Metodología para la detección y clasificación en tiempo real de muescas de tensión
| dc.contributor.advisor | Rivas Trujillo, Edwin | |
| dc.contributor.advisor | Meyer, Jan | |
| dc.contributor.author | Caicedo Navarro, Joaquín Eduardo | |
| dc.contributor.orcid | Rivas Trujillo, Edwin [0000-0003-2372-8056] | |
| dc.date.accessioned | 2025-11-06T04:56:41Z | |
| dc.date.available | 2025-11-06T04:56:41Z | |
| dc.date.created | 2025-08-25 | |
| dc.description | Las muescas de tensión, caracterizadas por desviaciones periódicas de corta duración en las formas de onda de tensión, a menudo acompañadas de oscilaciones de alta frecuencia, representan un tipo crítico, aunque poco estudiado, de perturbación de la calidad de la potencia eléctrica, frecuente en redes industriales de baja tensión. Estas perturbaciones, causadas por la operación normal de convertidores de potencia conmutados por línea, pueden inducir resonancias, provocar fallos en los equipos y acelerar su envejecimiento, resultando en pérdidas económicas significativas. Esta tesis propone y valida una metodología novedosa para la detección, clasificación y evaluación de severidad de muescas de tensión en tiempo real, abordando vacíos identificados mediante una revisión exhaustiva de la literatura. Una revisión sistemática reveló que los métodos actuales prestan poca atención a las muescas, tanto en su variante no oscilatoria como oscilatoria, y carecen de técnicas robustas y computacionalmente eficientes para su detección y clasificación. Para superar estas limitaciones, se desarrolló una plataforma de simulación en MATLAB/Simulink que genera sintéticamente formas de onda de tensión y corriente correspondientes a eventos de conmutación. Al variar sistemáticamente parámetros clave como la potencia de cortocircuito, el ángulo de disparo, los circuitos snubber, así como el desbalance y distorsión de fondo de la tensión, esta plataforma produce señales realistas validadas con mediciones de campo, proporcionando así una base sólida para el desarrollo metodológico. La metodología propuesta integra el Modelo del Espacio Fasorial (SPM, por sus siglas en inglés) y los Descriptores de Fourier (FDs) en un marco basado en un autoencoder profundo, entrenado exclusivamente con señales que contienen muescas. Los FDs se calculan a partir del SPM de tensión y corriente, y se identifican descriptores característicos, fundamentados en la teoría armónica de rectificadores por pulsos, como firmas espectrales confiables para detectar muescas. Una nueva estrategia de detección de anomalías, basada en los errores de reconstrucción del autoencoder (donde señales con muescas producen errores bajos y señales sin muescas generan errores más altos), alcanza una precisión superior al 99% en datos simulados y del 96% en mediciones de campo. La clasificación de subtipos (no oscilatorias frente a oscilatorias) se realiza mediante una máquina de vectores de soporte lineal entrenada en el espacio latente del autoencoder, logrando precisiones superiores al 97%. La evaluación de severidad se efectúa utilizando índices físicamente interpretables derivados de la magnitud del SPM reconstruido únicamente con FDs característicos (SPM “solo muesca”), facilitando así la clasificación en categorías leve, moderada, significativa o severa. Estos resultados apoyan el diseño de estrategias específicas de mitigación. Finalmente, evaluaciones de rendimiento en tiempo real confirman que el proceso completo de detección, clasificación y evaluación de severidad opera consistentemente dentro de un solo ciclo de frecuencia de red, incluso a altas tasas de muestreo, demostrando la idoneidad del método para aplicaciones embebidas o de computación en el borde. En conjunto, esta tesis representa un avance significativo en el análisis de perturbaciones de calidad de potencia al proporcionar un marco robusto, interpretable y eficiente desde el punto de vista computacional para la detección y clasificación de muescas de tensión. | |
| dc.description.abstract | Voltage notches, characterized by short-duration, periodic deviations in voltage waveforms often accompanied by high-frequency oscillations, represent a critical yet understudied type of Power Quality Disturbance (PQD) prevalent in industrial low-voltage networks. Caused by the normal operation of line-commutated power converters, these disturbances can trigger resonances, cause equipment malfunction, and accelerate aging, leading to significant economic losses. This thesis proposes and validates a novel methodology for real-time detection, classification, and severity assessment of voltage notches, addressing substantial gaps identified through a comprehensive literature review. A systematic review revealed that existing approaches offer limited focus on both non-oscillatory and oscillatory notches and lack robust, computationally efficient detection and classification methods. To overcome these limitations, a flexible MATLAB/Simulink-based simulation platform was developed to synthetically generate voltage and current waveforms associated with commutation notches. By systematically varying parameters such as short-circuit power, firing angle, snubber circuits, and background voltage unbalance and distortion, the platform generates realistic signals validated against field measurements, thereby providing a solid foundation for the development of the methodology. The novel methodology integrates the Space Phasor Model (SPM) and Fourier Descriptors (FDs) within a deep autoencoder framework, trained exclusively on notch-containing signals. FDs are computed from the SPM of voltage and current, and characteristic FDs, derived from pulse rectifier harmonic theory, are identified as reliable spectral signatures for notch detection. A novel anomaly detection strategy, based on autoencoder reconstruction errors (where notch signals exhibit low reconstruction error and non-notch signals yield higher error), yields over 99% accuracy on simulated data and 96% on field measurements. Subtype classification (non-oscillatory vs. oscillatory) is performed using a linear support vector machine trained in the autoencoder’s latent space, achieving over 97% accuracy. Severity assessment is performed using physically interpretable indices derived from the SPM radius reconstructed exclusively with characteristic FDs (“notch-only” SPM), allowing classification into mild, moderate, significant, or severe categories. These insights support targeted mitigation strategies. Finally, real-time performance evaluations confirm that the comprehensive detection, classification, and severity assessment pipeline consistently operates within a single power frequency cycle, even at high sampling rates, demonstrating the methodology’s suitability for embedded or edge-computing applications. Overall, this thesis significantly advances PQD analysis by delivering a robust, interpretable, and computationally efficient framework for voltage notch detection and classification. | |
| dc.format.mimetype | ||
| dc.identifier.uri | http://hdl.handle.net/11349/99756 | |
| dc.language.iso | spa | |
| dc.publisher | Universidad Distrital Francisco José de Caldas | |
| dc.relation.references | J. E. Caicedo, D. Agudelo-Martínez, E. Rivas-Trujillo, and J. Meyer, “A systematic review of real-time detection and classification of power quality disturbances,” Prot. Control Mod. Power Syst., vol. 8, no. 1, p. 3, 2023. | |
| dc.relation.references | Power Quality Measurements Methods, Testing and Measurement Techniques. 2015. | |
| dc.relation.references | S. K. Chauhan and V. S. Chauhan, “A comprehensive review on power quality issues and disturbances mitigation through shunt active power filters,” Int. J. Appl. Power Eng., vol. 13, no. 4, p. 844, Dec. 2024. | |
| dc.relation.references | “IEEE Recommended Practice for Monitoring Electric Power Quality,” IEEE Std 1159-2019 (Revision of IEEE Std 1159-2009). pp. 1–98, 2019. | |
| dc.relation.references | “IEEE Std 519-2022 (Revision of IEEE Std 519-2014), IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems,” pp. 1–31, 2022. | |
| dc.relation.references | R. Ghandehari and A. Shoulaie, “Evaluating Voltage Notch Problems Arising from AC/DC Converter Operation,” IEEE Trans. Power Electron., vol. 24, no. 9, pp. 2111–2119, Sep. 2009. | |
| dc.relation.references | S. Tabassum, A. R. Vijay Babu, and D. K. Dheer, “A comprehensive exploration of IoT-enabled smart grid systems: power quality issues, solutions, and challenges,” Sci. Technol. Energy Transit., vol. 79, p. 62, Sep. 2024. | |
| dc.relation.references | R. Igual and C. Medrano, “Research challenges in real-time classification of power quality disturbances applicable to microgrids: A systematic review,” Renew. Sustain. Energy Rev., vol. 132, p. 110050, Oct. 2020. | |
| dc.relation.references | F. C. De La Rosa, Harmonics and Power Systems. 2006. | |
| dc.relation.references | International Working Group EMC & Power Quality (D-A-CH-C-Z), “Technical Rules for the Assessment of Network Disturbances. Part A: Fundamentals.” Österreichs E-Wirtschaft; VSE; CSRES; VDE, pp. 1–104, 2021. | |
| dc.relation.references | J. E. Caicedo, O. Zyabkina, E. Rivas, and J. Meyer, “Flexible Simulation Platform for Generating Realistic Waveforms with Voltage Notches,” Appl. Sci., vol. 14, no. 23, p. 11031, Nov. 2024. | |
| dc.relation.references | A. Moradi et al., “Detailed Estimation of Grid-Side Current and Its Oscillations Caused by Adjustable Speed Drive Systems,” IEEE Trans. Ind. Electron., vol. 70, no. 9, pp. 8777–8787, Sep. 2023. | |
| dc.relation.references | R. Qi, O. Zyabkina, D. Agudelo-Martínez, and J. Meyer, “Automatic detection of voltage notches using support vector machine,” Renew. Energy Power Qual. J., vol. 19, pp. 528–533, 2021. | |
| dc.relation.references | M. N. Dehaghani, T. Korõtko, and A. Rosin, “AI Applications for Power Quality Issues in Distribution Systems: A Systematic Review,” IEEE Access, vol. 13, pp. 18346–18365, 2025. | |
| dc.relation.references | Z. Oubrahim, Y. Amirat, M. Benbouzid, and M. Ouassaid, “Power Quality Disturbances Characterization Using Signal Processing and Pattern Recognition Techniques: A Comprehensive Review,” Energies, vol. 16, no. 6, p. 2685, Mar. 2023. | |
| dc.relation.references | A. Bagheri, I. Y. H. Gu, M. H. J. Bollen, and E. Balouji, “A Robust Transform-Domain Deep Convolutional Network for Voltage Dip Classification,” IEEE Trans. Power Deliv., vol. 33, no. 6, pp. 2794–2802, 2018. | |
| dc.relation.references | I. S. Samanta et al., “Artificial intelligence and machine learning techniques for power quality event classification: a focused review and future insights,” Results Eng., vol. 25, p. 103873, Mar. 2025. | |
| dc.relation.references | R. Machlev, M. Perl, J. Belikov, K. Y. Levy, and Y. Levron, “Measuring Explainability and Trustworthiness of Power Quality Disturbances Classifiers Using XAI—Explainable Artificial Intelligence,” IEEE Trans. Ind. Informatics, vol. 18, no. 8, pp. 5127–5137, Aug. 2022. | |
| dc.relation.references | H. G. Beleiu, I. N. Beleiu, S. G. Pavel, and C. P. Darab, “Management of power quality issues from an economic point of view,” Sustain., vol. 10, no. 7, 2018. | |
| dc.relation.references | A. Sharma, B. S. Rajpurohit, and S. N. Singh, “A review on economics of power quality: Impact, assessment and mitigation,” Renew. Sustain. Energy Rev., vol. 88, pp. 363–372, 2018. | |
| dc.relation.references | “IEC 60050-161:1990, International Electrotechnical Vocabulary (IEV) - Part 161: Electromagnetic compatibility,” pp. 1–73, 1990. | |
| dc.relation.references | “IEC 60050-551:1998, International Electrotechnical Vocabulary (IEV) - Part 551: Power electronics,” pp. 1–180, 1998. | |
| dc.relation.references | D. E. Rice, “A detailed analysis of six-pulse converter harmonic currents,” IEEE Trans. Ind. Appl., vol. 30, no. 2, pp. 294–304, 1994. | |
| dc.relation.references | H. Sindi, M. Nour, M. Rawa, Ş. Öztürk, and K. Polat, “A novel hybrid deep learning approach including combination of 1D power signals and 2D signal images for power quality disturbance classification,” Expert Syst. Appl., vol. 174, p. 114785, Jul. 2021. | |
| dc.relation.references | O. Cortes-Robles, E. Barocio, A. Obushevs, P. Korba, and F. R. S. Sevilla, “Fast-training feedforward neural network for multi-scale power quality monitoring in power systems with distributed generation sources,” Measurement, vol. 170, p. 108690, Jan. 2021. | |
| dc.relation.references | S. Mishra et al., “Real Time Intelligent Detection of PQ Disturbances With Variational Mode Energy Features and Hybrid Optimized Light GBM Classifier,” IEEE Access, vol. 12, pp. 47155–47172, 2024. | |
| dc.relation.references | M. Pramanik, A. Routray, and P. Mitra, “A framework for complex power quality disturbances classification and parameter estimation using convolutional neural network and square-root cubature Kalman filter in compressed sensing domain,” Electr. Power Syst. Res., vol. 236, p. 110893, Nov. 2024. | |
| dc.relation.references | K. Zhu, Z. Teng, W. Qiu, A. Mingotti, Q. Tang, and W. Yao, “Aiming to Complex Power Quality Disturbances: A Novel Decomposition and Detection Framework,” IEEE Trans. Ind. Informatics, vol. 20, no. 3, pp. 4317–4326, Mar. 2024. | |
| dc.relation.references | C. Altintasi, “Hybrid algorithm for directly detecting and classification of multiple power quality disturbances,” Electr. Power Syst. Res., vol. 242, p. 111428, May 2025. | |
| dc.relation.references | D. Hong, J. Li, C. Liang, H. Lin, W. Yao, and J. Yu, “A Novel Classification and Identification Method for Complex Power Quality Disturbances Based on Confidence-Enhanced Guided Multilabel Learning,” IEEE Trans. Instrum. Meas., vol. 74, pp. 1–11, 2025. | |
| dc.relation.references | C. Jana, S. Banerjee, S. Maur, and S. Dalai, “Customized CNN based classification of power system disturbances using recurrence plots,” Electr. Power Syst. Res., vol. 241, p. 111370, Apr. 2025. | |
| dc.relation.references | Y. Luo et al., “A Novel Ultra-Safe Multilabel and Multitask Classification Method for Complex Power Quality Disturbances,” IEEE Trans. Ind. Informatics, pp. 1–12, 2025. | |
| dc.relation.references | E. G. Rodríguez et al., “Methodology for online detection and classification of power quality disturbances based on FPGA,” Appl. Soft Comput., vol. 171, p. 112813, Mar. 2025. | |
| dc.relation.references | C. Cui, Y. Duan, H. Hu, L. Wang, and Q. Liu, “Detection and Classification of Multiple Power Quality Disturbances Using Stockwell Transform and Deep Learning,” IEEE Trans. Instrum. Meas., vol. 71, pp. 1–12, 2022. | |
| dc.relation.references | C. Iturrino-Garcia et al., “An Innovative Single Shot Power Quality Disturbance Detector Algorithm,” IEEE Trans. Instrum. Meas., vol. 71, pp. 1–10, 2022. | |
| dc.relation.references | Y. Liu, D. Yuan, H. Fan, T. Jin, and M. A. Mohamed, “A Multidimensional Feature-Driven Ensemble Model for Accurate Classification of Complex Power Quality Disturbance,” IEEE Trans. Instrum. Meas., vol. 72, pp. 1–13, 2023. | |
| dc.relation.references | W. Bai, G. Zhuang, X. Zhao, and Z. Wei, “High-Precision Intelligent Identification of Complex Power Quality Disturbances Based on Improved KST and CNNs,” IEEE Access, vol. 12, pp. 86434–86443, 2024. | |
| dc.relation.references | Z. Duan, Z. Peng, J. Song, and S. Lu, “An intelligent complex power quality disturbance recognition method based on two dimension encoding conversion and machine vison,” Electr. Power Syst. Res., vol. 232, p. 110413, Jul. 2024. | |
| dc.relation.references | M. He, J. Li, A. Mingotti, Q. Tang, L. Peretto, and Z. Teng, “Deep Fractional Multidimensional Spectrum Convolutional Neural Fusion Network for Identifying Complex Power Quality Disturbance,” IEEE Trans. Instrum. Meas., vol. 73, pp. 1–12, 2024. | |
| dc.relation.references | Y. Luo, K. Li, L. Li, J. Huang, C. Zhao, and X. Xiao, “A Novel Recognition Method for Complex Power Quality Disturbances Based on Rotation Vector and Fuzzy Transfer Field,” IEEE Trans. Ind. Informatics, vol. 20, no. 11, pp. 12502–12512, Nov. 2024. | |
| dc.relation.references | S. Mishra, R. Kumar Mallick, P. Nayak, T. Naayagi Ramasamy, and G. Panda, “Dynamic Power Quality Disturbance Classification in Grid-Integrated PV Systems: Leveraging Clark Transformed Modal Voltage and Subspace Weighted KNN,” IEEE Access, vol. 12, pp. 116572–116586, 2024. | |
| dc.relation.references | A. H. Ghaemi, H. Askarian Abyaneh, K. Mazlumi, and S. H. H. Sadeghi, “Voltage notch indices determination using wavelet transform,” in 2007 IEEE Lausanne POWERTECH, Proceedings, 2007, pp. 80–85. | |
| dc.relation.references | J. Barros, M. De Apráiz, and R. I. Diego, “Voltage notch detection and analysis using wavelets,” in VECIMS 2008 - IEEE Conference on Virtual Environments, Human-Computer Interfaces and Measurement Systems Proceedings, 2008, pp. 151–155. | |
| dc.relation.references | M. Szweda and T. Tarasiuk, “Frequency characteristic of transients and notching disturbances - Case study,” in 16th IMEKO TC4 Int. Symp.: Exploring New Frontiers of Instrum. and Methods for Electrical and Electronic Measurements; 13th TC21 Int. Workshop on ADC Modelling and Testing - Joint Session, Proc., 2008, pp. 272–277. | |
| dc.relation.references | T. Tarasiuk, “The method based on original DBFs for fast estimation of waveform distortions in ship systems - Case study,” IEEE Trans. Instrum. Meas., vol. 57, no. 5, pp. 1041–1050, 2008. | |
| dc.relation.references | T. Tarasiuk, M. Szweda, and M. Tarasiuk, “Estimator-analyzer of power quality: Part II - Hardware and research results,” Meas. J. Int. Meas. Confed., vol. 44, no. 1, pp. 248–258, 2011. | |
| dc.relation.references | T. Tarasiuk and M. Szweda, “DSP instrument for transient monitoring,” Comput. Stand. Interfaces, vol. 33, no. 2, pp. 182–190, 2011. | |
| dc.relation.references | M. Kolenc, E. Plesnik, J. F. Tasič, and M. Zajc, “Voltage notch detection and localization in power quality signals in phase space,” in IEEE EuroCon 2013, 2013, pp. 1745–1752. | |
| dc.relation.references | R. Moreno, N. Visairo, C. Núñez, and E. Rodríguez, “A novel algorithm for voltage transient detection and isolation for power quality monitoring,” Electr. Power Syst. Res., vol. 114, pp. 110–117, Sep. 2014. | |
| dc.relation.references | O. P. Mahela, B. Khan, H. H. Alhelou, and P. Siano, “Power Quality Assessment and Event Detection in Distribution Network With Wind Energy Penetration Using Stockwell Transform and Fuzzy Clustering,” IEEE Trans. Ind. Informatics, vol. 16, no. 11, pp. 6922–6932, Nov. 2020. | |
| dc.relation.references | J. Liu, H. Song, H. Sun, and H. Zhao, “High-Precision Identification of Power Quality Disturbances Under Strong Noise Environment Based on FastICA and Random Forest,” IEEE Trans. Ind. Informatics, vol. 17, no. 1, pp. 377–387, Jan. 2021. | |
| dc.relation.references | R. Machlev, M. Perl, A. Caciularu, J. Belikov, K. Y. Levy, and Y. Levron, “Explaining the decisions of power quality disturbance classifiers using latent space features,” Int. J. Electr. Power Energy Syst., vol. 148, p. 108949, Jun. 2023. | |
| dc.relation.references | N. M. Rodrigues, F. M. Janeiro, and P. M. Ramos, “Deep Learning for Power Quality Event Detection and Classification Based on Measured Grid Data,” IEEE Trans. Instrum. Meas., vol. 72, pp. 1–11, 2023. | |
| dc.relation.references | L. F. A. Rodrigues, H. L. M. Monteiro, D. D. Ferreira, B. H. G. Barbosa, C. A. R. Junior, and C. A. Duque, “Sample-by-sample Power Quality Disturbance classification based on Sliding Window Recursive Discrete Fourier Transform,” Electr. Power Syst. Res., vol. 235, p. 110607, Oct. 2024. | |
| dc.relation.references | X. Jian and X. Cheng, “PCTAR-Net: A power quality composite disturbances classification model for variable scenarios,” Measurement, vol. 247, p. 116757, Apr. 2025. | |
| dc.relation.references | J. Jiang, H. Wu, C. Zhong, and H. Song, “Classification of power quality disturbances in microgrids using a multi-level global convolutional neural network and SDTransformer approach,” PLoS One, vol. 20, no. 2, p. e0317050, Feb. 2025. | |
| dc.relation.references | Z. Oubrahim, Y. Amirat, M. Ouassaid, and M. Benbouzid, “Classification of complex power quality disturbances under noisy environment using Root-Music and least square techniques,” Electr. Power Syst. Res., vol. 238, p. 111030, Jan. 2025. | |
| dc.relation.references | A. Hussain, M. H. Sukairi, A. Mohamed, and R. Mohamed, “Automatic detection of power quality disturbances and identification of transient signals,” in 6th International Symposium on Signal Processing and Its Applications, ISSPA 2001 - Proceedings; 6 Tutorials in Communications, Image Processing and Signal Analysis, 2001, vol. 2, pp. 462–465. | |
| dc.relation.references | T. Tarasiuk, “Hybrid wavelet-fourier method for harmonics and harmonic subgroups measurement - Case study,” IEEE Trans. Power Deliv., vol. 22, no. 1, pp. 4–17, 2007. | |
| dc.relation.references | T. Tarasiuk, “Wavelet coefficients for window width and subsequent harmonics estimation - Case study,” Meas. J. Int. Meas. Confed., vol. 41, no. 3, pp. 284–293, 2008. | |
| dc.relation.references | M. Szweda, “DWT analysis of selected transient and notching disturbances,” in 19th IMEKO World Congress 2009, 2009, vol. 3, pp. 1959–1963. | |
| dc.relation.references | A. Subasi, A. S. Yilmaz, and K. Tufan, “Detection of generated and measured transient power quality events using Teager energy operator,” Energy Convers. Manag., vol. 52, no. 4, pp. 1959–1967, 2011. | |
| dc.relation.references | T. Tarasiuk and M. Szweda, “A few remarks about notching analysis - Case study,” in 13th IMEKO TC4 Symposium on Measurements for Research and Industrial Applications 2004, Held Together with the 9th Workshop on ADC Modeling and Testing, 2014, pp. 481–486. | |
| dc.relation.references | D. Matvoz and M. Maksic, “Analysis of voltage notching in a low-voltage industrial network during the operation of a six-pulse AC/DC converter,” in 2017 IEEE Power & Energy Society General Meeting, 2017, pp. 1–5. | |
| dc.relation.references | L. Fu, K. Yan, and T. Zhu, “PowerCog: A Practical Method for Recognizing Power Quality Disturbances Accurately in a Noisy Environment,” IEEE Trans. Ind. Informatics, vol. 18, no. 5, pp. 3105–3113, May 2022. | |
| dc.relation.references | P. Kandasamy et al., “Initial condition based real time classification of power quality disturbance using deep convolution neural network with bidirectional long short‐term memory,” IET Gener. Transm. Distrib., vol. 17, no. 23, pp. 5135–5154, Dec. 2023. | |
| dc.relation.references | P. Khetarpal, N. Nagpal, M. S. Al-Numay, P. Siano, Y. Arya, and N. Kassarwani, “Power Quality Disturbances Detection and Classification Based on Deep Convolution Auto-Encoder Networks,” IEEE Access, vol. 11, pp. 46026–46038, 2023. | |
| dc.relation.references | Y. S. U. Vishwanath, S. Esakkirajan, B. Keerthiveena, and R. B. Pachori, “A Generalized Classification Framework for Power Quality Disturbances Based on Synchrosqueezed Wavelet Transform and Convolutional Neural Networks,” IEEE Trans. Instrum. Meas., vol. 72, pp. 1–13, 2023. | |
| dc.relation.references | M. F. Al-Mashdali, A. Islam, A. Hassan, M. Shafiullah, M. Al-Dhaifallah, and K. Al Fuwail, “Signal Processing-Free Intelligent Model for Power Quality Disturbances Identification,” IEEE Access, vol. 13, pp. 9910–9922, 2025. | |
| dc.relation.references | S. Li, X. Zhu, and D. Zhou, “Power quality disturbance signal denoising and detection based on improved DBO-VMD combined with wavelet thresholding,” Electr. Power Syst. Res., vol. 238, p. 111193, Jan. 2025. | |
| dc.relation.references | A. Zlatkova and D. Taskovski, “A Novel CNN-Based Framework for Detection and Classification of Power Quality Disturbances: Exploring Multi-Class Versus Multi-Label Classification,” IEEE Access, vol. 13, pp. 38878–38888, 2025. | |
| dc.relation.references | L. Angrisani, P. Daponte, M. D’Apuzzo, and A. Testa, “A measurement method based on the wavelet transform for power quality analysis,” IEEE Trans. Power Deliv., vol. 13, no. 4, pp. 990–998, 1998. | |
| dc.relation.references | C.-W. Lu and S.-J. Huang, “An application of B-spline wavelet transform for notch detection enhancement,” IEEE Trans. Power Deliv., vol. 19, no. 3, pp. 1419–1425, 2004. | |
| dc.relation.references | T. Y. Ji, Z. Lu, W. H. Tang, and Q. H. Wu, “Disturbance detection in the phase space through GK clustering,” in 3rd International Conference on Deregulation and Restructuring and Power Technologies, DRPT 2008, 2008, pp. 2328–2332. | |
| dc.relation.references | T. Y. Ji, Q. H. Wu, L. Jiang, and W. H. Tang, “Disturbance detection, location and classification in phase space,” IET Gener. Transm. Distrib., vol. 5, no. 2, pp. 257–265, 2011. | |
| dc.relation.references | N. Wang, Z. Ma, Q. Jia, and H. Dong, “Voltage Notch Detection and Characteristic Parameter Identification Based on Phase Space Reconstruction,” Zhongguo Dianji Gongcheng Xuebao/Proceedings Chinese Soc. Electr. Eng., vol. 37, no. 18, pp. 5220–5227, 2017. | |
| dc.relation.references | K. Thirumala, M. S. Prasad, T. Jain, and A. C. Umarikar, “Tunable-Q Wavelet Transform and Dual Multiclass SVM for Online Automatic Detection of Power Quality Disturbances,” IEEE Trans. Smart Grid, vol. 9, no. 4, pp. 3018–3028, Jul. 2018. | |
| dc.relation.references | H. Andami and A. Jalilian, “Voltage Notch Detection Using Fuzzy Expert System,” in Canadian Conference on Electrical and Computer Engineering, 2003, vol. 1, pp. 479–482. | |
| dc.relation.references | A. S. Yilmaz, A. Subasi, M. Bayrak, V. M. Karsli, and E. Ercelebi, “Application of lifting based wavelet transforms to characterize power quality events,” Energy Convers. Manag., vol. 48, no. 1, pp. 112–123, 2007. | |
| dc.relation.references | R. Moreno-Sánchez, C. A. Núñez-Gutiérrez, N. Visairo-Cruz, and J. De Jesús Lira-Pérez, “Monitoring of transient electrical phenomena: Detection and isolation of electrical impulsive transients and notches,” Dyna, vol. 87, no. 4, pp. 424–430, 2012. | |
| dc.relation.references | S. Pyari, V. Khair, R. Kumar, and R. Kumar, “Identification of Voltage Transients and Notches in a Distribution System Using True RMS and Naïve Bayes Classifier,” in 2024 International Conference on Signal Processing and Advance Research in Computing (SPARC), 2024, pp. 1–6. | |
| dc.relation.references | T. Tarasiuk, “Estimator-analyzer of power quality: Part I - Methods and algorithms,” Meas. J. Int. Meas. Confed., vol. 44, no. 1, pp. 238–247, 2011. | |
| dc.relation.references | M. Sahani and P. K. Dash, “FPGA-Based Deep Convolutional Neural Network of Process Adaptive VMD Data With Online Sequential RVFLN for Power Quality Events Recognition,” IEEE Trans. Power Electron., vol. 36, no. 4, pp. 4006–4015, Apr. 2021. | |
| dc.relation.references | R. Kumar, B. Singh, and D. T. Shahani, “Symmetrical Components-Based Modified Technique for Power-Quality Disturbances Detection and Classification,” IEEE Trans. Ind. Appl., vol. 52, no. 4, pp. 3443–3450, 2016. | |
| dc.relation.references | M. K. Saini and R. K. Beniwal, “Detection and classification of power quality disturbances in wind-grid integrated system using fast time-time transform and small residual-extreme learning machine,” Int. Trans. Electr. Energy Syst., vol. 28, no. 4, 2018. | |
| dc.relation.references | K. Cai, T. Hu, W. Cao, and G. Li, “Classifying Power Quality Disturbances Based on Phase Space Reconstruction and a Convolutional Neural Network,” Appl. Sci., vol. 9, no. 18, p. 3681, Sep. 2019. | |
| dc.relation.references | K. Thirumala, S. Pal, T. Jain, and A. C. Umarikar, “A classification method for multiple power quality disturbances using EWT based adaptive filtering and multiclass SVM,” Neurocomputing, vol. 334, pp. 265–274, 2019. | |
| dc.relation.references | S. Jamali, A. R. Farsa, and N. Ghaffarzadeh, “Identification of optimal features for fast and accurate classification of power quality disturbances,” Meas. J. Int. Meas. Confed., vol. 116, pp. 565–574, 2018. | |
| dc.relation.references | U. Singh and S. N. Singh, “Detection and classification of power quality disturbances based on time-frequency-scale transform,” IET Sci. Meas. Technol., vol. 11, no. 6, pp. 802–810, 2017. | |
| dc.relation.references | J.-J. González-de-la-Rosa et al., “Prototype Instrumentation for the Spatial and Temporal Characterisation of Voltage Supply Based on Two-Dimensional Higher-Order Statistics,” Energies, vol. 18, no. 1, p. 175, Jan. 2025. | |
| dc.relation.references | M. R. Alam, F. Bai, R. Yan, and T. K. Saha, “Classification and Visualization of Power Quality Disturbance-Events Using Space Vector Ellipse in Complex Plane,” IEEE Trans. Power Deliv., vol. 36, no. 3, pp. 1380–1389, 2021. | |
| dc.relation.references | W. L. Rodrigues Junior, F. A. S. Borges, R. de A. L. Rabelo, J. J. P. C. Rodrigues, R. A. S. Fernandes, and I. N. Silva, “A methodology for detection and classification of power quality disturbances using a real‐time operating system in the context of home energy management systems,” Int. J. Energy Res., vol. 45, no. 1, pp. 203–219, Jan. 2021. | |
| dc.relation.references | Rahul and B. Choudhary, “An Advanced Genetic Algorithm with Improved Support Vector Machine for Multi-Class Classification of Real Power Quality Events,” Electr. Power Syst. Res., vol. 191, 2021. | |
| dc.relation.references | S. Chamchuen, A. Siritaratiwat, P. Fuangfoo, P. Suthisopapan, and P. Khunkitti, “High-accuracy power quality disturbance classification using the adaptive ABC-PSO as optimal feature selection algorithm,” Energies, vol. 14, no. 5, 2021. | |
| dc.relation.references | U. Singh and S. N. Singh, “A new optimal feature selection scheme for classification of power quality disturbances based on ant colony framework,” Appl. Soft Comput. J., vol. 74, pp. 216–225, 2019. | |
| dc.relation.references | T. Chakravorti and P. K. Dash, “Multiclass power quality events classification using variational mode decomposition with fast reduced kernel extreme learning machine-based feature selection,” IET Sci. Meas. Technol., vol. 12, no. 1, pp. 106–117, 2018. | |
| dc.relation.references | L. Lin, D. Wang, S. Zhao, L. Chen, and N. Huang, “Power quality disturbance feature selection and pattern recognition based on image enhancement techniques,” IEEE Access, vol. 7, pp. 67889–67904, 2019. | |
| dc.relation.references | E. G. Ribeiro et al., “Real-time system for automatic detection and classification of single and multiple power quality disturbances,” Meas. J. Int. Meas. Confed., vol. 128, pp. 276–283, 2018. | |
| dc.relation.references | S. Santoso, E. J. Powers, W. M. Grady, and P. Hofmann, “Power quality assessment via wavelet transform analysis,” IEEE Trans. Power Deliv., vol. 11, no. 2, pp. 924–930, 1996. | |
| dc.relation.references | F.-Z. Zhao and R.-G. Yang, “Voltage sag disturbance detection based on short time fourier transform,” Zhongguo Dianji Gongcheng Xuebao/Proceedings Chinese Soc. Electr. Eng., vol. 27, no. 10, 2007. | |
| dc.relation.references | P. Thakur, A. K. Singh, and R. C. Bansal, “Novel way for classification and type detection of voltage sag,” IET Gener. Transm. Distrib., vol. 7, no. 4, pp. 398–404, 2013. | |
| dc.relation.references | A. M. Gaouda, M. M. A. Salama, M. R. Sultan, and A. Y. Chikhani, “Power quality detection and classification using wavelet-multiresolution signal decomposition,” IEEE Trans. Power Deliv., vol. 14, no. 4, pp. 1469–1476, 1999. | |
| dc.relation.references | M. Karimi, H. Mokhtari, and M. R. Iravani, “Wavelet based on-line disturbance detection for power quality applications,” IEEE Trans. Power Deliv., vol. 15, no. 4, pp. 1212–1220, 2000. | |
| dc.relation.references | F. Mei et al., “Online recognition method for voltage sags based on a deep belief network,” Energies, vol. 12, no. 1, 2019. | |
| dc.relation.references | D. Li, F. Mei, C. Zhang, H. Sha, J. Zheng, and T. Li, “Deep Belief Network Based Method for Feature Extraction and Source Identification of Voltage Sag,” Dianli Xitong Zidonghua/Automation Electr. Power Syst., vol. 44, no. 4, pp. 150–158, 2020. | |
| dc.relation.references | IEC/TR 60725, “Consideration of reference impedances and public supply network impedances for use in determining the disturbance characteristics of electrical equipment having a rated current [smaller than or equal to] 75 A per phase,” 2012. | |
| dc.relation.references | F. Moller and J. Meyer, “Survey of voltage unbalance and unbalanced power in German public LV networks,” in 2022 20th International Conference on Harmonics & Quality of Power (ICHQP), 2022, pp. 1–6. | |
| dc.relation.references | “IEC 61000-2-2:2002, Electromagnetic compatibility (EMC) - Part 2-2: Environment - Compatibility levels for low-frequency conducted disturbances and signalling in public low-voltage power supply systems,” pp. 1–57, 2002. | |
| dc.relation.references | J. Meyer, A. M. Blanco, M. Domagk, and P. Schegner, “Assessment of Prevailing Harmonic Current Emission in Public Low-Voltage Networks,” IEEE Trans. Power Deliv., vol. 32, no. 2, 2017. | |
| dc.relation.references | G. T. Heydt, “Electric Power Quality,” in The Electrical Engineering Handbook, Elsevier, 2005, pp. 805–810. | |
| dc.relation.references | Hitachi and ABB, “Application Note 5SYA 2020-03, Design of RC-snubbers for phase control applications.” pp. 1–9, 24-Oct-2023. | |
| dc.relation.references | Infineon Technologies Bipolar GmbH & Co. KG, “Technical Information, Bipolar Semiconductors.” pp. 1–84, Apr-2012. | |
| dc.relation.references | ABB, “Technical specification, Phase Control Thyristor 5STP 07D1800.” pp. 1–7, 29-Jun-2020. | |
| dc.relation.references | V. Subrahmanyam, Electric Drives Concepts and Applications, Second. New Delhi, India: McGraw Hill, 2011. | |
| dc.relation.references | “IEEE Std 1036-2020 (Revision of IEEE Std 1036-2010), IEEE Guide for the Application of Shunt Power Capacitors,” pp. 1–96, 2020. | |
| dc.relation.references | J. C. Das, Power System Harmonics and Passive Filter Designs. Wiley, 2015. | |
| dc.relation.references | W. Ko and M. Tuomainen, “Design and application of a single‐tuned passive harmonic filter to suppress harmonic distortion and resonance for railway traction power systems—A case study,” IET Electr. Syst. Transp., vol. 12, no. 2, pp. 153–164, Jun. 2022. | |
| dc.relation.references | S. Shakeri, S. Esmaeili, and M. H. Rezaeian, “Passive Harmonic Filter Design Considering Voltage Sag Performance - Applicable to Large Industries,” IEEE Trans. Power Deliv., vol. 37, no. 3, pp. 1714–1722, Jun. 2022. | |
| dc.relation.references | A. F. Zobaa, “Mixed-Integer Distributed Ant Colony Multi-Objective Optimization of Single-Tuned Passive Harmonic Filter Parameters,” IEEE Access, vol. 7, pp. 44862–44870, 2019. | |
| dc.relation.references | A. Argüello, R. Torquato, and W. Freitas, “Passive Filter Tuning for Harmonic Resonance Mitigation in Wind Parks,” IEEE Trans. Power Deliv., vol. 38, no. 6, pp. 3834–3846, Dec. 2023. | |
| dc.relation.references | R. Langella et al., “On the use of fourier descriptors for the assessment of frequency coupling matrices of power electronic devices,” in Proceedings of International Conference on Harmonics and Quality of Power, ICHQP, 2018, vol. 2018-May, pp. 1–6. | |
| dc.rights.acceso | Restringido (Solo Referencia) | |
| dc.rights.accessrights | RestrictedAccess | |
| dc.subject | Calidad de potencia | |
| dc.subject | Descriptor de Fourier | |
| dc.subject | Inteligencia artificial | |
| dc.subject | Modelo del fasor espacial | |
| dc.subject | Muesca de tensión | |
| dc.subject | Sistema de distribución de energía eléctrica | |
| dc.subject.keyword | Artificial Intelligence | |
| dc.subject.keyword | Distribution network | |
| dc.subject.keyword | Fourier Descriptor | |
| dc.subject.keyword | Power Quality | |
| dc.subject.keyword | Space Phasor Model | |
| dc.subject.keyword | Voltage notch | |
| dc.subject.lemb | Maestría en Ciencias de la Información y las Comunicaciones -- Tesis y disertaciones académicas | |
| dc.subject.lemb | Energía eléctrica -- Calidad | |
| dc.subject.lemb | Convertidores de corriente eléctrica | |
| dc.subject.lemb | Proceso de señales | |
| dc.title | Metodología para la detección y clasificación en tiempo real de muescas de tensión | |
| dc.title.titleenglish | A methodology for real-time detection and classification of voltage notches | |
| dc.type | masterThesis | |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
| dc.type.degree | Investigación-Innovación | |
| dc.type.driver | info:eu-repo/semantics/masterThesis |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 7 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:
