Modelo de asignación de recursos indivisibles con restricciones de exclusividad aplicando agentes autónomos mediante negociación distribuida

dc.contributor.advisorBarón Velandia, Julio
dc.contributor.authorHernández Montealegre, Daniel Alexander
dc.contributor.orcidBarón Velandia, Julio [0000-0002-9491-5564]
dc.date.accessioned2025-12-15T15:46:24Z
dc.date.available2025-12-15T15:46:24Z
dc.date.created2025-11-11
dc.descriptionEste proyecto de investigación propone el diseño de un modelo de asignación de recursos indivisibles con restricciones de exclusividad mediante la aplicación de agentes autónomos que negocian de forma distribuida. La iniciativa surge como respuesta a la necesidad de representar escenarios en los que los recursos no pueden dividirse ni compartirse libremente entre todas las entidades y donde se debe tener en cuenta la equidad en la distribución de los recursos. El modelo se desarrolla sobre una arquitectura distribuida utilizando agentes autónomos, con protocolos de negociación que permiten a los agentes llegar a acuerdos, respetando sus restricciones y objetivos individuales. A través de una técnica metodológica iterativa e incremental, se realiza el modelo de asignación, se establecen los protocolos de negociación mejor adaptados y se simulan escenarios que permiten evaluar la pertinencia del enfoque propuesto. Se busca que los resultados contribuyan a cerrar la brecha existente entre la teoría de asignación equitativa y los protocolos de negociación distribuidos, ofreciendo una opción flexible, tolerante a fallas y conceptualmente sólida aplicable a entornos dinámicos.
dc.description.abstractThis research project proposes the design of a model for allocating indivisible resources with exclusivity constraints through the application of autonomous agents that negotiate in a distributed manner. The initiative arises as a response to the need to represent scenarios in which resources cannot be freely divided or shared among all entities and where fairness in resource distribution must be considered. The model is developed on a distributed architecture using autonomous agents, with negotiation protocols that allow agents to reach agreements while respecting their individual constraints and objectives. Through an iterative and incremental methodological approach, the allocation model is built, the most suitable negotiation protocols are established, and scenarios are simulated to evaluate the relevance of the proposed approach. The aim is for the results to help bridge the gap between fair allocation theory and distributed negotiation protocols, offering a flexible, fault-tolerant, and conceptually sound option applicable to dynamic environments.
dc.format.mimetypepdf
dc.identifier.urihttp://hdl.handle.net/11349/100136
dc.language.isospa
dc.publisherUniversidad Distrital Francisco José De Caldas
dc.relation.referencesAiriau, S., & Endriss, U. (2010). Multiagent Resource Allocation with Sharable Items: Simple Protocols and Nash Equilibria. International Foundation fo Autonomous Agents and Multiagent Systems, 167-174.
dc.relation.referencesAtkinson, A. B. (1970). On the Measurement of Inequality. Journal of economic theory 2, 244-263.
dc.relation.referencesB. Barbanel, J. (1996). Super Envy-Free Cake Division and Independence of Measures. Journal of mathematical analysis and applications 197, 54-60.
dc.relation.referencesBadica, C., Ganzha, M., & Paprzycki, M. (2006). Rule-Based Automated Price Negotiation: Overview and Experiment. Artificial Intelligence and Soft Computing - ICAISC 2006, (págs. 1050-1059).
dc.relation.referencesBagga, P., Paoletti, N., Alrayes, B., & Stathis, K. (2021). ANEGMA: an automated negotiation model for e-markets. Autonomous Agents and Multi-Agent Systems, 35:27.
dc.relation.referencesBakolas, E., & Lee, Y. (2020). Decentralized Game-Theoretic Control for Dynamic Task Allocation Problems for Multi-Agent Systems. Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas.
dc.relation.referencesBerceanu, C., & Patrascu, M. (2024). Comparative analysis of agent-based modeling frameworks for signal propagation in complex networks: Netlogo and Python Mesa. U.P.B. Sci. Bull.
dc.relation.referencesBhattacharya, S., Oulis Rousis, A., & Bourazeri, A. (2024). Trust & Fair Resource Allocation in Community Energy Systems. Digital Object Identifier.
dc.relation.referencesBraquet, M., & Bakolas, E. (2021). Greedy Decentralized Auction-based Task Allocation for MultiAgent Systems. Department of Aerospace Engineering and Engineering Mechanics.
dc.relation.referencesBriola, D., & Mascardi, V. (2011). Multi Agent Resource Allocation: a Comparison of Five Negotiation Protocols. Proceedings of the 12th Workshop on Objects and Agents. Rende (CS), Italia.
dc.relation.referencesChevaleyre, Y., Dunne, P., Endriss, U., Lang, J., Lemaitre, M., Maudet, N., Padget, J., Phelps, J., Rodríguez-Aguilar, J., Sousa, P. (2006). Issues in Multiagent Resource Allocation. Informatica, 30, 3-31.
dc.relation.referencesChevaleyre, Y., Endriss, U., & Maudet, N. (2010). Simple negotiation schemes for agents with simple preferences: sufficiency, necessity and maximality. Auton Agent Multi-Agent Syst, 234-259.
dc.relation.referencesDanna, E., Hassidim, A., Kaplan, H., Kumar, A., Mansour, Y., Raz, D., & Segalov, M. (2012). Upward Max Min Fairness. 2012 Proceedings IEEE INFOCOM. Orlando, FL, USA.
dc.relation.referencesde Jonge, D., Bistaffa, F., & Levy, J. (2022). Multi-objective vehicle routing with automated negotiation. Applied Intelligence, 16916-16939.
dc.relation.referencesDeloach, S., & Wood, M. F. (2001). An Overview of the Multiagent Systems Engineering Methodology. In Agent-Oriented Software Engineering - Proceedings of the First International Workshop on Agent-Oriented Software Engineering. Limerick, Ireland: Springer Verlag.
dc.relation.referencesDing, J., Han, L., Li, J., & Zhang, D. (2023). Resource allocation strategy for blockchain-enabled NOMA-based MEC networks. Journal of Cloud Computing, 12:142.
dc.relation.referencesD'Inverno, M., Luck, M., Georgeff, M., Kinny, D., & Wooldridge, M. (2004). The dMARS Architecture: A Specification of the Distributed Multi-Agent Reasoning System. Autonomous Agents and Multi-Agent Sytems, 5-53.
dc.relation.referencesElokda, E., Bolognani, S., Censi, A., Dörfler, F., & Frazzoli, E. (2024). A Self-Contained Karma Economy for the Dynamic Allocation of Common Resources. Dynamic Games and Applications, 578-610.
dc.relation.referencesEpstein, J. M. (1999). Agent-based Computational Models And Generative Social Science. Economic Studies, Brookings Institution.
dc.relation.referencesEstañ, T., Llorca, N., Martínez, R., & Sánches-Soriano, J. (2021). On the Difficulty of Budget Allocation in Claims Problems with Indivisible Items and Prices. Group Decision and Negotiation, 1133-1159.
dc.relation.referencesFaratin, P., Parsons, S., Lomuscio, A., & Wooldridge, M. (2001). Automated Negotiation: Prospects, Methods and Challenges. Group Decision and Negotiation.
dc.relation.referencesFreeman, R., Sikdar, S., Vaish, R., & Xia, L. (2019). Equitable Allocations of Indivisible Goods. ArXiv preprint arXiv.
dc.relation.referencesHarks, T., & Timmermans, V. (2022). Equilibrium computation in resource allocation games. Mathematical Programming, 1-34.
dc.relation.referencesHaxell, P., & Szabó, T. (2025). Improved Integrality Gap in Max-Min Allocation, or, Topology at the North Pole. Combinatorica, 45-22.
dc.relation.referencesIyer, K., & Huhns, M. (2005). Multiagent Negotiation for Fair and Unbiased Resource Allocation. 453-465.
dc.relation.referencesIyer, K., & Huhns, M. (2009). Negotiation criteria for multiagent resource allocation. The knowledge Engineering Review.
dc.relation.referencesJennings, N. R. (2000). On agent-based software engineering. Artificial Intelligence 117, 277-296.
dc.relation.referencesKeskin, M., Cantürk, F., Eran, C., & Aydogan, R. (2024). Decentralized multi-agent path finding framework and strategies based on automated negotiation. Autonomous Agents and Multi-agent Systems.
dc.relation.referencesKilgour, D. M., & Vetschera, R. (2024). Two-Person Fair Division with Additive Valuations. Group Decision and Negotiation, 745-774.
dc.relation.referencesLarman, C., & Basili, V. R. (2003). Iterative and Incremental Development: A Brief History. IEEE Computer Society, 47-56.
dc.relation.referencesLi, X., & Soh, L.-K. (2005). Hybrid negotiation for resource coordination in multiagent systems. Web IOntelligence and Agent Systems: An international journal 3, (págs. 1-30).
dc.relation.referencesLiu, G., Deng, J., Zhu, Y., Li, N., Han, B., Wang, S., . . . Kang, M. (2025). 6G autonomous radio access network empowered by artificial intelligence and network digital twin. Frontiers of Information Technology & Electronic Engineering, 161-213.
dc.relation.referencesNash, J. (1951). Non-cooperative games. Annals of Mathematics, 286-295.
dc.relation.referencesNongaillard, A. (2009). An agent-based approach for distributed resource allocations. Artificial Intelligence.
dc.relation.referencesParedes Hernández, P. (2014). Coordinador de sistemas multiagente en entornos de toma de decisiones secuenciales. INAOE.
dc.relation.referencesPlaut, B., & Roughgarden, T. (2017). Almost envy-freeness with general valuations. SIAM J. Discrete Math., 1039-1068.
dc.relation.referencesPonsati, C., & Sahnchez-Pages, S. (2012). Optimism and commitment: an elementary theory of bargaining and war. SERIEs, 157-179.
dc.relation.referencesPycia, M., & Ünver, M. (2022). Outside options in neutral allocation of discrete resources. Review of Economoic Design, 581-604.
dc.relation.referencesRabaaoui, S., Hachicha, H., & Zagrouba, E. (2024). An efficient and autonomous dynamic resource allocation in cloud computing with optimized task scheduling. 28th International Conference on Knowledge-Based and Intelligent Information & Engineering Systems, 3654-3663.
dc.relation.referencesSchneckengurger, S., Dorn, B., & Endriss, U. (2022). Minimising inequality in multiagent resource allocation. Annals of Mathematics and Artificial Intelligence, 339-371.
dc.relation.referencesShao, R., & Zhou, L. (2016). Optimal allocation of an indivisible good. Games and Economic Behavior 100, 95-112.
dc.relation.referencesSloan, P., & Ajmeri, N. (2024). Commitment-based negotiation semantics for accountability in multi-agent systems. Annals of Mathematics and Artificial Intelligence, 877-901.
dc.relation.referencesSmith, R. G. (1980). The Contract Net Protocol High-Level Communication and Control in a Distributed Problem Solver. IEEE Transactions on computers.
dc.relation.referencesSuksompong, W. (2021). Constraints in Fair Division. ACM SIGecom Exchanges, Volume 19, Issue 2, 46-61.
dc.relation.referencesSun, A., Chen, B., & Vinh Doan, X. (2023). Equitability and welfare maximization for allocating indivisible items. Auton Agent Multi-Agent Syst, 37-38.
dc.relation.referencesTanenbaum, A. S., & Van Steen, M. (2007). Distributed systems: Principles and Paradigms. Prentice Hall.
dc.relation.referencester Hoeven, E., Kwakkel, J., Hess, V., Pike, T., Wang, B., rht, & Kazil, J. (2025). Mesa 3: Agent-based modeling with Python in 2025. The Journal of Open Source Software.
dc.relation.referencesVuletich, G., Pilotti, P., & Casali, A. (2015). Una Plataforma Multiagente para Experimentar Estrategias de Negociación. 16º Simposio Argentino de Inteligencia Artificial.
dc.relation.referencesWooldridge, M. (2002). An Introduction to MultiAgent Systems. West Sussex, England.
dc.relation.referencesZheng, X., Bilal Hussian Shah, S., Usman, S., Mahfoudh, S., Shemim KS, F., & Kumar Shukla, P. (2023). Resource allocation and network pricing based on double auction in mobile edge computing. Journal of Cloud Computing, 12;56.
dc.relation.referencesZou, H., & Xi, Y. (2021). Decentralised task allocation uning GDL negotiations in Multi-agent system. KeAi: Chinese roots global impact.
dc.rights.accesoRestringido (Solo Referencia)
dc.rights.accessrightsRestrictedAccess
dc.subjectAgentes autónomos
dc.subjectAsignación de recursos indivisibles
dc.subjectEquidad
dc.subjectNegociación distribuida
dc.subjectRestricciones de exclusividad
dc.subjectSistemas multiagente
dc.subject.keywordAutonomous agents
dc.subject.keywordIndivisible resource allocation
dc.subject.keywordEquitativity
dc.subject.keywordDistributed negotiation
dc.subject.keywordExclusivity constraints
dc.subject.keywordMulti-agent systems
dc.subject.lembMaestría en Ciencias de la Información y las Comunicaciones -- Tesis y disertaciones académicas
dc.titleModelo de asignación de recursos indivisibles con restricciones de exclusividad aplicando agentes autónomos mediante negociación distribuida
dc.title.titleenglishAllocation model for indivisible resources with exclusivity constraints applying autonomous agents through distributed negotiation
dc.typemasterThesis
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.degreeMonografía
dc.type.driverinfo:eu-repo/semantics/bachelorThesis

Archivos

Bloque original

Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
HernandezMontealegreDanielAlexander2025.pdf
Tamaño:
2.13 MB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
Licencia de uso y publicación.pdf
Tamaño:
238.22 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
7 KB
Formato:
Item-specific license agreed upon to submission
Descripción: