Modelo de arquitectura para el almacenamiento de datos de radares meteorológicos.
| dc.contributor.advisor | Perdomo Charry, Cesar Andrey | |
| dc.contributor.author | Puentes Rivero, Jonathan | |
| dc.contributor.author | Cruz Cadena, Giovanny Andre | |
| dc.contributor.orcid | Perdomo Charry, Cesar Andrey [0009-0009-5586-0255] | |
| dc.date.accessioned | 2025-09-24T22:04:53Z | |
| dc.date.available | 2025-09-24T22:04:53Z | |
| dc.date.created | 2025-06-06 | |
| dc.description | Durante el desarrollo de la pasantía, se abordan las deficiencias en la gestión de datos meteorológicos de la Aeronáutica Civil de Colombia, destacando la necesidad de un sistema de almacenamiento centralizado para facilitar el acceso y la gestión de los datos para futuros análisis y tratamiento de los datos. En la investigación se identifican los desafíos en la eficiencia del almacenamiento y procesamiento debido a la heterogeneidad y volumen de los datos. La propuesta se enfoca en el diseño de un sistema de almacenamiento de datos centralizado basado en tecnologías en la nube o hiperconvergentes, destinado al manejo de los datos meteorológicos de la red de radares de la Aeronáutica Civil. Se espera que la implementación de este sistema mejore la gestión y retención de los datos entregados por los radares meteorológicos, además que este también permita conservar grandes volúmenes de datos de interés para en el futuro poder emplear dichos datos para el análisis en investigaciones de incidentes de aviación civil y la generación de productos para pronostico meteorológico. | |
| dc.description.abstract | During the internship, deficiencies in meteorological data management at the Colombian Civil Aeronautics were addressed, highlighting the need for a centralized storage system to facilitate data access and management for future analysis and processing. The research identifies challenges in storage and processing efficiency due to the heterogeneity and volume of data. The proposal focuses on the design of a centralized data storage system based on cloud or hyperconverged technologies, intended for the management of meteorological data from the Civil Aeronautics radar network. The implementation of this system is expected to improve the management and retention of data delivered by meteorological radars, and also allow the storage of large volumes of data of interest for future use in analysis in civil aviation incident investigations and the generation of meteorological forecasting products. | |
| dc.description.sponsorship | Unidad administrativa especial de aeronáutica civil | |
| dc.format.mimetype | ||
| dc.identifier.uri | http://hdl.handle.net/11349/99254 | |
| dc.language.iso | spa | |
| dc.publisher | Universidad Distrital Francisco José de Caldas | |
| dc.relation.references | D. Laney, “3D Data Management: Controlling Data Volume, Velocity, and Variety,” Gartner, 2001 | |
| dc.relation.references | R. Kimball and M. Ross, The Data Warehouse Toolkit, Wiley, 2013 | |
| dc.relation.references | Aeronáutica Civil de Colombia, “Plan Estratégico Aeronáutico 2030,” 2023. [Online]. Available: https://www.aerocivil.gov.co | |
| dc.relation.references | C. M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006 | |
| dc.relation.references | J. Manyika et al., “Big Data: The Next Frontier for Innovation,” McKinsey Global Institute, 2011 | |
| dc.relation.references | MinIO Inc., “MinIO: Open-Source High Performance Object Storage,” [Online]. Available: https://min.io/ | |
| dc.relation.references | Amazon Web Services, “What is a Data Lake?” 2022. [Online]. Available: https://aws.amazon.com/es/big-data/datalakes-and-analytics/what-is-a-data-lake/ | |
| dc.relation.references | Microsoft, “¿Qué es un almacén de datos?,” 2020. [Online]. Available: https://learn.microsoft.com/es-es/azure/architecture/data-guide/datawarehouse/ | |
| dc.relation.references | Amazon Web Services, “Cloud Storage Solutions for Big Data,” 2023. [Online]. Available: https://aws.amazon.com/big-data/datalakes-and-analytics/ | |
| dc.relation.references | R. P. Abernathey et al., “Cloud-Native Repositories for Big Scientific Data,” Computing in Science & Engineering, vol. 23, no. 2, pp. 26–35, 2021. [Online]. Available: https://doi.org/10.1109/MCSE.2021.3059437 | |
| dc.relation.references | S. Mazumdar et al., “A Survey on Data Storage and Placement Methodologies for Cloud-Big Data Ecosystem,” Journal of Big Data, vol. 6, no. 1, 2019. [Online]. Available: https://doi.org/10.1186/s40537-019-0178-3 | |
| dc.relation.references | S. Y. Muratov and S. B. Muravyov, “Framework Architecture of a Secure Big Data Lake,” Procedia Computer Science, vol. 229, pp. 39–46, 2023. [Online]. Available: https://doi.org/10.1016/j.procs.2023.12.005 | |
| dc.relation.references | M. Yang et al., “An Efficient Storage and Service Method for Multi- source Merging Meteorological Big Data in Cloud Environment,” EURASIP Journal on Wireless Communications and Networking, vol. 2019, no. 1, 2019. [Online]. Available: https://doi.org/10.1186/s13638-019-1576-0 | |
| dc.relation.references | D. Bauer et al., “Building and Operating a Large-Scale Enterprise Data Analytics Platform,” Big Data Research, vol. 23, 2021. [Online]. Available: https://doi.org/10.1016/j.bdr.2020.100181 | |
| dc.relation.references | C. E. Hachimi et al., “Smart Weather Data Management Based on Artificial Intelligence and Big Data Analytics for Precision Agriculture,” Agriculture, vol. 13, no. 1, 2023. [Online]. Available: https://doi.org/10.3390/agriculture13010095 | |
| dc.relation.references | Z. Sokol et al., “The Role of Weather Radar in Rainfall Estimation and Its Application in Meteorological and Hydrological Modelling—A Review,” Remote Sensing, vol. 13, no. 3, 2021. [Online]. Available: https://doi.org/10.3390/rs13030351 | |
| dc.relation.references | A. Greco et al., “A Network of X-Band Meteorological Radars to Support the Motorway System (Campania Region Meteorological Radar Network Project),” Remote Sensing, vol. 14, no. 9, 2022. [Online]. Available: https://doi.org/10.3390/rs14092221 | |
| dc.relation.references | HevoData, “Data Ingestion Best Practices Simplified 101,” 2022. [Online]. Available: https://hevodata.com/learn/data-ingestion-best-practices/ | |
| dc.relation.references | CueLogic, “Metadata Management in Big Data Systems,” 2022. [Online]. Available: https://www.cuelogic.com/blog/metadata-management-in-big-data-systems | |
| dc.relation.references | IBM, “Guide to Data Ingestion: Types, Process & Best Practices,” 2020. [Online]. Available: https://www.ibm.com | |
| dc.relation.references | DataEngineerAcademy, “Data Ingestion Methods and Tools A Comprehensive Guide,” 2022. [Online]. Available: https://dataengineeracademy.com | |
| dc.relation.references | E. Gilman, “Framework for the Collection, Cleaning, Integration & Anonymization of Big Data,” CUTLER, 2018. | |
| dc.relation.references | M. Baca, Ed., Introduction to Metadata, Getty Publications, 2008. | |
| dc.relation.references | X. Gao and L. Xie, “Science of the Total Environment,” vol. 859, 2023. | |
| dc.relation.references | Vaisala Inc., “WRM200 Weather Radar User Guide,” 2011. | |
| dc.relation.references | Morcom, “Weather Radar Systems – C Band / X Band,” 2013. [Online]. Available: https://www.morcom.com | |
| dc.relation.references | V. Vianna and A. Santos, “Data Lake: Uma Nova Arquitetura de Armazenamento,” Revista de Informática Teórica e Aplicada, vol. 25, no. 1, pp. 7–18, 2018. | |
| dc.relation.references | T. White, Hadoop: The Definitive Guide, O’Reilly Media, 2012. | |
| dc.relation.references | L. Dinesh and K. G. Devi, “An Efficient Hybrid Optimization of ETL Process in Data Warehouse of Cloud Architecture,” Journal of Cloud Computing, vol. 13, no. 1, 2024. [Online]. Available: https://doi.org/10.1186/s13677-023-00571-y | |
| dc.rights.acceso | Restringido (Solo Referencia) | |
| dc.rights.accessrights | RestrictedAccess | |
| dc.subject | Datos meteorológicos | |
| dc.subject | Data Lake | |
| dc.subject | Datawarehouse | |
| dc.subject | Infraestructura tecnológica | |
| dc.subject | Big Data | |
| dc.subject | ETL | |
| dc.subject.keyword | Weather data | |
| dc.subject.keyword | Data Lake | |
| dc.subject.keyword | Data warehouse | |
| dc.subject.keyword | Technology infrastructure | |
| dc.subject.keyword | Big Data | |
| dc.subject.keyword | ETL | |
| dc.subject.lemb | Maestría en Ciencias de la Información y las Comunicaciones Metodología Profundización -- Tesis y disertaciones académicas | |
| dc.subject.lemb | Bases de datos distribuidas | |
| dc.subject.lemb | Almacenamiento en línea | |
| dc.subject.lemb | Meteorología aeronáutica -- Proceso de datos | |
| dc.subject.lemb | Aeronáutica | |
| dc.title | Modelo de arquitectura para el almacenamiento de datos de radares meteorológicos. | |
| dc.title.alternative | Modelo de Arquitectura Escalable y Segura de Data Lake para la Gestión de Datos de Radares Meteorológicos | |
| dc.title.titleenglish | Architectural model for storing weather radar data. | |
| dc.type | masterThesis | |
| dc.type.degree | Pasantía | |
| dc.type.driver | info:eu-repo/semantics/masterThesis |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 7 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:
