Operational amplifier performance practices in linear applications

dc.contributor.authorRendón Calderón, Angélica Vivianaspa
dc.date2019-07-05
dc.date.accessioned2021-10-11T19:34:48Z
dc.date.available2021-10-11T19:34:48Z
dc.descriptionIn applications that require signal conditioning, i.e., the coupling of electrical signals in which there are no reductions or distortions due to a low impedance circuit, both in analog and digital signals, the operational amplifier (OpAmp, or Op-Amp) is widely used. These integrated circuits are direct-coupled amplifiers with high gain, which in linear applications require feedback through passive elements. This feedback determines the transfer function of the circuit, which is characterized by the elements used and their connection. In this article, we analyze by simulation the theoretical behavior of the OpAmp in basic signal conditioning configurations, including inverting amplifier, non-inverting amplifier, and voltage follower, as well as circuits coupled with these configurations.en-US
dc.descriptionEn aplicaciones que requieren el acondicionamiento de señales, es decir, el acople de señales eléctricas en las cuales no se presenten reducciones o distorsiones a causa de un circuito de baja impedancia, tanto en señales análogas como digitales, se utiliza ampliamente el amplificador operacional (OpAmp, o Op-Amp). Estos circuitos integrados son amplificadores de acoplamiento directo con alta ganancia, que en aplicaciones lineales requiere realimentación mediante elementos pasivos. Esta realimentación determina la función de transferencia del circuito, la cual está caracterizada por los elementos utilizados y su conexión. En este artículo se analiza mediante simulación el comportamiento teórico del OpAmp en configuraciones básicas de acondicionamiento de señales, incluyendo amplificador inversor, amplificador no inversor, y seguidor de voltaje, así como circuitos acoplados con estas configuraciones.es-ES
dc.formatapplication/pdf
dc.identifierhttps://revistas.udistrital.edu.co/index.php/tekhne/article/view/17459
dc.identifier.urihttp://hdl.handle.net/11349/27495
dc.languageeng
dc.publisherUniversidad Distrital Francisco José de Caldases-ES
dc.relationhttps://revistas.udistrital.edu.co/index.php/tekhne/article/view/17459/16470
dc.relation/*ref*/Chi, Y., & Cauwenberghs, G. (2010). Wireless Non-contact EEG/ECG Electrodes for Body Sensor Networks. In 2010 International Conference on Body Sensor Networks (pp. 297–301).
dc.relation/*ref*/García, F., Díaz, G., Tawfik, M., Martín, S., Sancristobal, E., & Castro, M. (2014). A practice-based MOOC for learning electronics. In 2014 IEEE Global Engineering Education Conference (EDUCON) (pp. 969–974).
dc.relation/*ref*/Martinez, F., Martínez, F., & Hernandez, C. (2017). Organic-shaped structures design using genetic algorithms and metaballs. Contemporary Engineering Sciences, 10, 1001–1010.
dc.relation/*ref*/Martínez, F., Martinez, F., & Montiel, H. (2017). Temperature and oxygen visual estimator for carbonization process control. In Eighth International Conference on Graphic and Image Processing.
dc.relation/*ref*/Martínez, F., Montiel, H., & Martínez, F. (2017). Fractal design approach for heat sinks using L-systems. Contemporary Engineering Sciences, 10(32), 1551–1559.
dc.relation/*ref*/Martínez, F., Rendón, A., & Guevara, P. (2017). A framework for knowledge creation based on M2M systems for the creation of flexible training environments for specific concepts in control. Advances in Smart Systems Research, 6(1), 36-43.
dc.relation/*ref*/Montiel, A., Martínez, F., & Martínez, F. (2019). Prototype of multifunctional transmitter with rejection of disturbances. Telkomnika, 17(3), 1468-1473.
dc.relation/*ref*/Tammam, A., Hayatleh, K., Ben-Esmael, M., Terzopoulos, N., & Sebu, C. (2014). Critical review of the circuit architecture of CFOA. International Journal of Electronics, 101(4), 441–451.
dc.relation/*ref*/Valbuena, E., Perdomo, D., & Martinez, F. (2017). Functional evaluation and operational adaptation of bipedal robotic platform. Contemporary Engineering Sciences, 10, 1057–1065.
dc.relation/*ref*/Wang, L., Yang, G., Huang, J., Zhang, J., Yu, L., Nie, Z., et al. (2010). A Wireless Biomedical Signal Interface System-on-Chip for Body Sensor Networks. IEEE Transactions on Biomedical Circuits and Systems, 4(2), 112–117.
dc.relation/*ref*/Wong, W., & Ng, P. (2016). An Empirical Study on E-Learning versus Traditional Learning among Electronics Engineering Students. American Journal of Applied Sciences, 13(6), 836–844.
dc.rightsDerechos de autor 2019 Angélica Viviana Rendón Calderónes-ES
dc.sourceTekhnê; Vol. 16 No. 1 (2019): Tekhnê Journal; 57-68en-US
dc.sourceTekhnê; Vol. 16 Núm. 1 (2019): Revista Tekhnê; 57-68es-ES
dc.source1692-8407
dc.subjectAcople de señaleses-ES
dc.subjectalta impedanciaes-ES
dc.subjectamplificador inversores-ES
dc.subjectamplificador operacionales-ES
dc.subjectrealimentaciónes-ES
dc.subjectFeedbacken-US
dc.subjecthigh impedanceen-US
dc.subjectoperational amplifieren-US
dc.subjectreversing amplifieren-US
dc.subjectsignal couplingen-US
dc.titleOperational amplifier performance practices in linear applicationsen-US
dc.titlePracticas de desempeño del amplificador operacional en aplicaciones linealeses-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Archivos

Colecciones