Modelo de predicción de la ocupación espectral para el análisis y diseño de redes de radio cognitiva

dc.contributor.authorPedraza Martínez, Luis Fernando
dc.contributor.authorHernandez Suarez, Cesar Augusto
dc.contributor.authorSalgado Franco, Lizet Camila
dc.contributor.orcidHernández Suárez, César Augusto [0000-0001-9409-8341]
dc.date.accessioned2023-11-03T15:28:10Z
dc.date.available2023-11-03T15:28:10Z
dc.date.created2018-11
dc.descriptionCon la llegada de las aplicaciones multimedia de banda ancha y la creciente demanda de acceso a la red de información de los dispositivos móviles, es esencial mejorar la eficiencia en la utilización del espectro electromagnético para cubrir las necesidades de altas tasas de bits proporcionales a los servicios multimedia. Por tal razón, la radio cognitiva se ha convertido en uno de los paradigmas más investigados en las comunicaciones de radio para optimizar el uso del espectro radioeléctrico. Dentro de la movilidad espectral de las redes de radio cognitiva, las estrategias de handoff proactivas resultan ser las más beneficiosas para el usuario primario, dado que no existe periodo de interferencia en el cual coexistan los dos usuarios (primario y secundario); sin embargo, la problemática de esta estrategia radica en la precisión de la predicción de la llegada del usuario primario, es decir, en la predicción de la ocupación espectral de la banda licenciada. El presente libro plantea el desarrollo de un modelo de predicción de la ocupación espectral, que tenga en cuenta las características relevantes del comportamiento del espectro, a partir de mediciones realizadas en un entorno urbano, el cual pueda contribuir al mejoramiento del handoff proactivo y, por ende, del desempeño de las redes de radio cognitiva.spa
dc.description.abstractWith the arrival of broadband multimedia applications and the growing demand for access to the information network of mobile devices, it is essential to improve the efficiency in the use of the electromagnetic spectrum to cover the needs of high bit rates proportional to the services multimedia. For this reason, cognitive radio has become one of the most researched paradigms in radio communications to optimize the use of the radio spectrum. Within the spectral mobility of cognitive radio networks, proactive handoff strategies turn out to be the most beneficial for the primary user, given that there is no interference period in which the two users (primary and secondary) coexist; However, the problem with this strategy lies in the precision of the prediction of the arrival of the primary user, that is, in the prediction of the spectral occupancy of the licensed band. This book proposes the development of a spectral occupancy prediction model, which takes into account the relevant characteristics of the spectrum behavior, based on measurements carried out in an urban environment, which can contribute to the improvement of proactive handoff and, therefore, hence, the performance of cognitive radio networks.spa
dc.description.cityBogotáspa
dc.format.mimetypepdfspa
dc.identifier.editorialUniversidad Distrital Francisco José de Caldas. Centro de Investigaciones y Desarrollo Científicospa
dc.identifier.isbn978-958-787-049-7spa
dc.identifier.urihttp://hdl.handle.net/11349/32625
dc.relation.ispartofseriesEspaciosspa
dc.relation.references[1] S. Rocke and A. M. Wyglinski, “Geo-statistical analysis of wireless spectrum occupancy using extreme value theory,” Commun. Comput. Signal Process., no. Aug., pp. 753-758, 2011.spa
dc.relation.references[2] T. M. Roberson, R. B. Taher, K. J. Bacchus, and D. A. Zdunek, “Long-term spectral occupancy findings in Chicago,” in New Frontiers in Dynamic Spectrum Access Networks (DySPAN), pp. 100-107, 2011.spa
dc.relation.references[3] F. H. Sanders, B. J. Ramsey, and V. S. Lawrence, “Broadband spectrum survey at Los Angeles, California,” US Department of Commerce National Telecommunications and Information Administration, 1997.spa
dc.relation.references[4] M. López-Benítez and F. Casadevall, “Spectrum occupancy in realistic scenarios and duty cycle model for cognitive radio,” Adv. Electron. Telecommun., vol. 1, no. 1, pp. 26-34, 2010.spa
dc.relation.references[5] M. Wellens and P. Mahonen, “Lessons learned from an extensive spectrum occupancy measurement campaign and a stochastic duty cycle model,” in Testbeds and Research Infrastructures for the Development of Networks & Communities and Wor- kshops (TridentCom) 5th International Conference, 2009.spa
dc.relation.references[6] K. Patil, K. Skouby, A. Chandra, and R. Prasad, “Spectrum occupancy statistics in the context of cognitive radio,” in 2011 14th International Symposium on Wireless Personal Multimedia Communications (WPMC), pp. 1-5, 2011.spa
dc.relation.references[7] S. Yin, D. Chen, Q. Zhang, M. Liu, and S. Li, “Mining spectrum usage data: a large-scale spectrum measurement study,” IEEE Trans. Mob. Comput., vol. 11, no. 6, pp. 1033-1046, 2012.spa
dc.relation.references[8] R. I. C. Chiang, G. B. Rowe, and K. W. Sowerby, “A Quantitative Analysis of Spectral Occupancy Measurements for Cognitive Radio,” in Vehicular Technology Conference, 2007. VTC2007-Spring. IEEE 65th, 2007.spa
dc.relation.references[9] M. López and F. Casadevall, “Methodological aspects of spectrum occupancy evaluation in the context of cognitive radio,” Eur. Trans. Telecommun., vol. 21, no. 8, pp. 680-693, 2010.spa
dc.relation.references[10] IEEE Standard Definitions and Concepts for Dynamic Spectrum Access: Terminology Relating to Emerging Wireless Networks, System Functionality, and Spectrum Management, IEEE Standards Coordinating Committee 41 on Dynamic Spectrum, IEEE Std. 1900.1-2008, 2008.spa
dc.relation.references[11] L. F. Pedraza, F. Forero, and I. Paez, “Evaluación de ocupación del espectro radioeléctrico en Bogotá-Colombia,” Ing. y Cienc., vol. 10, no. 19, pp. 127-143, 2014.spa
dc.relation.references[12] S. Haykin, “Cognitive Radio : Brain-Empowered,” IEEE J. Sel. AREAS Commun., vol. 23, no. 2, pp. 201-220, 2005.spa
dc.relation.references[13] I. F. Akyildiz, L. Won-Yeol, M. C. Vuran, and S. Mohanty, “NeXt generation/ dynamic spectrum access/cognitive radio wireless networks: A survey,” Comput. Networks, vol. 50, no. 13, pp. 2127-2159, 2006.spa
dc.relation.references[14] A. Al-Hourani, V. Trajkovi, S. Chandrasekharan, and S. Kandeepan, “Spectrum occupancy measurements for different urban environments,” Eur. Conf. Networks Commun. Paris, 2015.spa
dc.relation.references[15] M. Mehdawi, N. G. Riley, M. Ammar, A. Fanan, and M. Zolfaghari, “Spectrum occupancy measurements and lessons learned in the context of cognitive radio,” in The Telecommunications Forum Telfor, 2015.spa
dc.relation.references[16] L. Pedraza, F. Forero, and I. Paez, “Metropolitan Spectrum Survey in Bogota Colombia,” in The IEEE International Conference on Advanced Information Networking and Applications Workshops, 2013.spa
dc.relation.references[17] M. Wellens and P. Mahonen, “Lessons learned from an extensive spectrum occupancy measurement campaign and a stochastic duty cycle model,” Mob. Netw. Appl, vol. 15, no. 3, pp. 461-474, 2010.spa
dc.relation.references[18] I. F. Akyildiz, W. Y. Lee, M. C. Vuran, and S. Mohanty, “A survey on spectrum management in cognitive radio networks,” IEEE Commun. Mag., vol. 46, no. 4, pp. 40-48, 2008.spa
dc.relation.references[19] E. Ahmed, A. Gani, S. Abolfazli, L. J. Yao, and S. U. Khan, “Channel Assignment Algorithms in Cognitive Radio Networks: Taxonomy, Open Issues, and Challenges,” IEEE Commun. Surv. Tutorials, vol. 18, no. 1, pp. 795-823, 2016.spa
dc.relation.references[20] FCC, “Spectrum policy task force report, ET Docket No.02-155,” Technical Report Series, Nov. 2002.spa
dc.relation.references[21] Federal Communications Commission, “Notice of proposed rulemaking and order,” Washington, D.C., 2003.spa
dc.relation.references[22] N. Hoven, R. Tandra, and A. Sahai, “Some fundamental limits on cognitive radio,” Wireless Foundations EECS, Univ. of California, Berkeley, 2005.spa
dc.relation.references[23] L. F. Pedraza, C. Hernández, K. Galeano, E. Rodríguez-Colina, and I. P. Páez, Ocupación espectral y modelo de radio cognitiva para Bogotá, 1ª ed. Bogotá: Editorial UD, 2016.spa
dc.relation.references[24] G. Tsiropoulos, O. Dobre, M. Ahmed, and K. Baddour, “Radio Resource Allocation Techniques for Efficient Spectrum Access in Cognitive Radio Networks,” IEEE Commun. Surv. Tutorials, vol. 18, no. 1, pp. 824-847, 2016.spa
dc.relation.references[25] J. Mitola and G. Q. Maguire, “Cognitive radio: making software radios more personal,” IEEE Pers. Commun., vol. 6, no. 4, pp. 13-18, 1999.spa
dc.relation.references[26] M. Ozger and O. B. Akan, “On the utilization of spectrum opportunity in cognitive radio networks,” IEEE Commun. Lett., vol. 20, no. 1, pp. 157-160, 2016.spa
dc.relation.references[27] M. Delgado and B. Rodriguez, “Opportunities for a more Efficient Use of the Spectrum based in Cognitive Radio,” IEEE Lat. Am. Trans., vol. 14, no. 2, pp. 610-616, 2016.spa
dc.relation.references[28] C. Hernández, Modelo adaptativo de handoff espectral para la mejora en el desempeño de la movilidad en redes móviles de radio cognitiva, Bogotá: Universidad Nacional de Colombia, 2017.spa
dc.relation.references[29] I. F. Akyildiz, W.-Y. Lee, and K. R. Chowdhury, “CRAHNs: Cognitive radio ad hoc networks,” Ad Hoc Networks, vol. 7, no. 5, pp. 810-836, 2009.spa
dc.relation.references[30] J. Aguilar and A. Navarro, “Radio cognitiva: estado del arte,” Sist. y Telemática, vol. 9, no. 16, pp. 31-53, 2011.spa
dc.relation.references[31] A. Lertsinsrubtavee and N. Malouch, “Hybrid Spectrum Sharing Through Adaptive Spectrum Handoff and Selection,” IEEE Trans. Mob. Comput., 2016.spa
dc.relation.references[32] K. Kumar, A. Prakash, and R. Tripathi, “Spectrum handoff in cognitive radio networks: A classification and comprehensive survey,” J. Netw. Comput. Appl., vol. 61, pp. 161-188, 2016.spa
dc.relation.references[33] L. Pedraza, C. Hernandez, and E. Rodriguez, “Modeling of GSM Spectrum Based on Seasonal ARIMA model,” in The 6th IEEE Latin-American Conference on Communications, 2014.spa
dc.relation.references[34] International Telecommunication Union, Report ITU-R SM.2256, spectrum occupancy measurements and evaluation, Geneva, Switzerland, 2012.spa
dc.relation.references[35] L. F. Pedraza, Modelo de propagación para un entorno urbano que identifica las oportunidades espectrales para redes móviles de radio cognitiva, Bogotá: Universidad Nacional de Colombia, 2017.spa
dc.relation.references[36] F. Digham, M. S. Alouini, and M. Simon, “On the Energy Detection of Unknown Signals Over Fading Channels,” IEEE Trans. Commun., vol. 55, no. 1, pp. 21-24, 2007.spa
dc.relation.references[37] R. Clegg, “A practical guide to measuring the Hurst parameter,” Int. J. Simul. Syst. Sci. Technol., vol. 7, no. 2, pp. 3-14, 2006.spa
dc.relation.references[38] X. Xing, T. Jing, W. Cheng, Y. Huo, and X. Cheng, “Spectrum prediction in cognitive radio networks,” IEEE Wirel. Commun., vol. 20, no. 2, pp. 90-96, 2013.spa
dc.relation.references[39] Y. Shu, M. Yu, J. Liu, and O. Yang, “Wireless traffic modeling and prediction using seasonal ARIMA models,” in The IEEE Int. Conf. on Commun, 2003.spa
dc.relation.references[40] V. G. Tran, V. Debusschere, and S. Bacha, “Hourly server workload forecasting up to 168 hours ahead using Seasonal ARIMA model,” in The IEEE Int. Conf. on Ind. Technology, 2012.spa
dc.relation.references[41] W. Wang and Z. Niu, “Time series analysis of NASDAQ composite based on seasonal ARIMA model,” in The Int. Conf. on Manage. and Service Sci., 2009.spa
dc.relation.references[42] Z. Wang and S. Salous, “Time series ARIMA model of spectrum occupancy for cognitive radio,” in IET Seminar on Cognitive Radio and Software Defined Radio: Technologies and Techniques, p. 25, 2008.spa
dc.relation.references[43] A. Gorcin, H. Celebi, K. Qaraqe, and H. Arslan, “An autoregressive approach for spectrum occupancy modeling and prediction based on synchronous measurements,” in The Int. Symp. on Personal Indoor and Mobile Radio Commun., 2011.spa
dc.relation.references[44] G. Box, G. Jenkins, and C. Reinsel, Time Series Analysis: Forecasting and Control (4th ed). New Jersey: Wiley, 2008.spa
dc.relation.references[45] A. E. Permanasari, I. Hidayah, and I. Bustoni, “SARIMA (Seasonal ARIMA) implementation on time series to forecast the number of Malaria incidence,” in The Int. Conf. on Inform. Technology and Electrical Engineering, 2013.spa
dc.relation.references[46] A. Mahram and M. G. Shayesteh, “Blind wideband spectrum sensing in cognitive radio networks based on direction of arrival estimation model and generalised autoregressive conditional heteroscedasticity noise modelling,” IET Commun., vol. 8, no. 18, pp. 3271-3279, 2014.spa
dc.relation.references[47] N. C. Anand, C. Scoglio, and B. Natarajan, “GARCH-non-linear time series model for traffic modeling and prediction,” in IEEE Network Operations and Management Symposium, 2008.spa
dc.relation.references[48] S. Kim, “Forecasting internet traffic by using seasonal GARCH models,” J. Commun. Networks, vol. 13, no. 6, pp. 621-624, 2011.spa
dc.relation.references[49] Q. Tran, Z. Ma, H. Li, L. Hao, and Q. Trinh, “A Multiplicative Seasonal ARIMA/GARCH Model in EVN Traffic Prediction,” Int. J. Commun. Netw. Syst. Sci., vol. 8, pp. 43-49, 2015spa
dc.relation.references[50] Y. Zhanga, D. Fayb, L. Kilmartina, and A. Mooreb, “A Garch-based adaptive playout delay algorithm for VoIP,” Comput. Networks, vol. 54, no. 17, pp. 3108-3122, 2010.spa
dc.relation.references[51] R. Engle, “The Use of ARCH/GARCH Models in Applied Econometrics,” J. Econ. Perspect., vol. 15, no. 4, pp. 157-168, 1982.spa
dc.relation.references[52] T. Bollersleva, “Generalized autoregressive conditional heteroskedasticity,” J. Econom., vol. 31(3), pp. 307-327, 1986.spa
dc.relation.references[53] A. Chinomona, “Time Series Modelling with Application to South African Inflation Data,” Master Sci. Stat. Univ. KwaZulu-Natal, 2009.spa
dc.relation.references[54] N. Edward, “Modelling and Forecasting Using Time Series Garch Models: An Application of Tanzania Inflation Rate Data,” M.S. thesis, University of Dar es-Salaam, Tanzania, 2011.spa
dc.relation.references[55] I. Talke, “Modelling volatility in time series data,” M.S. thesis, University of KwaZulu-Natal, Pietermaritzburg, South Africa, 2003.spa
dc.relation.references[56] C. Gourieroux and A. Monfort, Time Series and Dynamic Models (1st ed.). Cambridge: Cambridge University Press, 1997.spa
dc.relation.references[57] W. Bednarczyk and P. Gajewski, “Hidden Markov Models Based Channel Status Prediction for Cognitive Radio Networks,” in PIERS Proceedings, 2015.spa
dc.relation.references[58] T. Black, B. Kerans, and A. Kerans, “Implementation of Hidden Markov Model spectrum prediction algorithm,” in 2012 International Symposium on Communications and Information Technologies, ISCIT 2012, pp. 280-283, 2012.spa
dc.relation.references[59] V. Tumuluru, P. Wang, and D. Niyato, “Channel status prediction for cognitive radio networks,” Wirel. Commun. Mob. Comput., vol. 12, no. 10, pp. 862-874, 2012.spa
dc.relation.references[60] L. Yang, Y. Dong, H. Zhang, H. Zhao, H. Shi, and X. Zhao, “Spectrum usage prediction based on high-order markov model for cognitive radio networks,” in The Int. Conf. on Comput. and Inform. Technology, 2010.spa
dc.relation.references[61] M. López-Benítez and F. Casadevall, “Statistical Prediction of Spectrum Occupancy Perception in Dynamic Spectrum Access Networks,” in 2011 IEEE International Conference on Communications (ICC), 2011.spa
dc.relation.references[62] C. Erlwein, “Applications of hidden Markov models in financial modelling,” Ph.D. dissertation, Brunel University, London, 2008.spa
dc.relation.references[63] J. Norris, Markov Chains (1st ed.). Cambridge: Cambridge University Press, 1997.spa
dc.relation.references[64] J. D. Hamilton, Time series analysis. Vol. 2. Princeton: Princeton University Press, 1994.spa
dc.relation.references[65] M. Zakai, “On the optimal filtering of diffusion processes,” Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, vol. 11, no. 3, pp. 230-243, 1969.spa
dc.relation.references[66] R. Elliott, L. Aggoun, and J. Moore, Hidden Markov Models Estimation and Control (Vol. 29). New York: Springer-Verlag, 1995.spa
dc.relation.references[67] J. Hull and A. White, “Pricing Interest-Rate-Derivative Securities,” Rev. Financ. Stud., vol. 3, no. 4, pp. 573-592, 1990.spa
dc.relation.references[68] C. Yu, Y. He, and T. Quan, “Frequency Spectrum Prediction Method Based on EMD and SVR,” in The Intelligent Systems Design and Applications, 2008.spa
dc.relation.references[69] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” in The Proceedings of the Royal Society, 1998.spa
dc.relation.references[70] I. Magrin and R. Baraniuk, “Empirical Mode Decomposition based time-frequency attributes,” in The SEG Meeting, 1999.spa
dc.relation.references[71] H. Zheng and L. Cao, “Device-centric spectrum management,” in IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, pp. 56-65, 2005.spa
dc.relation.references[72] F. Dufrenois and D. Hamad, “Fuzzy weighted support vector regression for multiple linear model estimation : application to object tracking in image sequences.,” in Paper presented at the International Joint Conference on Neural Networks, 2007.spa
dc.relation.references[73] D. Li and Y. Cao, “SOFM based support vector regression model for prediction and its application in power system transient stability forecasting,” in The International Power Engineering Conference, 2005.spa
dc.relation.references[74] X. Bai, S., Zhou and F. Xu, “‘Soft decision’ spectrum prediction based on backpropagation neural networks,” in International Conference on Computing, Management and Telecommunications, 2014.spa
dc.relation.references[75] S. Bai, X. Zhou, and F. Xu, “Spectrum prediction based on improved-back-propagation neural networks,” in The International Conference on Natural Computation, 2015.spa
dc.relation.references[76] L. Kunwei, Z. Hangsheng, Z. Jianzhao, L. Cao, and L. Menglin, “A spectrum prediction approach based on neural networks optimized by genetic algorithm in cognitive radio networks,” in The International Conference on Wireless Communications, Networking and Mobile Computing, 2014.spa
dc.relation.references[77] S. Iliya, E. Goodyer, M. Gongora, J. Shell, and J. Gow, “Optimized Artificial Neural Network Using Differential Evolution for Prediction of RF Power in VHF / UHF TV and GSM 900 Bands for Cognitive Radio Networks,” in 2014 14th UK Workshop on Computational Intelligence (UKCI), 2014, pp. 1-6.spa
dc.relation.references[78] Y. Chen and H.-S. Oh, “Spectrum measurement modelling and prediction based on wavelets,” IET Commun., vol. 10, no. 16, pp. 2192-2198, 2016.spa
dc.relation.references[79] Q. Zhang and A. Benveniste, “IEEE Transactions on Neural Networks,” Wavelet networks, vol. 3, no. 6, pp. 889-898, 1992.spa
dc.relation.references[80] I. Daubechies, “Ten Lectures on Wavelets (8th ed.),” Philadelphia SIAM, 2004.spa
dc.relation.references[81] D. Veitch, “Wavelet Neural Networks and their application in the study of dynamical systems,” Ph.D. dissertation, University of York, York, UK, 2005.spa
dc.relation.references[82] C. M. Akujuobi, E. Awada, M. Sadiku, and W. Ali, “Wavelet-based differential nonlinearity testing of mixed signal system ADCs,” Pap. Present. IEEE Proc. SoutheastCon, Richmond, 2007.spa
dc.relation.references[83] L. Chun-Lin, “A tutorial of the wavelet transform,” in NTUEE, 2010.spa
dc.relation.references[84] E. Frimpong and P. Okyere, “Monthly energy consumption forecasting using wavelet analysis and radial basis function neural network,” J. Sci. Technol., vol. 30, no. 2, pp. 157-163, 2010.spa
dc.relation.references[85] J. Li, J. Cheng, J. Shi, and F. Huang, “Brief Introduction of Back Propagation (BP) Neural Network Algorithm and Its Improvement,” Adv. Comput. Sci. Inf. Eng., vol. 2, pp. 553-558, 2012.spa
dc.relation.references[86] R. Hyndman, A. B. Koehler, J. K. Ord, and R. D. Snyder, Forecasting with Exponential Smoothing: The State Space Approach (1st ed.). Berlin: Springer-Verlag, 2008.spa
dc.relation.references[87] D. A. Dickey and W. A. Fuller, “Distribution of estimators for autoregressive time series with a unit root,” J. Amer. Stat. Assoc, vol. 74, no. 366, pp. 427-431, 1979.spa
dc.relation.references[88] H. Bozdogan, “Model selection and Akaike’s Information Criterion (AIC): The general theory and its analytical extensions,” Psychometrika, vol. 52(3), pp. 345- 370, 1987.spa
dc.relation.references[89] L. Debnath and F. Shah, Wavelet Transforms and Their Applications (2nd ed). New York: Birkhäuser, 2014.spa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accesoAbierto (Texto Completo)spa
dc.rights.accessrightsOpenAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectModelado espectralspa
dc.subjectMovilidad espectralspa
dc.subjectRadio cognitivaspa
dc.subjectTraspaso proactivospa
dc.subject.keywordSpectral modelingspa
dc.subject.keywordSpectral mobilityspa
dc.subject.keywordCognitive radiospa
dc.subject.keywordProactive handoffspa
dc.subject.lembModelado de espectrospa
dc.subject.lembMovilidad espectralspa
dc.subject.lembRadio cognitivaspa
dc.subject.lembHandoff proactivospa
dc.subject.lembTecnología inalámbricaspa
dc.subject.lembComunicaciones inalámbricasspa
dc.titleModelo de predicción de la ocupación espectral para el análisis y diseño de redes de radio cognitivaspa
dc.title.titleenglishSpectral occupancy prediction model for the analysis and design of cognitive radio networksspa
dc.typebookspa

Archivos