Modelo de arquitectura para el almacenamiento de datos de radares meteorológicos.

dc.contributor.advisorPerdomo Charry, Cesar Andrey
dc.contributor.authorPuentes Rivero, Jonathan
dc.contributor.authorCruz Cadena, Giovanny Andre
dc.contributor.orcidPerdomo Charry, Cesar Andrey [0009-0009-5586-0255]
dc.date.accessioned2025-09-24T22:04:53Z
dc.date.available2025-09-24T22:04:53Z
dc.date.created2025-06-06
dc.descriptionDurante el desarrollo de la pasantía, se abordan las deficiencias en la gestión de datos meteorológicos de la Aeronáutica Civil de Colombia, destacando la necesidad de un sistema de almacenamiento centralizado para facilitar el acceso y la gestión de los datos para futuros análisis y tratamiento de los datos. En la investigación se identifican los desafíos en la eficiencia del almacenamiento y procesamiento debido a la heterogeneidad y volumen de los datos. La propuesta se enfoca en el diseño de un sistema de almacenamiento de datos centralizado basado en tecnologías en la nube o hiperconvergentes, destinado al manejo de los datos meteorológicos de la red de radares de la Aeronáutica Civil. Se espera que la implementación de este sistema mejore la gestión y retención de los datos entregados por los radares meteorológicos, además que este también permita conservar grandes volúmenes de datos de interés para en el futuro poder emplear dichos datos para el análisis en investigaciones de incidentes de aviación civil y la generación de productos para pronostico meteorológico.
dc.description.abstractDuring the internship, deficiencies in meteorological data management at the Colombian Civil Aeronautics were addressed, highlighting the need for a centralized storage system to facilitate data access and management for future analysis and processing. The research identifies challenges in storage and processing efficiency due to the heterogeneity and volume of data. The proposal focuses on the design of a centralized data storage system based on cloud or hyperconverged technologies, intended for the management of meteorological data from the Civil Aeronautics radar network. The implementation of this system is expected to improve the management and retention of data delivered by meteorological radars, and also allow the storage of large volumes of data of interest for future use in analysis in civil aviation incident investigations and the generation of meteorological forecasting products.
dc.description.sponsorshipUnidad administrativa especial de aeronáutica civil
dc.format.mimetypepdf
dc.identifier.urihttp://hdl.handle.net/11349/99254
dc.language.isospa
dc.publisherUniversidad Distrital Francisco José de Caldas
dc.relation.referencesD. Laney, “3D Data Management: Controlling Data Volume, Velocity, and Variety,” Gartner, 2001
dc.relation.referencesR. Kimball and M. Ross, The Data Warehouse Toolkit, Wiley, 2013
dc.relation.referencesAeronáutica Civil de Colombia, “Plan Estratégico Aeronáutico 2030,” 2023. [Online]. Available: https://www.aerocivil.gov.co
dc.relation.referencesC. M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006
dc.relation.referencesJ. Manyika et al., “Big Data: The Next Frontier for Innovation,” McKinsey Global Institute, 2011
dc.relation.referencesMinIO Inc., “MinIO: Open-Source High Performance Object Storage,” [Online]. Available: https://min.io/
dc.relation.referencesAmazon Web Services, “What is a Data Lake?” 2022. [Online]. Available: https://aws.amazon.com/es/big-data/datalakes-and-analytics/what-is-a-data-lake/
dc.relation.referencesMicrosoft, “¿Qué es un almacén de datos?,” 2020. [Online]. Available: https://learn.microsoft.com/es-es/azure/architecture/data-guide/datawarehouse/
dc.relation.referencesAmazon Web Services, “Cloud Storage Solutions for Big Data,” 2023. [Online]. Available: https://aws.amazon.com/big-data/datalakes-and-analytics/
dc.relation.referencesR. P. Abernathey et al., “Cloud-Native Repositories for Big Scientific Data,” Computing in Science & Engineering, vol. 23, no. 2, pp. 26–35, 2021. [Online]. Available: https://doi.org/10.1109/MCSE.2021.3059437
dc.relation.referencesS. Mazumdar et al., “A Survey on Data Storage and Placement Methodologies for Cloud-Big Data Ecosystem,” Journal of Big Data, vol. 6, no. 1, 2019. [Online]. Available: https://doi.org/10.1186/s40537-019-0178-3
dc.relation.referencesS. Y. Muratov and S. B. Muravyov, “Framework Architecture of a Secure Big Data Lake,” Procedia Computer Science, vol. 229, pp. 39–46, 2023. [Online]. Available: https://doi.org/10.1016/j.procs.2023.12.005
dc.relation.referencesM. Yang et al., “An Efficient Storage and Service Method for Multi- source Merging Meteorological Big Data in Cloud Environment,” EURASIP Journal on Wireless Communications and Networking, vol. 2019, no. 1, 2019. [Online]. Available: https://doi.org/10.1186/s13638-019-1576-0
dc.relation.referencesD. Bauer et al., “Building and Operating a Large-Scale Enterprise Data Analytics Platform,” Big Data Research, vol. 23, 2021. [Online]. Available: https://doi.org/10.1016/j.bdr.2020.100181
dc.relation.referencesC. E. Hachimi et al., “Smart Weather Data Management Based on Artificial Intelligence and Big Data Analytics for Precision Agriculture,” Agriculture, vol. 13, no. 1, 2023. [Online]. Available: https://doi.org/10.3390/agriculture13010095
dc.relation.referencesZ. Sokol et al., “The Role of Weather Radar in Rainfall Estimation and Its Application in Meteorological and Hydrological Modelling—A Review,” Remote Sensing, vol. 13, no. 3, 2021. [Online]. Available: https://doi.org/10.3390/rs13030351
dc.relation.referencesA. Greco et al., “A Network of X-Band Meteorological Radars to Support the Motorway System (Campania Region Meteorological Radar Network Project),” Remote Sensing, vol. 14, no. 9, 2022. [Online]. Available: https://doi.org/10.3390/rs14092221
dc.relation.referencesHevoData, “Data Ingestion Best Practices Simplified 101,” 2022. [Online]. Available: https://hevodata.com/learn/data-ingestion-best-practices/
dc.relation.referencesCueLogic, “Metadata Management in Big Data Systems,” 2022. [Online]. Available: https://www.cuelogic.com/blog/metadata-management-in-big-data-systems
dc.relation.referencesIBM, “Guide to Data Ingestion: Types, Process & Best Practices,” 2020. [Online]. Available: https://www.ibm.com
dc.relation.referencesDataEngineerAcademy, “Data Ingestion Methods and Tools A Comprehensive Guide,” 2022. [Online]. Available: https://dataengineeracademy.com
dc.relation.referencesE. Gilman, “Framework for the Collection, Cleaning, Integration & Anonymization of Big Data,” CUTLER, 2018.
dc.relation.referencesM. Baca, Ed., Introduction to Metadata, Getty Publications, 2008.
dc.relation.referencesX. Gao and L. Xie, “Science of the Total Environment,” vol. 859, 2023.
dc.relation.referencesVaisala Inc., “WRM200 Weather Radar User Guide,” 2011.
dc.relation.referencesMorcom, “Weather Radar Systems – C Band / X Band,” 2013. [Online]. Available: https://www.morcom.com
dc.relation.referencesV. Vianna and A. Santos, “Data Lake: Uma Nova Arquitetura de Armazenamento,” Revista de Informática Teórica e Aplicada, vol. 25, no. 1, pp. 7–18, 2018.
dc.relation.referencesT. White, Hadoop: The Definitive Guide, O’Reilly Media, 2012.
dc.relation.referencesL. Dinesh and K. G. Devi, “An Efficient Hybrid Optimization of ETL Process in Data Warehouse of Cloud Architecture,” Journal of Cloud Computing, vol. 13, no. 1, 2024. [Online]. Available: https://doi.org/10.1186/s13677-023-00571-y
dc.rights.accesoRestringido (Solo Referencia)
dc.rights.accessrightsRestrictedAccess
dc.subjectDatos meteorológicos
dc.subjectData Lake
dc.subjectDatawarehouse
dc.subjectInfraestructura tecnológica
dc.subjectBig Data
dc.subjectETL
dc.subject.keywordWeather data
dc.subject.keywordData Lake
dc.subject.keywordData warehouse
dc.subject.keywordTechnology infrastructure
dc.subject.keywordBig Data
dc.subject.keywordETL
dc.subject.lembMaestría en Ciencias de la Información y las Comunicaciones Metodología Profundización -- Tesis y disertaciones académicas
dc.subject.lembBases de datos distribuidas
dc.subject.lembAlmacenamiento en línea
dc.subject.lembMeteorología aeronáutica -- Proceso de datos
dc.subject.lembAeronáutica
dc.titleModelo de arquitectura para el almacenamiento de datos de radares meteorológicos.
dc.title.alternativeModelo de Arquitectura Escalable y Segura de Data Lake para la Gestión de Datos de Radares Meteorológicos
dc.title.titleenglishArchitectural model for storing weather radar data.
dc.typemasterThesis
dc.type.degreePasantía
dc.type.driverinfo:eu-repo/semantics/masterThesis

Archivos

Bloque original

Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
PuentesRiveroJonathan2025.pdf
Tamaño:
1.71 MB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
Licencia de uso y publicacion.pdf
Tamaño:
270.19 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
7 KB
Formato:
Item-specific license agreed upon to submission
Descripción: