | 18. Lin, Y., Liang, X., Li, Z., Gong, T., Ren, B., Li, Y., & Peng, X. (2024). Omics for deciphering oral microecology. International Journal of Oral Science, 16(1), 2 | |
| dc.relation.references | 19. Lu, J., Rincon, N., Wood, D. E., Breitwieser, F. P., Pockrandt, C., Langmead, B., ... & Steinegger, M. (2022). Metagenome analysis using the Kraken software suite. Nature protocols, 17(12), 2815-2839. | |
| dc.relation.references | 21. Molak, M., & Ho, S. Y. (2011). Evaluating the impact of post-mortem damage in ancient DNA: a theoretical approach. Journal of molecular evolution, 73(3), 244-255. | |
| dc.relation.references | 22. Moussa, D. G., Ahmad, P., Mansour, T. A., & Siqueira, W. L. (2022). Current state and challenges of the global outcomes of dental caries research in the meta-omics era. Frontiers in Cellular and Infection Microbiology, 12, 887907. | |
| dc.relation.references | 23. Orlando, L., Allaby, R., Skoglund, P., Der Sarkissian, C., Stockhammer, P. W., Ávila- Arcos, M. C., ... & Warinner, C. (2021). Ancient DNA analysis. Nature reviews methods primers, 1(1), 14. | |
| dc.relation.references | 24. Wang, M. (2021). Next-generation sequencing (NGS). In Clinical molecular diagnostics (pp. 305-327). Singapore: Springer Singapore. | |
| dc.relation.references | 25. Wang, Z. (2022). Introduction to computational metagenomics. | |
| dc.relation.references | 26. Warinner, C., Rodrigues, J. F. M., Vyas, R., Trachsel, C., Shved, N., Grossmann, J., ... & Cappellini, E. (2014). Pathogens and host immunity in the ancient human oral cavity. Nature genetics, 46(4), 336-344. | |
| dc.relation.references | 27. Warinner, C., Speller, C., Collins, M. J., & Lewis Jr, C. M. (2015). Ancient human microbiomes. Journal of human evolution, 79, 125-136. | |
| dc.relation.references | 28. Wensel, C. R., Pluznick, J. L., Salzberg, S. L., & Sears, C. L. (2022). Next-generation sequencing: insights to advance clinical investigations of the microbiome. The Journal of clinical investigation, 132(7). | |
| dc.relation.references | 29. Willis, J. R., & Gabaldón, T. (2020). The human oral microbiome in health and disease: from sequences to ecosystems. Microorganisms, 8(2), 308. | |
| dc.rights.acceso | Abierto (Texto Completo) | |
| dc.rights.accessrights | OpenAccess | |
| dc.subject | ADN antiguo | |
| dc.subject | Cálculo dental | |
| dc.subject | Metagenómica | |
| dc.subject | Paleomicrobiología | |
| dc.subject | SEM | |
| dc.subject.keyword | Ancient DNA | |
| dc.subject.keyword | Dental calculus | |
| dc.subject.keyword | Metagenomics | |
| dc.subject.keyword | Paleomicrobiology | |
| dc.subject.keyword | SEM | |
| dc.subject.lemb | Biología -- Tesis y disertaciones académicas | |
| dc.subject.lemb | Arqueología | |
| dc.subject.lemb | Biopelículas | |
| dc.subject.lemb | ADN -- Análisis | |
| dc.subject.lemb | Chibchas (Indios) | |
| dc.title | Caracterización del microbioma asociado a muestras de cálculo dental de un individuo del periodo Muisca Tardío | |
| dc.title.titleenglish | Characterization of the microbiome associated with dental calculus samples from an individual of the Late Muisca period. | |
| dc.type | bachelorThesis | |
| dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
| dc.type.degree | Investigación-Innovación | |
| dc.type.driver | info:eu-repo/semantics/bachelorThesis |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 7 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:
