Ocupación espectral y modelo de radio cognitiva para Bogotá

dc.contributor.authorPedraza Martínez, Luis Fernando
dc.contributor.authorHernández Suárez, César Augusto
dc.contributor.authorGaleano Romero, Katherine Johanna
dc.contributor.authorRodríguez de la Colina, Enrique
dc.contributor.authorPáez, Ingrid Patricia
dc.date.accessioned2023-10-26T22:09:41Z
dc.date.available2023-10-26T22:09:41Z
dc.date.created2016-10
dc.descriptionLa radio cognitiva (RC) está emergiendo como una tecnología promisoria e innovadora, que tiene como fin, solventar y solucionar uno de los grandes problemas de los sistemas de comunicaciones inalámbricas de próxima generación: la escasez de espectro radioeléctrico y la subutilización de este. Esta tecnología provee la capacidad de compartir de una manera oportunista el canal inalámbrico con los usuarios que poseen una parte licenciada del espectro. En este libro se estudian las funcionalidades que involucra la RC, luego se describe la metodología y los resultados de la medición de espectro en Bogotá, que muestran que el uso del espectro es bastante moderado y, fi nalmente, se detalla el modelo de red propuesto, que posee la capacidad de obtener información del entorno, de tomar decisiones con base en la información recogida, de confi gurar los parámetros de funcionamiento y de cumplir con los objetivos de los usuariosspa
dc.description.abstractCognitive radio (CR) is emerging as a promising and innovative technology, which aims to solve and resolve one of the major problems of next-generation wireless communications systems: the scarcity of radio spectrum and its underutilization. This technology provides the ability to opportunistically share the wireless channel with users who own a licensed portion of the spectrum. This book studies the functionalities involved in RC, then describes the methodology and results of spectrum measurement in Bogotá, which show that the use of the spectrum is quite moderate and, finally, the proposed network model is detailed, which has the capacity to obtain information from the environment, to make decisions based on the information collected, to configure the parameters operation and meeting user objectivesspa
dc.description.cityBogotáspa
dc.format.mimetypepdfspa
dc.identifier.editorialUniversidad Distrital Francisco José de Caldas. Centro de Investigaciones y Desarrollo Científicospa
dc.identifier.isbn978-958-8897-88-2spa
dc.identifier.urihttp://hdl.handle.net/11349/32522
dc.relation.ispartofseriesEspaciosspa
dc.relation.referencesD. Cabric, et al., “Implementation issues in spectrum sensing for cognitive radios,” in Proc. 38th. Asilomar Conference on Signals, Systems and Computers, 2004, pp. 772-776.spa
dc.relation.referencesF. C. Commission, Federal communications commission: spectrum policy task force report, 20spa
dc.relation.referencesV. Valenta, et al., “Survey on spectrum utilization in Europe: Measurements, analyses and observations,” Proc. Fifth International Conference on Cognitive Radio Oriented Wireless Networks and Communications (CROWNCOM), pp. 1-5, 2010.spa
dc.relation.referencesS. Zarrin, “Spectrum Sensing in Cognitive Radio Networks,” Doctor of Philosophy, Department of Electrical and Computer Engineering, University of Toronto, Toronto, 2011spa
dc.relation.referencesJ. Mitola, III and G. Q. Maguire, Jr., “Cognitive radio: making software radios more personal,” Personal Communications, IEEE, vol. 6, no. 4, pp. 13-18, 1999.spa
dc.relation.referencesS. Haykin, “Cognitive radio: brain-empowered wireless communications,” IEEE Journal on Selected Areas in Communications, vol. 23, no. 2, pp. 201–220, 2005.spa
dc.relation.referencesC. Stevenson, et al., “IEEE 802.22: The first cognitive radio wireless regional area networks (WRANs) standards,” IEEE Communications Magazine, vol. 47, no. 1, pp. 130-138, 2009.spa
dc.relation.referencesI. Akyildiz, et al., “A Survey on Spectrum Management in Cognitive Radio Networks,” IEEE Communications Magazine, vol. 46, pp. 40-48, Abril 2008.spa
dc.relation.referencesJ. Mitola, “Cognitive radio for flexible mobile multimedia communication,” in Mobile Multimedia Communications, San Diego, 1999, pp. 3-10.spa
dc.relation.referencesNTIA, “Facilitating opportunities for flexible, efficient and reliable spectrum use employing cognitive radio technologies,” 2005.spa
dc.relation.references“ET docket no 03-222 Notice of Proposed Rule Making and Order,” Federal Communications Commission, Washington, 2003.spa
dc.relation.referencesI. Akyildiz, et al., “NeXt generation / dynamic spectrum access / cognitive radio wireless networks: A survey,” Computer Networks Journal, vol. 50, pp. 2127- 2159, May 2006spa
dc.relation.referencesJ. H. Aguilar y N. A., “Radio cognitiva-estado del arte,” Sistemas y Telemática, vol. 9, no. 16, pp. 31-53, 2011.spa
dc.relation.referencesI. Akyildiz, et al., “CRAHNs: Cognitive radio ad hoc networks,” Ad Hoc Networks Journal (Elsevier), vol. 7, pp. 810-836, 2009spa
dc.relation.referencesW. Y. Lee, “Spectrum Management in Cognitive Radio Wireless Networks,” Thesis for the Degree Doctor of Philosophy in the School of Electrical and Computer Engineer, Georgia Institute of Technology, Atlants, 2009.spa
dc.relation.referencesJ. Neel, “Analysis and design of cognitive radio networks and distributed radio resource management algorithms,” Doctor of Philosophy, Virginia Polytechnic Institute and State University, Blacksburg, VA, 2006.spa
dc.relation.referencesS. Seidel, et al., “Adaptive Air Interface Waveform for Flexibility and Performance in Commercial Wireless Communications Systems,” World Wireless Research Forum, 2002.spa
dc.relation.referencesL. Pedraza, Redes inalámbricas mesh. Caso de estudio: ciudad Bolívar, vol. 1. Bogotá: Universidad Distrital Francisco José de Caldas, 2012.spa
dc.relation.referencesP. Santi, “Topology control in wireless ad hoc and sensor networks,” ACM Comput. Surv., vol. 37, no. 2, pp. 164-194, 2005.spa
dc.relation.referencesA. Sgora, et al., “IEEE 802.11s Wireless Mesh Networks: Challenges and Perspectives,” in Mobile Lightweight Wireless Systems. vol. 13, F. Granelli, C. Skianis, P. Chatzimisios, Y. Xiao, and S. Redana, Eds., ed: Springer Berlin Heidelberg, 2009, pp. 263-271spa
dc.relation.referencesM. Gast, 802.11 wireless networks: the definitive guide, 2nd ed.: O’Reilly, 2005.spa
dc.relation.referencesN. Chandra, Handbook of smart antennas for RFID systems: Wiley, 2010.spa
dc.relation.referencesM. Mueck, et al., “ETSI reconfigurable radio systems: status and future directions on software defined radio and cognitive radio standards,” IEEE Communications Magazine, vol. 48, no. 9, pp. 78-86, 20spa
dc.relation.references“IEEE Standard for Architectural Building Blocks Enabling Network-Device Distributed Decision Making for Optimized Radio Resource Usage in Heterogeneous Wireless Access Networks,” IEEE Std 1900.4-2009, pp. 1-130, 2009spa
dc.relation.referencesITU-R, “Introduction to cognitive radio systems in the land mobile service,” Report ITU-R M.2225, 2011.spa
dc.relation.references“IEEE Draft Standard for Wireless Regional Area Networks Part 22: Cognitive Wireless RAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: Policies and procedures for operation in the TV Bands - Amendment: Management and Control Plane Interfaces and Procedures and Enhancement to the Management Information Base (MIB),” IEEE P802.22a/ D2, October 2013, pp. 1-551, 2013.spa
dc.relation.referencesI. P802.19, “Wireless Coexistence: WhiteSpace Coexistence Use Cases,” IEEE 802.19-09/26r4, 2009.spa
dc.relation.referencesSENDORA, “Scenario descriptions and system requirements,” EU Project 216076, 2008.spa
dc.relation.referencesARAGORN, “Adaptive reconfigurable access and generic interfaces for optimisation in radio networks-ARAGORN,” EU project 216856, 2008.spa
dc.relation.references“Use Cases for Cognitive Applications in Public Safety Communications Systems - Volume 1: Review of the 7 July Bombing of the London Underground, Wireless Innovation Forum,” CSDRF-07-P-0019-v1.0.0, 2007.spa
dc.relation.referencesJ. Riihijärvi, et al., “State of the Art Review FARAMIR D2.1,” Flexible and Spectrum-Aware Radio Access through Measurements and Modelling in Cognitive Radio Systems, pp. 1-160, 2010spa
dc.relation.referencesB. Junjik, et al., “Spectrum Markets for Wireless Services,” in 3rd IEEE Symposium on New Frontiers in Dynamic Spectrum Access Networks, DySPAN, 2008, pp. 1-10.spa
dc.relation.referencesT. Börgers and C. Dustmann, “Awarding telecom licences: the recent European experience,” Economic Policy, pp. 215-218, 2003spa
dc.relation.referencesM. Bykowsky, “A secondary market for the trading of spectrum: promoting market liquidity,” Telecommunications Policy, pp. 533-541, 2003.spa
dc.relation.referencesM. Bykowsky, et al., “Efficiency gains from using a market approach to spectrum management,” Information Economics and Policy, pp. 73-90, 20spa
dc.relation.referencesC. E. Caicedo and M. B. H. Weiss, “Spectrum Trading: An Analysis of Implementation Issues,” in 2nd IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, DySPAN, 2007, pp. 579-584.spa
dc.relation.referencesJ. M. Chapin and W. H. Lehr, “Cognitive Radios for Dynamic Spectrum Access - The Path to Market Success for Dynamic Spectrum Access Technology,” IEEE Communications Magazine, vol. 45, no. 5, pp. 96-103, 2007.spa
dc.relation.referencesJ. M. Chapin and W. H. Lehr, “Time-limited leases in radio systems,” IEEE Communications Magazine, vol. 45, no. 6, pp. 76-82, 2007.spa
dc.relation.referencesA. S. De Vany, et al., “A property system for market allocation of the electromagnetic spectrum: A legal-economic-engineering study,” Stanford Law Review, pp. 1499-1561, 1969.spa
dc.relation.referencesD. Lingjie, et al., “Competition with Dynamic Spectrum Leasing,” in IEEE Symposium on New Frontiers in Dynamic Spectrum, 2010, pp. 1-11.spa
dc.relation.referencesS. Gandhi, et al., “Towards real-time dynamic spectrum auctions,” Computer Networks, vol. 52, no. 4, pp. 879-897, 2008.spa
dc.relation.referencesH. Mutlu, et al., “Spot Pricing of Secondary Spectrum Access in Wireless Cellular Networks,” IEEE/ACM Transactions on Networking, vol. 17, no. 6, pp. 1794-1804, 2009.spa
dc.relation.referencesI. Akyildiz, et al., “Flexible and Spectrum-Aware Radio Access through Measurements and Modelling in Cognitive Radio Systems,” FARAMIR, Document Number D2.1, 2010.spa
dc.relation.referencesV. Chandrasekhar, et al., “Femtocell networks: a survey,” IEEE Communications Magazine, vol. 46, no. 9, pp. 59-67, 2008.spa
dc.relation.referencesJ. Mitola, “Cognitive radio: an integrated agent architecture for software defined radio,” Ph.D. Thesis, Royal Institute of Technology, Stockholm, Sweden, 2000.spa
dc.relation.referencesDARPA-XG-WG, “The XG Architectural Framework V1.0,” 2003.spa
dc.relation.referencesDARPA-XG-WG, “The XG Vision RFC V1.0,” 2003.spa
dc.relation.referencesI. Akyildiz, et al., “Spectrum management in cognitive radio ad hoc networks,” Network, IEEE, vol. 23, pp. 6-12, 2009.spa
dc.relation.referencesF. K. Jondral, “Software-defined radio-basic and evolution to cognitive radio,” in EURASIP Journal on Wireless Communication and Networking, pp. 275-283, 2005.spa
dc.relation.referencesB. Razavi, RF Microelectronics, 2nd ed. New York: Prentice Hall, 2011.spa
dc.relation.referencesD. Cabric and R. W. Brodersen, “Physical layer design issues unique to cognitive radio systems,” in Personal, Indoor and Mobile Radio Communications, 2005. PIMRC 2005. IEEE 16th International Symposium on, vol. 2, 2005, pp. 759-763.spa
dc.relation.referencesI. Akyildiz, et al., “AdaptNet: an adaptive protocol suite for the next-generation wireless Internet,” Communications Magazine, IEEE, vol. 42, no. 3, pp. 128-136, 2004.spa
dc.relation.referencesM. M. Buddhikot, et al., “DIMSUMNet: new directions in wireless networking using coordinated dynamic spectrum access,” IEEE WoWMoM, pp. 78- 85, 2005.spa
dc.relation.referencesO. Ileri, et al., “Demand responsive pricing and competitive spectrum allocation via a spectrum server,” IEEE DySPAN, pp. 194-202,spa
dc.relation.referencesS. A. Zekavat and X. Li, “User-central wireless system: ultimate dynamic channel allocation,” IEEE DySPAN, pp. 82-87, 2005.spa
dc.relation.referencesR. Ramanathan and C. Partridge, “Next generation (xG) architecture and protocol development (XAP),” DARPA, 2005.spa
dc.relation.referencesC. Rieser, “Biologically Inspired Cognitive Radio Engine Model Utilizing Distributed Genetic Algorithms for Secure and Robust Wireless Communications and Networking,” PhD Dissertation, Virginia Tech, 2004spa
dc.relation.referencesAdapt4 technology. Available: http://www.adapt4.com/adapt4-technology.phpspa
dc.relation.referencesT. A. Weiss, et al., “Efficient signaling of spectral resources in spectrum pooling systems,” 10th Symposium on Communications and Vehicular Technology, 2003.spa
dc.relation.referencesR. W. Brodersen, et al., “Corvus: a cognitive radio approach for usage of virtual unlicensed spectrum,” 2004.spa
dc.relation.referencesD. Cabric, et al., “A Cognitive radio approach for usage of virtual unlicensed spectrum,” 14th IST Mobile and Wireless Communications Summit, 2005.spa
dc.relation.referencesS. M. Mishra, et al., “A real time cognitive radio testbed for physical and link layer experiments,” in New Frontiers in Dynamic Spectrum Access Networks, 2005. DySPAN 2005. 2005 First IEEE International Symposium on, 2005, pp. 562-567.spa
dc.relation.referencesD. Willkomm, et al., “Reliable link maintenance in cognitive radio systems,” in New Frontiers in Dynamic Spectrum Access Networks, 2005. DySPAN 2005. 2005 First IEEE International Symposium on, 2005, pp. 371-378.spa
dc.relation.referencesD. Cabric, et al., “Spectrum sharing radios,” Circuits and Systems Magazine, IEEE, vol. 6, no. 2, pp. 30-45, 2006.spa
dc.relation.referencesK. C. C. Cordeiro, D. Birru, and S. Shankar, “IEEE 802.22: the first worldwide wireless standard based on cognitive radios,” Proceedings of IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN), pp. 328–337, 2005.spa
dc.relation.referencesIEEE 802.22 Working group on wireless regional area networks. Available: http:// www.ieee802.org/22/spa
dc.relation.referencesFCC, “Notice of Proposed Rule Making,” ET Docket no. 04-113, 2004.spa
dc.relation.referencesFCC, “Report and Order and Memorandum Opinion and Order,” ET Docket no. 05-56, 2005.spa
dc.relation.referencesFCC, “Report and Order,” ET Docket no. 05-57, 2005.spa
dc.relation.referencesK. Challapali, et al. (2004). Spectrum Agile Radio for Broadband Applications. Available: http://www.eetimes.com/document.asp?doc_id=1271129spa
dc.relation.referencesT. Kamakaris, et al., “A case for coordinated dynamic spectrum access in cellular networks,” in New Frontiers in Dynamic Spectrum Access Networks, 2005. DySPAN 2005. 2005 First IEEE International Symposium on, 2005, pp. 289-298.spa
dc.relation.referencesM. M. Buddhikot and K. Ryan, “Spectrum management in coordinated dynamic spectrum access based cellular networks,” in New Frontiers in Dynamic Spectrum Access Networks, 2005. DySPAN 2005. 2005 First IEEE International Symposium on, 2005, pp. 299-30spa
dc.relation.referencesX. Yiping, et al., “Dynamic spectrum access in open spectrum wireless networks,” Selected Areas in Communications, IEEE Journal on, vol. 24, no. 3, pp. 626-637, 2006.spa
dc.relation.referencesJ. B. E. G. J. Minden, L. S. Searl et al, “An agile radio for wireless innovation,” IEEE Communications Magazine, vol. 45, no. 5, pp. 113-121, 2007.spa
dc.relation.referencesY. Yuan, et al., “Knows: Cognitive Radio Networks Over White Spaces,” in New Frontiers in Dynamic Spectrum Access Networks, 2007. DySPAN 2007. 2nd IEEE International Symposium on, 2007, pp. 416-427.spa
dc.relation.referencesX. Lin, et al., “DRiVE-ing to the Internet: Dynamic Radio for IP services in Vehicular Environments,” in Local Computer Networks, 2000. LCN 2000. Proceedings. 25th Annual IEEE Conference on, 2000, pp. 281-289.spa
dc.relation.referencesD. Grandblaise, et al., “Dynamic spectrum allocation (DSA) and reconfigurability,” Software-Defined Radio (SDR) Forum, 2spa
dc.relation.referencesL. Yang, et al., “Traffic-aware dynamic spectrum access,” presented at the Proceedings of the 4th Annual International Conference on Wireless Internet, Maui, Hawaii, 2008.spa
dc.relation.referencesI. F. Akyildiz and Y. Li, “OCRA: OFDM-based cognitive radio networks,” Broadband and Wireless Networking Laboratory Technical Report, 2006.spa
dc.relation.referencesZ. Qing, et al., “Decentralized cognitive MAC for opportunistic spectrum access in ad hoc networks: A POMDP framework,” Selected Areas in Communica tions, IEEE Journal on, vol. 25, no. 3, pp. 589-600, 200spa
dc.relation.referencesS. Geirhofer, et al., “Cognitive Medium Access: Constraining Interference Based on Experimental Models,” Selected Areas in Communications, IEEE Journal on, vol. 26, no. 1, pp. 95-105, 2008.spa
dc.relation.referencesC. Lili and Z. Haitao, “Stable and Efficient Spectrum Access in Next Generation Dynamic Spectrum Networks,” in INFOCOM 2008. The 27th Conference on Computer Communications. IEEE, 2008.spa
dc.relation.referencesC. Clancy, et al., “Applications of Machine Learning to Cognitive Radio Networks,” Wireless Communications, IEEE, vol. 14, no. 4, pp. 47-52, 2007.spa
dc.relation.referencesD. G. Tzikas, et al., “The variational approximation for Bayesian inference,” Signal Processing Magazine, IEEE, vol. 25, no. 6, pp. 131-146, 2008.spa
dc.relation.referencesZ. Youping, et al., “Performance Evaluation of Cognitive Radios: Metrics, Utility Functions, and Methodology,” Proceedings of the IEEE, vol. 97, no. 4, pp. 642-659, 2009.spa
dc.relation.referencesR. Etkin, et al., “Spectrum sharing for unlicensed bands,” Selected Areas in Communications, IEEE Journal on, vol. 25, no. 3, pp. 517-528, 2007.spa
dc.relation.referencesFCC, “Notice of inquiry and notice of proposed Rulemaking,” ET Docket No 03-237, 2003.spa
dc.relation.referencesS. Perez, et al., “Underlay control channel using adaptive hybrid spread spectrum techniques for dynamic spectrum access,” International Symposium on Performance Evaluation of Computer and Telecommunication Systems, pp. 99-106, 2013.spa
dc.relation.referencesB. Wild and K. Ramchandran, “Detecting primary receivers for cognitive radio applications,” in New Frontiers in Dynamic Spectrum Access Networks, 2005. DySPAN 2005. 2005 First IEEE International Symposium on, 2005, pp. 124-130spa
dc.relation.referencesH. Tang, “Some physical layer issues of wide-band cognitive radio systems,” in New Frontiers in Dynamic Spectrum Access Networks, 2005. DySPAN 2005. 2005 First IEEE International Symposium on, 2005, pp. 151-159.spa
dc.relation.referencesZ. Haitao and C. Lili, “Device-centric spectrum management,” in New Frontiers in Dynamic Spectrum Access Networks, 2005. DySPAN 2005. 2005 First IEEE International Symposium on, 2005, pp. 56-65.spa
dc.relation.referencesV. Kanodia, et al., “MOAR: a multi-channel opportunistic auto-rate media access protocol for ad hoc networks,” in Broadband Networks, 2004. BroadNets 2004. Proceedings. First International Conference on, 2004, pp. 600-610.spa
dc.relation.referencesS. Krishnamurthy, et al., “Control channel based MAC-layer configuration, routing and situation awareness for cognitive radio networks,” in Military Communications Conference, 2005. MILCOM 2005. IEEE, vol. 1, 2005, pp. 455-460spa
dc.relation.references3GPP2, “cdma2000 High Rate Packet Data Air Interface Specification,” TS C.S0024 V2.0, 2000.spa
dc.relation.referencesE. Esteves, “The high data rate evolution of the cdma2000 cellular system mobility and teletraffic for wireless communications,” Kluwer Academic Publishers, vol. 5, pp. 61–72, 2000.spa
dc.relation.referencesW. Li-Chun and W. Chung-Wei, “Spectrum Handoff for Cognitive Radio Networks: Reactive-Sensing or Proactive-Sensins?,” in Performance, Computing and Communications Conference, 2008. IPCCC 2008. IEEE International, 2008, pp. 343-348.spa
dc.relation.referencesN. Hoven, et al., “Some fundamental limits on cognitive radio,” In Proc. Allerton Conf. on Commun Control, and Computing, 2004.spa
dc.relation.referencesI. Christian, et al., “Spectrum mobility in cognitive radio networks,” Communications Magazine, IEEE, vol. 50, no. 6, pp. 114-121, 2012.spa
dc.relation.referencesJ. Hernandez, et al., “A novel cognitive radio MAC protocol for dynamic spectrum access,” IEEE Latin-America Conference on Communications, pp. 1-6, 2spa
dc.relation.referencesL. F. Pedraza, et al., “Detección de espectro para radio cognitiva,” Ingeniare. Revista chilena de ingeniería, vol. 20, pp. 197-210, 2012.spa
dc.relation.referencesV. Brik, et al., “DSAP: a protocol for coordinated spectrum access,” in New Frontiers in Dynamic Spectrum Access Networks, 2005. DySPAN 2005. 2005 First IEEE International Symposium on, 2005, pp. 611-614spa
dc.relation.referencesC. Raman, et al., “Scheduling variable rate links via a spectrum server,” in New Frontiers in Dynamic Spectrum Access Networks, 2005. DySPAN 2005. 2005 First IEEE International Symposium on, 2005, pp. 110-118.spa
dc.relation.referencesC. Lili and Z. Haitao, “Distributed spectrum allocation via local bargaining,” in Sensor and Ad Hoc Communications and Networks, 2005. IEEE SECON 2005. 2005 Second Annual IEEE Communications Society Conference on, 2005, pp. 475-486.spa
dc.relation.referencesJ. Huang, et al., “Spectrum Sharing with Distributed Interference Compensation,” IEEE DySPAN 2005, pp. 88-93, 2005.spa
dc.relation.referencesL. Ma, et al., “Dynamic open spectrum sharing MAC protocol for wireless ad hoc networks,” in New Frontiers in Dynamic Spectrum Access Networks, 2005. DySPAN 2005. 2005 First IEEE International Symposium on, 2005, pp. 203-213.spa
dc.relation.referencesP. Papadimitratos, et al., “A bandwidth sharing approach to improve licensed spectrum utilization,” Communications Magazine, IEEE, vol. 43, no. 12, pp. 10- 14, 2005.spa
dc.relation.referencesZ. Qing, et al., “Decentralized cognitive mac for dynamic spectrum access,” in New Frontiers in Dynamic Spectrum Access Networks, 2005. DySPAN 2005. 2005 First IEEE International Symposium on, 2005, pp. 224-232.spa
dc.relation.referencesC. Peng, et al., “Utilization and fairness in spectrum assignment for opportunistic spectrum access,” Mobile Networks and Applications (MONET), vol. 11, no. 4, pp. 555-576, 2006.spa
dc.relation.referencesZ. Haitao and P. Chunyi, “Collaboration and fairness in opportunistic spectrum access,” in Communications, 2005. ICC 2005. 2005 IEEE International Conference on, vol. 5, 2005, pp. 3132-3136.spa
dc.relation.referencesN. Nie and C. Comaniciu, “Adaptive channel allocation spectrum etiquette for cognitive radio networks,” in New Frontiers in Dynamic Spectrum Access Networks, 2005. DySPAN 2005. 2005 First IEEE International Symposium on, 2005, pp. 269-278.spa
dc.relation.referencesM. Rekha, et al., “Outage probability based comparison of underlay and overlay spectrum sharing techniques,” in New Frontiers in Dynamic Spectrum Access Networks, 2005. DySPAN 2005. 2005 First IEEE International Symposium on, 2005, pp. 101-109.spa
dc.relation.referencesFCC, “Notice of proposed rule making, unlicensed operation in the TV broadcast bands,” FCC 04-186, 2004.spa
dc.relation.referencesM. J. Marcus, “Unlicensed cognitive sharing of TV spectrum: the controversy at the Federal Communications Commission,” Communications Magazine, IEEE, vol. 43, no. 5, pp. 24-25, 2005.spa
dc.relation.referencesZ. Youping, et al., “Applying Radio Environment Maps to Cognitive Wireless Regional Area Networks,” in New Frontiers in Dynamic Spectrum Access Networks, 2007. DySPAN 2007. 2nd IEEE International Symposium on, 2007, pp. 115-118.spa
dc.relation.referencesT. Yucek and H. Arslan, “A survey of spectrum sensing algorithms for cognitive radio applications,” Communications Surveys & Tutorials, IEEE, vol. 11, no. 1, pp. 116-130, 2009spa
dc.relation.referencesE. Axell, et al., “Spectrum Sensing for Cognitive Radio: State-of-the-Art and Recent Advances,” Signal Processing Magazine, IEEE, vol. 29, no. 3, pp. 101- 116, 2012.spa
dc.relation.referencesR. Couillet, et al., “Eigen-Inference for Energy Estimation of Multiple Sources,” Information Theory, IEEE Transactions on, vol. 57, no. 4, pp. 2420-2439, 2011.spa
dc.relation.referencesA. Al Daoud, et al., “Secondary Pricing of Spectrum in Cellular CDMA Networks,” in New Frontiers in Dynamic Spectrum Access Networks, 2007. DySPAN 2007. 2nd IEEE International Symposium on, 2007, pp. 535-542spa
dc.relation.referencesC. Chun-Ting, et al., “What and how much to gain by spectrum agility?,” Selected Areas in Communications, IEEE Journal on, vol. 25, no. 3, pp. 576-588, 200spa
dc.relation.referencesK. Hyoil and K. G. Shin, “Fast Discovery of Spectrum Opportunities in Cognitive Radio Networks,” in New Frontiers in Dynamic Spectrum Access Networks, 2008. DySPAN 2008. 3rd IEEE Symposium on, 2008, pp. 1-12.spa
dc.relation.referencesK. Hyoil and K. G. Shin, “Efficient Discovery of Spectrum Opportunities with MAC-Layer Sensing in Cognitive Radio Networks,” Mobile Computing, IEEE Transactions on, vol. 7, no. 5, pp. 533-545, 2008.spa
dc.relation.referencesL. Won-Yeol and I. F. Akyildiz, “Optimal spectrum sensing framework for cognitive radio networks,” Wireless Communications, IEEE Transactions on, vol. 7, no. 10, pp. 3845-3857, 2008.spa
dc.relation.referencesK. Sriram and W. Whitt, “Characterizing Superposition Arrival Processes in Packet Multiplexers for Voice and Data,” Selected Areas in Communications, IEEE Journal on, vol. 4, no. 6, pp. 833-846, 1986.spa
dc.relation.referencesD. Willkomm, et al., “Primary Users in Cellular Networks: A Large-Scale Measurement Study,” in New Frontiers in Dynamic Spectrum Access Networks, 2008. DySPAN 2008. 3rd IEEE Symposium on, 2008, pp. 1-11.spa
dc.relation.referencesS. Geirhofer, et al., “Cognitive Radios for Dynamic Spectrum Access - Dynamic Spectrum Access in the Time Domain: Modeling and Exploiting White Space,” Communications Magazine, IEEE, vol. 45, no. 5, pp. 66-72, 2007.spa
dc.relation.referencesR. Jain and S. Routhier, “Packet Trains-Measurements and a New Model for Computer Network Traffic,” Selected Areas in Communications, IEEE Journal on, vol. 4, no. 6, pp. 986-995, 1986.spa
dc.relation.referencesV. Paxson and S. Floyd, “Wide area traffic: the failure of Poisson modeling,” Networking, IEEE/ACM Transactions on, vol. 3, no. 3, pp. 226-244, 1995.spa
dc.relation.referencesB. Canberk, et al., “Primary User Activity Modeling Using First-Difference Filter Clustering and Correlation in Cognitive Radio Networks,” Networking, IEEE/ACM Transactions on, vol. 19, no. 1, pp. 170-183, 2011.spa
dc.relation.referencesM. Subhedar and G. Birajdar, “Spectrum Sensing Techniques in Cognitive Radio Networks: A Survey,” International Journal of Next-Generation Networks, vol. 3, no. 2, pp. 37-51, 2011.spa
dc.relation.referencesN. S. Shankar, et al., “Spectrum agile radios: utilization and sensing architectures,” in New Frontiers in Dynamic Spectrum Access Networks, 2005. DySPAN 2005. 2005 First IEEE International Symposium on, 2005, pp. 160-169spa
dc.relation.referencesG. Ganesan and L. Ye, “Agility improvement through cooperative diversity in cognitive radio,” in Global Telecommunications Conference, 2005. GLOBECOM ‘05. IEEE, 2005, pp. 5, pp. 2509.spa
dc.relation.referencesG. Ganesan and Y. Li, “Cooperative spectrum sensing in cognitive radio networks,” in New Frontiers in Dynamic Spectrum Access Networks, 2005. DySPAN 2005. 2005 First IEEE International Symposium on, 2005, pp. 137-143.spa
dc.relation.referencesD. Cabric, et al., “Spectrum Sensing Measurements of Pilot, Energy, and Collaborative Detection,” in Military Communications Conference, 2006. MILCOM 2006. IEEE, 2006, pp. 1-7.spa
dc.relation.referencesA. Ghasemi and E. S. Sousa, “Optimization of Spectrum Sensing for Opportunistic Spectrum Access in Cognitive Radio Networks,” in Consumer Communications and Networking Conference, 2007. CCNC 2007. 4th IEEE, 2007, pp. 1022-1026.spa
dc.relation.referencesD. Datla, et al., “Parametric Adaptive Spectrum Sensing Framework for Dynamic Spectrum Access Networks,” in New Frontiers in Dynamic Spectrum Access Networks, 2007. DySPAN 2007. 2nd IEEE International Symposium on, 2007, pp. 482-485.spa
dc.relation.referencesT. Weiss, et al., “A diversity approach for the detection of idle spectral resources in spectrum pooling systems,” 48th Int. Scientific Colloquium, pp. 37-38, 2003.spa
dc.relation.referencesF. Digham, et al., “On the Energy Detection of Unknown Signals Over Fading Channels,” IEEE Transactions on Communications, vol. 55, no. 1, pp. 21- 24, Jan. 2007.spa
dc.relation.referencesQ. Peng, et al., “A Distributed Spectrum Sensing Scheme Based on Credibility and Evidence Theory in Cognitive Radio Context,” in Personal, Indoor and Mobile Radio Communications, 2006 IEEE 17th International Symposium on, 2006, pp. 1-5.spa
dc.relation.referencesP. Pawelczak, et al., “WLC10-4: Performance Measures of Dynamic Spectrum Access Networks,” in Global Telecommunications Conference, 2006. GLOBECOM ‘06. IEEE, 2006, pp. 1-6.spa
dc.relation.referencesM. P. Wylie-Green, “Dynamic spectrum sensing by multiband OFDM radio for interference mitigation,” in New Frontiers in Dynamic Spectrum Access Networks, 2005. DySPAN 2005. 2005 First IEEE International Symposium on, 2005, pp. 619-625.spa
dc.relation.referencesS. D. Jones, et al., “An experiment for sensing-based opportunistic spectrum access in CSMA/CA networks,” in New Frontiers in Dynamic Spectrum Access Networks, 2005. DySPAN 2005. 2005 First IEEE International Symposium on, 2005, pp. 593-596.spa
dc.relation.referencesA. E. Leu, et al., “Ultra sensitive TV detector measurements,” in New Frontiers in Dynamic Spectrum Access Networks, 2005. DySPAN 2005. 2005 First IEEE International Symposium on, 2005, pp. 30-3spa
dc.relation.referencesJ. Lehtomaki, “Analysis of energy based signal detection,” Ph.D. dissertation, University of Oulu, Finland, 2005.spa
dc.relation.referencesJ. J. Lehtomaki, et al., “Spectrum Sensing with Forward Methods,” in Military Communications Conference, 2006. MILCOM 2006. IEEE, 2006, pp. 1-7.spa
dc.relation.referencesS. Geirhofer, et al., “A Measurement-Based Model for Dynamic Spectrum Access in WLAN Channels,” in Military Communications Conference, 2006. MILCOM 2006. IEEE, 2006, pp. 1-7spa
dc.relation.referencesS. Geirhofer, et al., “Dynamic spectrum access in WLAN channels: empirical model and its stochastic analysis,” presented at the Proceedings of the first international workshop on Technology and policy for accessing spectrum, Boston, Massachusetts, 2006spa
dc.relation.referencesA. E. Leu, et al., “Modeling and analysis of interference in listen-before-talk spectrum access schemes,” Int. J. Netw. Manag., vol. 16, no. 2, pp. 131-147, 2006.spa
dc.relation.referencesA. Sahai, et al., “Fundamental design tradeoffs in cognitive radio systems,” presented at the Proceedings of the first international workshop on Technology and policy for accessing spectrum, Boston, Massachusetts, 200spa
dc.relation.referencesT. Yucek and H. Arslan, “Spectrum Characterization for Opportunistic Cognitive Radio Systems,” in Military Communications Conference, 2006. MILCOM 2006. IEEE, 2006, pp. 1-6.spa
dc.relation.referencesP. Pawełczak, et al., “Cluster-based spectrum sensing architecture for opportunistic spectrum access networks,” Tech. Rep. IRCTR-S-004-07spa
dc.relation.referencesX. Liu and S. S. N., “Sensing-based opportunistic channel access,” Mob. Netw. Appl., vol. 11, no. 4, pp. 577-591, 2006.spa
dc.relation.referencesF. Weidling, et al., “A framework for R.F. spectrum measurements and analysis,” in New Frontiers in Dynamic Spectrum Access Networks, 2005. DySPAN 2005. 2005 First IEEE International Symposium on, 2005, pp. 573-576spa
dc.relation.referencesS. M. Mishra, et al., “Cognitive Technology for Ultra-Wideband/WiMax Coexistence,” in New Frontiers in Dynamic Spectrum Access Networks, 2007. DySPAN 2007. 2nd IEEE International Symposium on, 2007, pp. 179-186.spa
dc.relation.referencesH. Urkowitz, “Energy detection of unknown deterministic signals,” Proceedings of the IEEE, vol. 55, no. 4, pp. 523-531, 1967.spa
dc.relation.referencesJ. J. Lehtomaki, et al., “Threshold setting strategies for a quantized total power radiometer,” Signal Processing Letters, IEEE, vol. 12, no. 11, pp. 796-799, 2005.spa
dc.relation.referencesM. Abramowitz and I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 10th ed. New York: National Bureau of Standards, 1972.spa
dc.relation.referencesM. P. Olivieri, et al., “A scalable dynamic spectrum allocation system with interference mitigation for teams of spectrally agile software defined radios,” in New Frontiers in Dynamic Spectrum Access Networks, 2005. DySPAN 2005. 2005 First IEEE International Symposium on, 2005, pp. 170-179.spa
dc.relation.referencesS. Lal and A. Mishra, “A look ahead scheme for adaptive spectrum utilization,” in Radio and Wireless Conference, 2003. RAWCON ‘03. Proceedings, 2003, pp. 83-86.spa
dc.relation.referencesJ. Proakis, “Digital Communications,” ed. New York: McGraw-Hill, 2000.spa
dc.relation.referencesA. Sahai and D. Cabric, “A tutorial on spectrum sensing: Fundamental limits and practical challenges,” New Frontiers Dynamic Spectrum Access Networks (DySPAN), 2005.spa
dc.relation.referencesR. Tandra and A. Sahai, “SNR Walls for Signal Detection,” Selected Topics in Signal Processing, IEEE Journal of, vol. 2, no. 1, pp. 4-17, 2008.spa
dc.relation.referencesW. Beibei and K. J. R. Liu, “Advances in cognitive radio networks: A survey,” Selected Topics in Signal Processing, IEEE Journal of, vol. 5, no. 1, pp. 5-23, 2011.spa
dc.relation.referencesFCC, “Facilitating opportunities for flexible, efficient and reliable spectrum use employing cognitive radio technologies: Notice of proposed rule making and order,” ET Docket No. 03-108, 2003.spa
dc.relation.referencesA. Garhwal and P. Pratim, “A Survey on Spectrum Sensing Techniques in Cognitive Radio,” International Journal of Computer Science & Communication Networks, vol. 1, no. 2, pp. 196-205, 2011.spa
dc.relation.referencesA. Shahzad, “Comparative Analysis of Primary Transmitter Detection Based Spectrum Sensing Techniques in Cognitive Radio Systems,” Australian Journal of Basic and Applied Sciences, pp. 4522-4531, 2005.spa
dc.relation.referencesQ. Zhi, et al., “Spectrum Sensing by Cognitive Radios at Very Low SNR,” in Global Telecommunications Conference, 2009. GLOBECOM 2009. IEEE, 2009, pp. 1-6.spa
dc.relation.referencesH. B. Salameh, et al., “Distance- and Traffic-Aware Channel Assignment in Cognitive Radio Networks,” in Sensor, Mesh and Ad Hoc Communications and Networks, 2008. SECON ‘08. 5th Annual IEEE Communications Society Conference on, 2008, pp. 10-18.spa
dc.relation.referencesN. Khambekar, et al., “Utilizing OFDM Guard Interval for Spectrum Sen sing,” in Wireless Communications and Networking Conference, 2007.WCNC 2007. IEEE, 2007, pp. 38-42.spa
dc.relation.referencesM. Oner and F. Jondral, “Cyclostationarity based air interface recognition for software radio systems,” in Radio and Wireless Conference, 2004 IEEE, 2004, pp. 263-266.spa
dc.relation.referencesM. Oner and F. Jondral, “Cyclostationarity-based methods for the extraction of the channel allocation information in a spectrum pooling system,” in Radio and Wireless Conference, 2004 IEEE, 2004, pp. 279-282.spa
dc.relation.referencesA. Fehske, et al., “A new approach to signal classification using spectral correlation and neural networks,” in New Frontiers in Dynamic Spectrum Access Networks, 2005. DySPAN 2005. 2005 First IEEE International Symposium on, 2005, pp. 144-150.spa
dc.relation.referencesM. Ghozzi, et al., “Cyclostatilonarilty-Based Test for Detection of Vacant Frequency Bands,” in Cognitive Radio Oriented Wireless Networks and Communications, 2006. 1st International Conference on, 2006, pp. 1-5.spa
dc.relation.referencesH. Ning, et al., “Spectral correlation based signal detection method for spectrum sensing in IEEE 802.22 WRAN systems,” in Advanced Communication Technology, 2006. ICACT 2006. The 8th International Conference, 2006, pp. 6, pp.1770.spa
dc.relation.referencesJ. Lunden, et al., “Spectrum Sensing in Cognitive Radios Based on Multiple Cyclic Frequencies,” in Cognitive Radio Oriented Wireless Networks and Communications, 2007. CrownCom 2007. 2nd International Conference on, 2007, pspa
dc.relation.referencesK. Kyouwoong, et al., “Cyclostationary Approaches to Signal Detection and Classification in Cognitive Radio,” in New Frontiers in Dynamic Spectrum Access Networks, 2007. DySPAN 2007. 2nd IEEE International Symposium on, 2007, pp. 212-215.spa
dc.relation.referencesK. Maeda, et al., “Recognition Among OFDM-Based Systems Utilizing Cyclostationarity-Inducing Transmission,” in New Frontiers in Dynamic Spec trum Access Networks, 2007. DySPAN 2007. 2nd IEEE International Symposium on, 2007, pp. 516-523.spa
dc.relation.referencesP. D. Sutton, et al., “Cyclostationary Signatures for Rendezvous in OFDMBased Dynamic Spectrum Access Networks,” in New Frontiers in Dynamic Spectrum Access Networks, 2007. DySPAN 2007. 2nd IEEE International Symposium on, 2007, pp. 220-231.spa
dc.relation.referencesP. D. Sutton, et al., “Cyclostationary Signature Detection in Multipath Rayleigh Fading Environments,” in Cognitive Radio Oriented Wireless Networks and Communications, 2007. CrownCom 2007. 2nd International Conference on, 2007, pp. 408-413.spa
dc.relation.referencesW. A. Gardner, “Exploitation of spectral redundancy in cyclostationary signals,” Signal Processing Magazine, IEEE, vol. 8, no. 2, pp. 14-36, 1991spa
dc.relation.referencesZ. Tian and G. B. Giannakis, “A Wavelet Approach to Wideband Spectrum Sensing for Cognitive Radios,” in Cognitive Radio Oriented Wireless Networks and Communications, 2006. 1st International Conference on, 2006, pp. 1-5.spa
dc.relation.referencesS. M. Mishra, et al., “Cooperative Sensing among Cognitive Radios,” in Communications, 2006. ICC ‘06. IEEE International Conference on, 2006, pp. 1658-1663.spa
dc.relation.referencesG. Ganesan and L. Ye, “Cooperative Spectrum Sensing in Cognitive Radio, Part I: Two User Networks,” Wireless Communications, IEEE Transactions on, vol. 6, no. 6, pp. 2204-2213, 2007.spa
dc.relation.referencesG. Ganesan and Y. Li, “Cooperative Spectrum Sensing in Cognitive Radio, Part II: Multiuser Networks,” Wireless Communications, IEEE Transactions on, vol. 6, no. 6, pp. 2214-2222, 2007.spa
dc.relation.referencesB. F. Lo, et al., “Efficient Recovery Control Channel Design in Cognitive Ra dio Ad Hoc Networks,” Vehicular Technology, IEEE Transactions on, vol. 59, no. 9, pp. 4513-4526, 2010.spa
dc.relation.referencesI. F. Akyildiz, et al., “Cooperative spectrum sensing in cognitive radio networks: A survey,” Phys. Commun., vol. 4, no. 1, pp. 40-62, 2011.spa
dc.relation.referencesM. López and F. Casadevall, “Spectrum Survey in Urban Environment: UPC Campus Nord, Barcelona, Spain,” Technical Report, 2010.spa
dc.relation.referencesAnritsu, “Spectrum Master™ Model MS2721B,” Maintenance Manual, 2012.spa
dc.relation.referencesC. Rauscher, Fundamentals of Spectrum Analysis, 6th ed. Munchen: Rohde&Schwarz, 2008.spa
dc.relation.referencesAgilent-Technologies, “Spectrum Analysis Basics - Application,” Note 150, 2014.spa
dc.relation.referencesA. M. Wyglinski, et al., Cognitive Radio Communications and Networks Principles and Practice. Burlington: Elsevier, 2010.spa
dc.relation.referencesA. Dejonghe, et al., “Spectrum Sensing Engine and Prototype Measurements FARAMIR D3.2,” Flexible and Spectrum Aware Radio Access through Measurements and Modelling in Cognitive Radio Systems, pp. 1-78, 2011.spa
dc.relation.referencesRunning GPS software on USRP. Available: http://yo3iiu.ro/blog/?p=1127spa
dc.relation.referencesM. López and F. Casadevall, “Methodological aspects of spectrum occupancy evaluation in the context of cognitive radio,” European Transactions on Telecom munications (Wiley), Special Issue on European Wireless 2009 Conference, vol. 21, no. 9, pp. 680-693, December 2010.spa
dc.relation.referencesITU, “UIT-R SM.1880. Spectrum Occupancy Measurement Technical Report,” International Telecommunications Uspa
dc.relation.referencesL. Pedraza, et al., “Evaluación de ocupación del espectro radioeléctrico en Bogotá-Colombia,” Ingeniería y Ciencia, vol. 10, no. 19, pp. 127-143, 2014.spa
dc.relation.referencesL. Pedraza, et al., “Estudio del uso del espectro radioeléctrico en zonas urbanas de Bogotá en Colombia,” 4to Congreso Internacional de Espectro (ANE), 2014.spa
dc.relation.referencesR. Ferro, et al., “Maximización del Throughput en una red de radio cognitiva basado en la probabilidad de falsa alarma,” Tecnura, vol. 15, no. 30, pp. 64- 70, 2011.spa
dc.relation.referencesX. Ding, et al., “An Architecture for Cognitive Radio Networks with Cognition, Self-Organization and Reconfiguration Capabilities,” in Vehicular Technology Conference (VTC Fall), 2012 IEEE, 2012, pp. 1-5.spa
dc.relation.referencesY. Chun-gang, et al., “Optimal Power Control for Cognitive Radio Networks Under Coupled Interference Constraints: A Cooperative Game-Theoretic Perspective,” Vehicular Technology, IEEE Transactions on, vol. 59, no. 4, pp. 1696- 1706, 2010.spa
dc.relation.referencesD. Xu, et al., “Outage probability minimising joint channel and power allocation for cognitive radio networks,” Electronics Letters, vol. 47, no. 25, pp. 1402- 1404, 2011.spa
dc.relation.referencesM. Thathachar and P. Sastry, Networks of Learning Automata: Techniques for Online Stochastic Optimization, 1st ed. Massachusetts: Kluwer Academic Publishers, 2004spa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accesoAbierto (Texto Completo)spa
dc.rights.accessrightsOpenAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectEspectrospa
dc.subjectElectromagnéticospa
dc.subjectRadioeléctricospa
dc.subjectTelecomunicacionesspa
dc.subject.keywordSpectrumspa
dc.subject.keywordElectromagneticspa
dc.subject.keywordRadioelectricspa
dc.subject.keywordTelecommunicationsspa
dc.subject.lembEspectro electromagnético - Bogotá (Colombia)spa
dc.subject.lembEspectro radioeléctrico - Bogotá (Colombia)spa
dc.subject.lembEspectro radioeléctrico – Mediciones - Bogotá (Colombia)spa
dc.subject.lembTelecomunicaciones - Bogotá (Colombia)spa
dc.titleOcupación espectral y modelo de radio cognitiva para Bogotáspa
dc.title.titleenglishSpectral occupancy and cognitive radio model for Bogotáspa
dc.typebookspa
dc.type.coarhttp://purl.org/coar/resource_type/c_2f33
dc.type.driverinfo:eu-repo/semantics/book

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
OCUPACION espectral.pdf
Tamaño:
5.15 MB
Formato:
Adobe Portable Document Format
Descripción:
Libro

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
7 KB
Formato:
Item-specific license agreed upon to submission
Descripción: